Search Results

Search found 922 results on 37 pages for 'linear'.

Page 2/37 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Sparse linear program solver

    - by Jacob
    This great SO answer points to a good sparse solver, but I've got constraints on x (for Ax = b) such that each element in x is >=0 an <=N. The first thing which comes to mind is an LP solver for large sparse matrices. Any ideas/recommendations?

    Read the article

  • O'Reilly book clarification on 2d linear system

    - by Eric
    The Oreilly book "Learning openCV" states at page 356 : Quote Before we get totally lost, let’s consider a particular realistic situation of taking measurements on a car driving in a parking lot. We might imagine that the state of the car could be summarized by two position variables, x and y, and two velocities, vx and vy. These four variables would be the elements of the state vector xk. Th is suggests that the correct form for F is: x = [ x; y; vx; vy; ]k F = [ 1, 0, dt, 0; 0, 1, 0, dt; 0, 0, 1, 0; 0, 0, 0, 1; ] It seems natural to put 'dt' just there in the F matrix but I just don't get why. What if I have a n states system, how would I spray some "dt" in the F matrix?

    Read the article

  • Rendering Linear Gradients using the HTML5 Canvas

    - by dwahlin
    Related HTML5 Canvas Posts: Getting Started with the HTML5 Canvas Rendering Text with the HTML5 Canvas Creating a Line Chart using the HTML5 Canvas New Pluralsight Course: HTML5 Canvas Fundamentals Gradients are everywhere. They’re used to enhance toolbars or buttons and help add additional flare to a web page when used appropriately. In the past we’ve always had to rely on images to render gradients which works well, but isn’t necessarily the most efficient (although 1 pixel wide images do work well). CSS3 provides a great way to render gradients in modern browsers (see http://www.colorzilla.com/gradient-editor for a nice online gradient generator tool) but it’s not the only option. If you’re working with charts, games, multimedia or other HTML5 Canvas applications you can also use gradients and render them on the client-side without relying on images. In this post I’ll introduce how to use linear gradients and discuss the different functions that can be used to create them.   Creating Linear Gradients Linear gradients can be created using the 2D context’s createLinearGradient function. The function takes the starting x,y coordinates and ending x,y coordinates of the gradient:   createLinearGradient(x1, y1, x2, y2);   By changing the start and end coordinates you can control the direction that the gradient renders. For example, adding the following coordinates causes the gradient to render from left to right since the y value stays at 0 for both points while the x value changes from 0 to 200. var lgrad = ctx.createLinearGradient(0, 0, 200, 0); Here’s an example of how changing the coordinates affects the gradient direction:   Once a linear gradient object has been created you can set color stops using the addColorStop() function. It takes the location where the color should appear in the gradient with 0 being the beginning and 1 being at the end (0.5 would be in the middle) as well as the color to display in the gradient. lgrad.addColorStop(0, 'white'); lgrad.addColorStop(1, 'gray');   An example of combining createLinearGradient() with addColorStop() is shown next:   Using createLinearGradient() var canvas = document.getElementById('myCanvas'); var ctx = canvas.getContext('2d'); var lgrad = ctx.createLinearGradient(0, 0, 200, 0); lgrad.addColorStop(0, 'white'); lgrad.addColorStop(1, 'gray'); ctx.fillStyle = lgrad; ctx.fillRect(0, 0, 200, 200); ctx.strokeRect(0, 0, 200, 200); This code renders a white to gray gradient as shown next: A live example of using createLinearGradient() is shown next. Click the Result tab to see the code in action.   In the next post on the HTML5 Canvas I’ll take a look at radial gradients and how they can be used. In the meantime, if you’re interested in learning more about the HTML5 Canvas and how it can be used in your Web or Windows 8 applications, check out my HTML5 Canvas Fundamentals course from Pluralsight. It has over 4 1/2 hours of canvas goodness packed in it.

    Read the article

  • How to set position for a linear-gradient background in css3

    - by Virender Sehwag
    I am trying to set the position (that is, margin or padding from top) of body tag's linear background with image. My code is background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0), rgba(255, 255, 255, 0), rgba(0, 0, 0, 0.9), rgb(0, 0, 0)), url("g2hd.jpg"); background-repeat: repeat, no-repeat; background-attachment: fixed; background-position: 0% 30px, center center; but 30px is not working but it works for normal for background-image:url("g2hd.jpg"); any idea

    Read the article

  • Sparse quadratic program solver

    - by Jacob
    This great SO answer points to a good sparse solver, but I've got constraints on x (for Ax = b) such that each element in x is >=0 an <=N. The first thing which comes to mind is an QP solver for large sparse matrices. Also, A is huge (around 2e6x2e6) but very sparse with <=4 elements per row. Any ideas/recommendations?

    Read the article

  • Create a linear trend line in Excel graphs with logarithmic scale

    - by Redsoft7
    I I have an Excel scatter chart with x and y values. I set the logarithmic scale in x-axis and y-axis. When I add a linear trend line to the graph, the line is not linear but appears like a curve. How can I make a linear trend line on a logarithmic-scaled chart? Sample data: x: 18449 22829 25395 36869 101419 125498 208144 2001508 14359478 17301785 y: 269,09 273,89 239,50 239,50 175,13 176,73 151,94 135,15 131,55 121,55

    Read the article

  • Increasing speed of circle over time as linear with Box2d

    - by Whispered
    Assume that there is a circle and it can be moved by using keyboard arrows.Is required that increasing speed over time like increasing car speed. For example; max speed is 25 and time to reach max speed shall be 5 sec. Over 5 sec the speed will reach to max speed. Does Box2d handle that situation?. I tried setting linear valocity but it seems to make the circle have constant speed instead of increased speed over time. Thank You! Note: I'm using Box2DWeb Javascript port of Box2D.

    Read the article

  • How to solve linear recurrences involving two functions?

    - by Aditya Bahuguna
    Actually I came across a question in Dynamic Programming where we need to find the number of ways to tile a 2 X N area with tiles of given dimensions.. Here is the problem statement Now after a bit of recurrence solving I came out with these. F(n) = F(n-1) + F(n-2) + 2G(n-1), and G(n) = G(n-1) + F(n-1) I know how to solve LR model where one function is there.For large N as is the case in the above problem we can do the matrix exponentiation and achieve O(k^3log(N)) time where k is the minimum number such that for all km F(n) does not depend on F(n-k). The method of solving linear recurrence with matrix exponentiation as it is given in that blog. Now for the LR involving two functions can anyone suggest an approach feasible enough for large N.

    Read the article

  • Show path of a body of where it should go after linear impulse is applied

    - by Farooq Arshed
    I am making a game with Andengine and Box2D. I have a dynamic body and I apply linear impulse on the body to move it around when the user have touched the screen. Now I want to show the path where the body will go when the user have touched. If you have played Angry Birds or Basket Ball Shoot or any other which have projectile motion with a path shown you will get my point. I want to show the white dots which are shown in those games.

    Read the article

  • -webkit-linear-gradient Not working in Dreamweaver CS6

    - by Ken
    I've tried multiple times to apply the following piece of code in a CSS document: display: block; width: 500px; margin: 500px auto; padding: 15px; text-align: center; border: 4px solid blue; background: -webkit-linear-gradient(top,black,white); outline: 7px solid red; Everything appears correctly, except the gradient. I have CS6 Live View turned on, and it still refuses to appear. All I get in my box is a white background, as opposed to the black to white gradient. However, when I type the same line of code into the trial of Coda 2 I downloaded, it works perfectly. Is there anything I can do to resolve the issue?

    Read the article

  • Linear Search in Python? [closed]

    - by POTUS
    def find_interval(mesh,x): '''This function finds the interval containing x according to the following rules, mesh is an ordered list with n numbers return 0 if x < mesh[0] return n if mesh[n-1] < x return k if mesh[k-1] <= x < mesh[k] return n-1 if mesh[n-2] <= x <= mesh[n-1] This function does a Linear search. 08/29/2012 ''' for n in range(len(mesh)): for k in range(len(mesh)): if x == mesh[n]: print "Found x at index:" return n elif x<mesh[n]: return 0 elif mesh[n-1]<x: return n elif mesh[n-2]<=x<=mesh[n-1]: return n-1 elif mesh[k-1]<=x<mesh[k]: return k mesh = [0, 0.1, 0.25, 0.5, 0.6, 0.75, 0.9, 1] print mesh print find_interval(mesh, -1) print find_interval(mesh, 0) print find_interval(mesh, 0.1) print find_interval(mesh, 0.8) print find_interval(mesh, 0.9) print find_interval(mesh, 1) print find_interval(mesh, 1.01) Output: [0, 0.100000000000000, 0.250000000000000, 0.500000000000000, 0.600000000000000, 0.750000000000000, 0.900000000000000, 1] 0 Found x at index: 0 2 6 -1 -1 0 I don't think the output is correct. Can anyone help me fix it? Thanks.

    Read the article

  • Constructive criticsm on my linear sampling Gaussian blur

    - by Aequitas
    I've been attempting to implement a gaussian blur utilising linear sampling, I've come across a few articles presented on the web and a question posed here which dealt with the topic. I've now attempted to implement my own Gaussian function and pixel shader drawing reference from these articles. This is how I'm currently calculating my weights and offsets: int support = int(sigma * 3.0) weights.push_back(exp(-(0*0)/(2*sigma*sigma))/(sqrt(2*pi)*sigma)); total += weights.back(); offsets.push_back(0); for (int i = 1; i <= support; i++) { float w1 = exp(-(i*i)/(2*sigma*sigma))/(sqrt(2*pi)*sigma); float w2 = exp(-((i+1)*(i+1))/(2*sigma*sigma))/(sqrt(2*pi)*sigma); weights.push_back(w1 + w2); total += 2.0f * weights[i]; offsets.push_back(w1 / weights[i]); } for (int i = 0; i < support; i++) { weights[i] /= total; } Here is an example of my vertical pixel shader: vec3 acc = texture2D(tex_object, v_tex_coord.st).rgb*weights[0]; vec2 pixel_size = vec2(1.0 / tex_size.x, 1.0 / tex_size.y); for (int i = 1; i < NUM_SAMPLES; i++) { acc += texture2D(tex_object, (v_tex_coord.st+(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; acc += texture2D(tex_object, (v_tex_coord.st-(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; } gl_FragColor = vec4(acc, 1.0); Am I taking the correct route with this? Any criticism or potential tips to improving my method would be much appreciated.

    Read the article

  • Bounding volume hierarchy - linked nodes (linear model)

    - by teodron
    The scenario A chain of points: (Pi)i=0,N where Pi is linked to its direct neighbours (Pi-1 and Pi+1). The goal: perform efficient collision detection between any two, non-adjacent links: (PiPi+1) vs. (PjPj+1). The question: it's highly recommended in all works treating this subject of collision detection to use a broad phase and to implement it via a bounding volume hierarchy. For a chain made out of Pi nodes, it can look like this: I imagine the big blue sphere to contain all links, the green half of them, the reds a quarter and so on (the picture is not accurate, but it's there to help understand the question). What I do not understand is: How can such a hierarchy speed up computations between segments collision pairs if one has to update it for a deformable linear object such as a chain/wire/etc. each frame? More clearly, what is the actual principle of collision detection broad phases in this particular case/ how can it work when the actual computation of bounding spheres is in itself a time consuming task and has to be done (since the geometry changes) in each frame update? I think I am missing a key point - if we look at the picture where the chain is in a spiral pose, we see that most spheres are already contained within half of others or do intersect them.. it's odd if this is the way it should work.

    Read the article

  • Algorithm for querying linearly through a non-linear list of questions

    - by JoshLeaves
    For a multiplayers trivia game, I need to supply my users with a new quizz in a desired subject (Science, Maths, Litt. and such) at the start of every game. I've generated about 5K quizzes for each subject and filled my database with them. So my 'Quizzes' database looks like this: |ID |Subject |Question +-----+------------+---------------------------------- | 23 |Science | What's water? | 42 |Maths | What's 2+2? | 99 |Litt. | Who wrote "Pride and Prejudice"? | 123 |Litt. | Who wrote "On The Road"? | 146 |Maths | What's 2*2? | 599 |Science | You know what's cool? |1042 |Maths | What's the Fibonacci Sequence? |1056 |Maths | What's 42? And so on... (Much more detailed/complex but I'll keep the exemple simple) As you can see, due to technical constraints (MongoDB), my IDs are not linear but I can use them as an increasing suite. So far, my algorithm to ensure two users get a new quizz when they play together is the following: // Take the last played quizzes by P1 and P2 var q_one = player_one.getLastPlayedQuizz('Maths'); var q_two = player_two.getLastPlayedQuizz('Maths'); // If both of them never played in the subject, return first quizz in the list if ((q_one == NULL) && (q_two == NULL)) return QuizzDB.findOne({subject: 'Maths'}); // If one of them never played, play the next quizz for the other player // This quizz is found by asking for the first quizz in the desired subject where // the ID is greater than the last played quizz's ID (if the last played quizz ID // is 42, this will return 146 following the above example database) if (q_one == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_two}); if (q_two == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); // And if both of them have a lastPlayedQuizz, we return the next quizz for the // player whose lastPlayedQuizz got the higher ID if (q_one > q_two) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); else return QuizzDB.findOne({subject: 'Maths', ID > q_two}); Now here comes the real problem: Once I get to the end of my database (let's say, P1's last played quizz in 'Maths' is 1056, P2's is 146 and P3 is 1042), following my algorithm, P1's ID is the highest so I ask for the next question in 'Maths' where ID is superior to 1056. There is nothing, so I roll back to the beginning of my quizz list (with a random skipper to avoid having the first question always show up). P1 and P2's last played will then be 42 and they will start fresh from the beginning of the list. However, if P1 (42) plays against P3 (1042), the resulting ID will be 1056...which P1 already played two games ago. Basically, players who just "rolled back" to the beginning of the list will be brought back to the end of the list by players who still haven't rolled back. The rollback WILL happen in the end, but it'll take time and there'll be a "bottleneck" at the beginning and at the end. Thus my question: What would be the best algorith to avoid this bottleneck and ensure players don't get stuck endlessly on the same quizzes? Also bear in mind that I've got some technical constraints: I can't get a random question in a subject (ie: no "QuizzDB.findOne({subject: 'Maths'}).skip(random());"). It's cool to skip on one to twenty records, but the MongoDB documentation warns against skipping too many documents. I would like to avoid building an array of every quizz played by each player and find the next non-played in the database with a $nin. Thanks for your help

    Read the article

  • How does java.util.Collections.contains() perform faster than a linear search?

    - by The111
    I've been fooling around with a bunch of different ways of searching collections, collections of collections, etc. Doing lots of stupid little tests to verify my understanding. Here is one which boggles me (source code further below). In short, I am generating N random integers and adding them to a list. The list is NOT sorted. I then use Collections.contains() to look for a value in the list. I intentionally look for a value that I know won't be there, because I want to ensure that the entire list space is probed. I time this search. I then do another linear search manually, iterating through each element of the list and checking if it matches my target. I also time this search. On average, the second search takes 33% longer than the first one. By my logic, the first search must also be linear, because the list is unsorted. The only possibility I could think of (which I immediately discard) is that Java is making a sorted copy of my list just for the search, but (1) I did not authorize that usage of memory space and (2) I would think that would result in MUCH more significant time savings with such a large N. So if both searches are linear, they should both take the same amount of time. Somehow the Collections class has optimized this search, but I can't figure out how. So... what am I missing? import java.util.*; public class ListSearch { public static void main(String[] args) { int N = 10000000; // number of ints to add to the list int high = 100; // upper limit for random int generation List<Integer> ints; int target = -1; // target will not be found, forces search of entire list space long start; long end; ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 1)... "); if (ints.contains(target)) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); System.out.println(); ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 2)... "); for (Integer i : ints) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); } }

    Read the article

  • 2D Car Simulation with Throttle Linear Physics

    - by James
    I'm trying to make a simulation game for an automatic cruise control system. The system simulates a car on varying inclinations and throttle speeds. I've coded up to the car physics but these do note make sense. The dynamics of the simulation are specified as follows: a = V' - V T = (k1)V + ?(k2) + ma V' = (1 - (k1 / m) V) + T - ( k2 / m) * ? Where T = throttle position k1 = viscous friction V = speed V' = next speed ? = angle of incline k2 = m g sin ? a = acceleration m = mass Notice that the angle of incline in the equation is not chopped up by sin or cos. Even the equation for acceleration isn't right. Can anyone correct them or am I misinterpreting the physics?

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Integer Linear Programming Java: Multiple Open Source and Commercial tools are available. Which one

    - by Sandeep Jindal
    Hi, I need to use Integer Linear Programming API/Tool for my application. Though my application is in Java but I don’t mind calling an EXE (Tool) from Java providing input using file (MPS, etc). My search analysis is as follows: There are multiple Open Source and Commercial tools available to solve ILP Following I found and think are useful for my needs. 1. Gnu LP Kit(GLPK): I think this is the oldest and probably most stable and efficient 2. IP_Solve: Has good reviews about it. 3. JavaILP: Found this, but not much reviews about it 4. Apache Common-Math: Supports LP but not ILP, so ruled out. 5. Coin-OR Can you please suggest which one shall be the best in terms of stability, efficiency, acceptance, etc Regards Sandeep Jindal

    Read the article

  • R: ggplot2, how to get the parameters from a plotted linear model smoother?

    - by John
    I have a data.frame with 3 time series in it, shown below. When I plot them with a smoother time series, I want to be able to get the parameters of the linear model that I plot, but I can't see how to do that? > data day od series_id 1 1 0.10 A1 2 3 1.00 A1 3 5 0.50 A1 4 7 0.70 A1 5 1 1.70 B1 6 3 1.60 B1 7 5 1.75 B1 8 7 1.70 B1 9 1 2.10 C1 10 3 2.30 C1 11 5 2.50 C1 12 7 2.70 C1 data = data.frame (day = c(1,3,5,7,1,3,5,7,1,3,5,7), od = c(0.1,1.0,0.5,0.7 ,1.7,1.6,1.75,1.7 ,2.1,2.3,2.5,2.7), series_id = c("A1", "A1", "A1","A1", "B1", "B1","B1", "B1", "C1","C1", "C1", "C1")) r <- ggplot(data = data, aes(x = day, y = od)) r + stat_smooth(aes(group = series_id, color = series_id),method="lm")

    Read the article

  • linear algebra libraries for clusters

    - by Abruzzo Forte e Gentile
    Hi all I need to develop applications doing linear algebra + eigenvalue + linear equation solutions over a cluster of pcs ( I have a lot of machines available ). I discovered Scalapack libraries but they seem to me developed long time ago. Do you know if these are other libs available that I should learn doing math & linear algebra in a cluster? My language is C++ and off course I am newbie to this topic. Kind Regards to everybody AFG

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >