Search Results

Search found 36466 results on 1459 pages for 'project reference'.

Page 2/1459 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Safe project development - free repositories

    - by friko
    Some time ago we started a private hobby project. We made a project on javaforge.com, created an svn repository and started developing our app. Right now we are really far with our project, but somehow we never worried if our project is really safe on such free development tool like javaforge ? I mean, what if our project would earn some money and the source code become valuable ? Could it be stolen or could somebody take it over ? We want to be sure that we are not wasting our time and want to be really sure about our project safety. Is it possible to safely develop a project in such free repository ? We would like also to start using redmine, so if you know any safe place for moving our project, please take this under consideration. Thanks a lot.

    Read the article

  • Assigning resources to MS Project 2007

    - by adam
    Hi, I'm planning a redesign of a site in Project 2007. I have three developers to hand, all with the same skills. There are about 80 templates to be rendered as part of the redesign, and each template has been added as a project task. Each of these tasks can be done by any of the 3 devs, and each will take a day (with a few exceptions). There is no order in which the tasks must be completed, so there are no predecessor rules. I'd like to be able to assign tasks to a 'Developer' resource group, and for Project to see that three tasks can be done at once (as the group has three resources members) and queue the tasks as such. Googling leads me to Team Assignment, but that appears to be part of Project Server. Surely I can do this in standalone Project? Thanks, Adam

    Read the article

  • The Future of Project Management is Social

    - by Natalia Rachelson
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A guest post by Kazim Isfahani, Director, Product Marketing, Oracle Rapid Ascent. Breakneck Speed. Lightning Fast. Perhaps even overwhelming. No matter which set of adjectives we use to describe it, social media’s rise into the enterprise mainstream has been unprecedented. Indeed, the big 4 social media powerhouses (Facebook, Google+, LinkedIn, and Twitter), have nearly 2 Billion users between them. You may be asking (as you should really) “That’s all well and good for the consumer, but for me at my company, what’s your point? Beyond the fact that I can check and post updates, that is.” Good question, kind sir. Impact of Social and Collaboration on Project Management I’ll dovetail this discussion to the project management realm, since that’s what I’m writing about. Speed is a big challenge for project-driven organizations. Anything that can help speed up project delivery - be it a new product introduction effort or a geographical expansion project - fast is a good thing. So where does this whole social thing fit particularly since there are already a host of tools to help with traditional project execution? The fact is companies have seen improvements in their productivity by deploying departmental collaboration and other social-oriented solutions. McKinsey’s survey on social tools shows we have reached critical scale: 72% of respondents report that their companies use at least one and over 40% say they are using social networks and blogs. We don’t hear as much about the impact of social media technologies at the project and project manager level, but that does not mean there is none. Consider the new hire. The type of individual entering the workforce and executing on projects is a generation of worker expecting visually appealing, easy to use and easy to understand technology meshing hand-in-hand with business processes. Consider the project manager. The social era has enhanced the role that the project manager must play. Today’s project manager must be a supreme communicator, an influencer, a sympathizer, a negotiator, and still manage to keep all stakeholders in the loop on project progress. Social tools play a significant role in this effort. Now consider the impact to the project team. The way that a project team functions has changed, with newer, social oriented technologies making the process of information dissemination and team communications much more fluid. It’s clear that a shift is occurring where “social” is intersecting with project management. The Rise of Social Project Management We refer to the melding of project management and social networking as Social Project Management. Social Project Management is based upon the philosophy that the project team is one part of an integrated whole, and that valuable and unique abilities exist within the larger organization. For this reason, Social Project Management systems should be integrated into the collaborative platform(s) of an organization, allowing communication to proceed outside the project boundaries. What makes social project management "social" is an implicit awareness where distributed teams build connected links in ways that were previously restricted to teams that were co-located. Just as critical, Social Project Management embraces the vision of seamless online collaboration within a project team, but also provides for, (and enhances) the use of rigorous project management techniques. Social Project Management acknowledges that projects (particularly large projects) are a social activity - people doing work with people, for other people, with commitments to yet other people. The more people (larger projects), the more interpersonal the interactions, and the more social affects the project. The Epitome of Social - Fusion Project Portfolio Management If I take this one level further to discuss Fusion Project Portfolio Management, the notion of Social Project Management is on full display. With Fusion Project Portfolio Management, project team members have a single place for interaction on projects and access to any other resources working within the Fusion ERP applications. This allows team members the opportunity to be informed with greater participation and provide better information. The application’s the visual appeal, and highly graphical nature makes it easy to navigate information. The project activity stream adds to the intuitive user experience. The goal of productivity is pervasive throughout Fusion Project Portfolio Management. Field research conducted with Oracle customers and partners showed that users needed a way to stay in the context of their core transactions and yet easily access social networking tools. This is manifested in the application so when a user executes a business process, they not only have the transactional application at their fingertips, but also have things like e-mail, SMS, text, instant messaging, chat – all providing a number of different ways to interact with people and/or groups of people, both internal and external to the project and enterprise. But in the end, connecting people is relatively easy. The larger issue is finding a way to serve up relevant, system-generated, actionable information, in real time, which will allow for more streamlined execution on key business processes. Fusion Project Portfolio Management’s design concept enables users to create project communities, establish discussion threads, manage event calendars as well as deliver project based work spaces to organize communications within the context of a project – all within a secure business environment. We’d love to hear from you and get your thoughts and ideas about how Social Project Management is impacting your organization. To learn more about Oracle Fusion Project Portfolio Management, please visit this link

    Read the article

  • Project-Based ERP - The Evolution of Project Managemen

    Fred Studer speaks with Ray Wang, Principal Analyst at Forrester Research and Ted Kempf, Senior Director for Oracle's Project Management Solutions about trends in the project management market, where enterprise project management is heading in the next 2 - 3 years and highlights from Ray's new line of research on project management solutions.

    Read the article

  • How to represent an agile project to people focused on waterfall [closed]

    - by ahsteele
    Our team has been asked to represent our development efforts in a project plan. No one is unhappy with our work or questioning our ability to deliver, we are just participating in an IT cattle call for project plans. Trouble is we are an agile team and haven't thought about our work in terms of a formal project plan. While we have a general idea of what we are working on next we aren't 100% sure until we plan an iteration. Until now our team has largely operated in a vacuum and has not been required to present our methodology or metrics to outside parties. We follow most of the practices espoused in Extreme Programming. We hold quarterly planning meetings to have a general idea of the stories we are going to work on for a quarter. That said, our stories are documented on 3x5 cards and are only estimated at the beginning of the iteration in which they are going to be worked. After estimation we document the story in Team Foundation Sever. During an iteration, we attach code to stories and mark stories as completed once finished. From this data we are able to generate burn down and velocity charts. Most importantly we know our average velocity for an iteration keeping us from biting off more than we can chew. I am not looking to modify the way we do development but want to present our development activities in a report that someone only familiar with waterfall will understand. In What Does an Agile Project Plan Look Like, Kent McDonald does a good job laying out the differences between agile and waterfall project plans. He specifies the differences in consumable bullets: An agile project plan is feature based An Agile Project Plan is organized into iterations An Agile Project Plan has different levels of detail depending on the time frame An Agile Project Plan is owned by the Team Being able to explain the differences is great, but how best to present the data?

    Read the article

  • Simulating pass by reference for an array reference (i.e. a reference to a reference) in Java

    - by Leif Andersen
    I was wondering, in java, is it possible to in anyway, simulate pass by reference for an array? Yes, I know the language doesn't support it, but is there anyway I can do it. Say, for example, I want to create a method that reverses the order of all the elements in an array. (I know that this code snippet isn't the best example, as there is a better algorithms to do this, but this is a good example of the type of thing I want to do for more complex problems). Currently, I need to make a class like this: public static void reverse(Object[] arr) { Object[] tmpArr = new Object[arr.length]; count = arr.length - 1; for(Object i : arr) tmpArr[count--] = i; // I would like to do arr = tmpArr, but that will only make the shallow // reference tmpArr, I would like to actually change the pointer they passed in // Not just the values in the array, so I have to do this: count = arr.length - 1; for(Object i : tmpArr) arr[count--] = i; return; } Yes, I know that I could just swap the values until I get to the middle, and it would be much more efficient, but for other, more complex purposes, is there anyway that I can manipulate the actual pointer? Again, thank you.

    Read the article

  • Not able to compile dbus-ping-pong

    - by Mahipal
    I have downloaded files from http://cgit.collabora.com/git/user/alban/dbus-ping-pong.git/tree/ I am trying to compile it using the command gcc pkg-config --libs --cflags dbus-1 dbus-glib-1-2 glib-2.0 -o dbus-ping-pong dbus-ping-pong.c However, I get errors: /tmp/ccmJkxXb.o: In function g_once_init_enter: dbus-ping-pong.c:(.text+0x22): undefined reference to g_once_init_enter_impl /tmp/ccmJkxXb.o: In function dbus_glib_marshal_echo_srv__BOOLEAN__STRING_POINTER_POINTER: dbus-ping-pong.c:(.text+0x52): undefined reference to g_return_if_fail_warning dbus-ping-pong.c:(.text+0x79): undefined reference to g_return_if_fail_warning dbus-ping-pong.c:(.text+0x9d): undefined reference to g_value_peek_pointer dbus-ping-pong.c:(.text+0xac): undefined reference to g_value_peek_pointer dbus-ping-pong.c:(.text+0x109): undefined reference to g_value_set_boolean /tmp/ccmJkxXb.o: In function echo_ping_class_intern_init: dbus-ping-pong.c:(.text+0x122): undefined reference to g_type_class_peek_parent /tmp/ccmJkxXb.o: In function echo_ping_get_type: dbus-ping-pong.c:(.text+0x162): undefined reference to g_intern_static_string dbus-ping-pong.c:(.text+0x192): undefined reference to g_type_register_static_simple dbus-ping-pong.c:(.text+0x1a8): undefined reference to g_once_init_leave /tmp/ccmJkxXb.o: In function echo_ping_class_init: dbus-ping-pong.c:(.text+0x1cd): undefined reference to g_type_class_add_private dbus-ping-pong.c:(.text+0x1e2): undefined reference to dbus_g_object_type_install_info /tmp/ccmJkxXb.o: In function echo_ping_init: dbus-ping-pong.c:(.text+0x1fe): undefined reference to g_type_instance_get_private /tmp/ccmJkxXb.o: In function echo_ping: dbus-ping-pong.c:(.text+0x21d): undefined reference to g_strdup /tmp/ccmJkxXb.o: In function client: dbus-ping-pong.c:(.text+0x265): undefined reference to dbus_g_proxy_new_for_name dbus-ping-pong.c:(.text+0x2c3): undefined reference to dbus_g_proxy_call dbus-ping-pong.c:(.text+0x2d1): undefined reference to dbus_g_error_quark dbus-ping-pong.c:(.text+0x2f1): undefined reference to dbus_g_error_get_name dbus-ping-pong.c:(.text+0x305): undefined reference to g_printerr dbus-ping-pong.c:(.text+0x31d): undefined reference to g_printerr dbus-ping-pong.c:(.text+0x328): undefined reference to g_error_free dbus-ping-pong.c:(.text+0x358): undefined reference to g_print dbus-ping-pong.c:(.text+0x363): undefined reference to g_free /tmp/ccmJkxXb.o: In function main: dbus-ping-pong.c:(.text+0x38f): undefined reference to g_type_init dbus-ping-pong.c:(.text+0x3a3): undefined reference to dbus_g_bus_get dbus-ping-pong.c:(.text+0x3c7): undefined reference to g_object_new dbus-ping-pong.c:(.text+0x3df): undefined reference to g_type_check_instance_cast dbus-ping-pong.c:(.text+0x3f9): undefined reference to dbus_g_connection_register_g_object dbus-ping-pong.c:(.text+0x406): undefined reference to dbus_g_connection_get_connection dbus-ping-pong.c:(.text+0x426): undefined reference to dbus_bus_request_name dbus-ping-pong.c:(.text+0x43a): undefined reference to g_main_loop_new dbus-ping-pong.c:(.text+0x44a): undefined reference to g_main_loop_run How do I resolve this issue ?

    Read the article

  • Getting your bearings and defining the project objective

    - by johndoucette
    I wrote this two years ago and thought it was worth posting… Some may think this is a daunting task and some may even say “what a waste of time” and want to open MS Project and start typing out tasks because someone asked for an estimate and a task list. Hell, maybe you even use Excel and pump out a spreadsheet with some real scientific formula for guessing how long it will take to code a bunch of classes. However, this short exercise will provide the basis for the entire project, whether small or large and be a great friend when communicating to anyone on your team or even your client. I call this the Project Brief. If you find yourself going beyond a single page, then you must decompose the sections and summarize your findings so there is a complete and clear picture of the project you are working on in a relatively short statement. Here is a great quote from the PMBOK (Project Management Body of Knowledge) relative to what a project is;   A project is a temporary endeavor undertaken to create a unique product, service or result. With this in mind, the project brief should encompass the entirety (objective) of the endeavor in its explanation and what it will take (goals) to create the product, service or result (deliverables). Normally the process of identifying the project objective is done during the first stage of a project called the Project Kickoff, but you can perform this very important step anytime to help you get a bearing. There are many more parts to helping a project stay on course, but this is usually the foundation where it can be grounded on. Through a series of 3 exercises, you should be able to come up with the objective, goals and deliverables on your project. Follow these steps, and in no time (about &frac12; hour), you will have the foundation of your project plan. (See examples below) Exercise 1 – Objectives Begin with the end in mind. Think about your project in business terms with a couple things to help you understand the objective; Reference the business benefit in terms of cost, speed and / or quality, Provide a higher level of what the outcome will look like (future sense) It should be non-measurable, that’s what the goals are all about The output should be a single paragraph with three sentences and take 10 minutes to write. *Typically, agreement must be reached on the objectives of the project before you would proceed to the next steps of the project. Exercise 2 – Goals A project goal is a statement that answers questions about who, what, why, where and when. A good project goal statement; Answers the five “W” questions for the project Is measurable in each of its parts Is published and agreed on by all the owners This helps the Project Manager receive confirmation on defining the project target. Using the established project objective done in the first exercise, think about the things it will take to get the job done. Think about tangible activities which are the top level tasks in a typical Work Breakdown Structure (WBS). The overall goal statement plus all the deliverables (next exercise) can be seen as the project team’s contract with the project owners. Write 3 - 5 goals in about 10 minutes. You should not write the words “Who, what, why, where and when, but merely be able to answer the questions when you read a goal. Exercise 3 – Deliverables Every project creates some type of output and these outputs are called deliverables. There are two classes of deliverables; Internal – produced for project team members to meet their goals External – produced for project owners to meet their expectations The list you enter here provides a checklist for the team’s delivery and/or is a statement of all the expectations of the project owners. Here are some typical project deliverables; Product and product documentation End product/system Requirements/feature documents Installation guides Demo/prototype System design documents User guides/help files Plans Project plan Training plan Conversion/installation/delivery plan Test plans Documentation plan Communication plan Reports and general documentation Progress reports System acceptance tests Outstanding bug list Procedures Risk and issue logs Project history Deliverables should go with each of the goals. Have 3-5 deliverables for each goal. When you are done, you will have established a great foundation for the clarity of your project. This exercise can take some time, but with practice, you should be able to whip this one out in 10 minutes as well, especially if you are intimate with an ongoing project. Samples  Objective [Client] is implementing a series of MOSS sites to support external public (Internet), internal employee (Intranet) and an external secure (password protected Internet) applications. This project will focus on the public-facing web site and will provide [Client] with architectural recommendations based on the current design being done by their design partner [Partner] and the internal Content Team. In addition, it will provide [Client] with a development plan and confidence they need to deploy a world class public Internet website. Goals 1.  [Consultant] will provide technical guidance and set project team expectations for the implementation of the MOSS Internet site based on provided features/functions within three weeks. 2.  [Consultant] will understand phase 2 secure password-protected Internet site design and provide recommendations.   Deliverables 1.1  Public Internet (unsecure) Architectural Recommendation Plan 1.2  Physical Site construction Work Breakdown Structure and plan (Time, cost and resources needed) 2.1  Two Factor authentication recommendation document   Objective [Client] is currently using an application developed by [Consultant] many years ago called "XXX". This application, although functional, does not meet their new updated business requirements and contains a few defects which [Client] has developed work-around processes. [Client] would like to have a "new and improved" system to support their membership management needs by expanding membership and subscription capabilities, provide accounting integration with internal (GL) and external (VeriSign) systems, and implement hooks to the current CRM solution. This effort will take place through a series of phases, beginning with envisioning. Goals 1. Through discussions with users, [Consultant] will discover current issues/bugs which need to be resolved which must meet the current functionality requirements within three weeks. 2. [Consultant] will gather requirements from the users about what is "needed" vs. "what they have" for enhancements and provide a high level document supporting their needs. 3. [Consultant] will meet with the team members through a series of meetings and help define the overall project plan to deliver a new and improved solution. Deliverables 1.1 Prioritized list of Current application issues/bugs that need to be resolved 1.2 Provide a resolution plan on the issues/bugs identified in the current application 1.3 Risk Assessment Document 2.1 Deliver a Requirements Document showing high-level [Client] needs for the new XXX application. · New feature functionality not in the application today · Existing functionality that will remain in the new functionality 2.2 Reporting Requirements Document 3.1 A Project Plan showing the deliverables and cost for the next (second) phase of this project. 3.2 A Statement of Work for the next (second) phase of this project. 3.3 An Estimate of any work that would need to follow the second phase.

    Read the article

  • Organizational characteristics that impact the selection of Development Methodology concepts applied to a project

    Based on my experience, no one really follows a specific methodology exactly as it is formally designed. In fact, the key concepts of a few methodologies are usually combined to form a hybrid methodology for each project based on the current organizational makeup and the project need/requirements to be accomplished. Organizational characteristics that impact the selection of methodology concepts applied to a project. Prior subject knowledge pertaining to a project can be critical when deciding on what methodology or combination of methodologies to apply to a project. For example, if a project is very straight forward, and the development staff has experience in developing  that are similar, then the waterfall method could possibly be the best choice because little to no research is needed  in order to complete the project tasks and there is very little need for changes to occur.  On the other hand, if the development staff has limited subject knowledge or the requirements/specification of the project could possibly change as the project progresses then the use of spiral, iterative, incremental, agile, or any combination would be preferred. The previous methodologies used by an organization typically do not change much from project to project unless the needs of a project dictate differently. For example, if the waterfall method is the preferred development methodology then most projects will be developed by the waterfall method. Depending on the time allotted to a project each day can impact the selection of a development methodology. In one example, if the staff can only devote a few hours a day to a project then the incremental methodology might be ideal because modules can be added to the final project as they are developed. On the other hand, if daily time allocation is not an issue, then a multitude of methodologies could work well for a project. Project characteristics that impact the selection of methodology concepts applied to a project. The type of project being developed can often dictate the type of methodology used for the project. Based on my experience, projects that tend to have a lot of user interaction, follow a more iterative, incremental, or agile approach typically using a prototype that develops into a final project. These methodologies desire back and forth communication between users, clients, and developers to allow for requirements to change and functionality to be enhanced. Conversely, limited interaction applications or automated services can still sometimes get away with using the waterfall or transactional approach. The timeline of a project can also force an organization to prefer a particular methodology over the rest. For instance, if the project must be completed within 24 hours, then there is very little time for discussions back and forth between clients, users and the development team. In this scenario, the waterfall method would be perfect because the only interaction with the client occurs prior to a development project to outline the system requirements, and the development team can quickly move through the software development stages in order to complete the project within the deadline. If the team had more time, then the other methodologies could also be considered because there is more time for client and users to review the project and make changes as they see fit, and/or allow for more time to review the project in order to enhance the business performance and functionality. Sometimes the client and or user involvement can dictate the selection of methodologies applied to a project. One example of this is if a client is highly motivated to get a project completed and desires to play an active part in the development process then the agile development approach would work perfectly with this client because it allows for frequent interaction between clients, users and the development team. The inverse of this situation is a client that just wants to provide the project requirements and only wants to get involved when the project is to be delivered. In this case the waterfall method would work well because there is no room for changes and no back and forth between the users, clients or the development team.

    Read the article

  • SCRIPT REFERENCE PROFILER TO GET JAVASCRIPT REFERENCE DETAILS

    Many of us came through a scenario like, you need the details of total JS files referred to a web page. It's not a matter if all JS are directly referring through physical file. But now a days for cache purose we are embedding JS to the assembly. In these situations how you will get the JS reference details? Here coming ScriptReferenceProfiler.

    Read the article

  • How to Implement Project Type "Copy", "Move", "Rename", and "Delete"

    - by Geertjan
    You've followed the NetBeans Project Type Tutorial and now you'd like to let the user copy, move, rename, and delete the projects conforming to your project type. When they right-click a project, they should see the relevant menu items and those menu items should provide dialogs for user interaction, followed by event handling code to deal with the current operation. Right now, at the end of the tutorial, the "Copy" and "Delete" menu items are present but disabled, while the "Move" and "Rename" menu items are absent: The NetBeans Project API provides a built-in mechanism out of the box that you can leverage for project-level "Copy", "Move", "Rename", and "Delete" actions. All the functionality is there for you to use, while all that you need to do is a bit of enablement and configuration, which is described below. To get started, read the following from the NetBeans Project API: http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-projectapi/org/netbeans/spi/project/ActionProvider.html http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-projectapi/org/netbeans/spi/project/CopyOperationImplementation.html http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-projectapi/org/netbeans/spi/project/MoveOrRenameOperationImplementation.html http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-projectapi/org/netbeans/spi/project/DeleteOperationImplementation.html Now, let's do some work. For each of the menu items we're interested in, we need to do the following: Provide enablement and invocation handling in an ActionProvider implementation. Provide appropriate OperationImplementation classes. Add the new classes to the Project Lookup. Make the Actions visible on the Project Node. Run the application and verify the Actions work as you'd like. Here we go: Create an ActionProvider. Here you specify the Actions that should be supported, the conditions under which they should be enabled, and what should happen when they're invoked, using lots of default code that lets you reuse the functionality provided by the NetBeans Project API: class CustomerActionProvider implements ActionProvider { @Override public String[] getSupportedActions() { return new String[]{ ActionProvider.COMMAND_RENAME, ActionProvider.COMMAND_MOVE, ActionProvider.COMMAND_COPY, ActionProvider.COMMAND_DELETE }; } @Override public void invokeAction(String string, Lookup lkp) throws IllegalArgumentException { if (string.equalsIgnoreCase(ActionProvider.COMMAND_RENAME)) { DefaultProjectOperations.performDefaultRenameOperation( CustomerProject.this, ""); } if (string.equalsIgnoreCase(ActionProvider.COMMAND_MOVE)) { DefaultProjectOperations.performDefaultMoveOperation( CustomerProject.this); } if (string.equalsIgnoreCase(ActionProvider.COMMAND_COPY)) { DefaultProjectOperations.performDefaultCopyOperation( CustomerProject.this); } if (string.equalsIgnoreCase(ActionProvider.COMMAND_DELETE)) { DefaultProjectOperations.performDefaultDeleteOperation( CustomerProject.this); } } @Override public boolean isActionEnabled(String command, Lookup lookup) throws IllegalArgumentException { if ((command.equals(ActionProvider.COMMAND_RENAME))) { return true; } else if ((command.equals(ActionProvider.COMMAND_MOVE))) { return true; } else if ((command.equals(ActionProvider.COMMAND_COPY))) { return true; } else if ((command.equals(ActionProvider.COMMAND_DELETE))) { return true; } return false; } } Importantly, to round off this step, add "new CustomerActionProvider()" to the "getLookup" method of the project. If you were to run the application right now, all the Actions we're interested in would be enabled (if they are visible, as described in step 4 below) but when you invoke any of them you'd get an error message because each of the DefaultProjectOperations above looks in the Lookup of the Project for the presence of an implementation of a class for handling the operation. That's what we're going to do in the next step. Provide Implementations of Project Operations. For each of our operations, the NetBeans Project API lets you implement classes to handle the operation. The dialogs for interacting with the project are provided by the NetBeans project system, but what happens with the folders and files during the operation can be influenced via the operations. Below are the simplest possible implementations, i.e., here we assume we want nothing special to happen. Each of the below needs to be in the Lookup of the Project in order for the operation invocation to succeed. private final class CustomerProjectMoveOrRenameOperation implements MoveOrRenameOperationImplementation { @Override public List<FileObject> getMetadataFiles() { return new ArrayList<FileObject>(); } @Override public List<FileObject> getDataFiles() { return new ArrayList<FileObject>(); } @Override public void notifyRenaming() throws IOException { } @Override public void notifyRenamed(String nueName) throws IOException { } @Override public void notifyMoving() throws IOException { } @Override public void notifyMoved(Project original, File originalPath, String nueName) throws IOException { } } private final class CustomerProjectCopyOperation implements CopyOperationImplementation { @Override public List<FileObject> getMetadataFiles() { return new ArrayList<FileObject>(); } @Override public List<FileObject> getDataFiles() { return new ArrayList<FileObject>(); } @Override public void notifyCopying() throws IOException { } @Override public void notifyCopied(Project prjct, File file, String string) throws IOException { } } private final class CustomerProjectDeleteOperation implements DeleteOperationImplementation { @Override public List<FileObject> getMetadataFiles() { return new ArrayList<FileObject>(); } @Override public List<FileObject> getDataFiles() { return new ArrayList<FileObject>(); } @Override public void notifyDeleting() throws IOException { } @Override public void notifyDeleted() throws IOException { } } Also make sure to put the above methods into the Project Lookup. Check the Lookup of the Project. The "getLookup()" method of the project should now include the classes you created above, as shown in bold below: @Override public Lookup getLookup() { if (lkp == null) { lkp = Lookups.fixed(new Object[]{ this, new Info(), new CustomerProjectLogicalView(this), new CustomerCustomizerProvider(this), new CustomerActionProvider(), new CustomerProjectMoveOrRenameOperation(), new CustomerProjectCopyOperation(), new CustomerProjectDeleteOperation(), new ReportsSubprojectProvider(this), }); } return lkp; } Make Actions Visible on the Project Node. The NetBeans Project API gives you a number of CommonProjectActions, including for the actions we're dealing with. Make sure the items in bold below are in the "getActions" method of the project node: @Override public Action[] getActions(boolean arg0) { return new Action[]{ CommonProjectActions.newFileAction(), CommonProjectActions.copyProjectAction(), CommonProjectActions.moveProjectAction(), CommonProjectActions.renameProjectAction(), CommonProjectActions.deleteProjectAction(), CommonProjectActions.customizeProjectAction(), CommonProjectActions.closeProjectAction() }; } Run the Application. When you run the application, you should see this: Let's now try out the various actions: Copy. When you invoke the Copy action, you'll see the dialog below. Provide a new project name and location and then the copy action is performed when the Copy button is clicked below: The message you see above, in red, might not be relevant to your project type. When you right-click the application and choose Branding, you can find the string in the Resource Bundles tab, as shown below: However, note that the message will be shown in red, no matter what the text is, hence you can really only put something like a warning message there. If you have no text at all, it will also look odd.If the project has subprojects, the copy operation will not automatically copy the subprojects. Take a look here and here for similar more complex scenarios. Move. When you invoke the Move action, the dialog below is shown: Rename. The Rename Project dialog below is shown when you invoke the Rename action: I tried it and both the display name and the folder on disk are changed. Delete. When you invoke the Delete action, you'll see this dialog: The checkbox is not checkable, in the default scenario, and when the dialog above is confirmed, the project is simply closed, i.e., the node hierarchy is removed from the application. However, if you truly want to let the user delete the project on disk, pass the Project to the DeleteOperationImplementation and then add the children of the Project you want to delete to the getDataFiles method: private final class CustomerProjectDeleteOperation implements DeleteOperationImplementation { private final CustomerProject project; private CustomerProjectDeleteOperation(CustomerProject project) { this.project = project; } @Override public List<FileObject> getDataFiles() { List<FileObject> files = new ArrayList<FileObject>(); FileObject[] projectChildren = project.getProjectDirectory().getChildren(); for (FileObject fileObject : projectChildren) { addFile(project.getProjectDirectory(), fileObject.getNameExt(), files); } return files; } private void addFile(FileObject projectDirectory, String fileName, List<FileObject> result) { FileObject file = projectDirectory.getFileObject(fileName); if (file != null) { result.add(file); } } @Override public List<FileObject> getMetadataFiles() { return new ArrayList<FileObject>(); } @Override public void notifyDeleting() throws IOException { } @Override public void notifyDeleted() throws IOException { } } Now the user will be able to check the checkbox, causing the method above to be called in the DeleteOperationImplementation: Hope this answers some questions or at least gets the discussion started. Before asking questions about this topic, please take the steps above and only then attempt to apply them to your own scenario. Useful implementations to look at: http://kickjava.com/src/org/netbeans/modules/j2ee/clientproject/AppClientProjectOperations.java.htm https://kenai.com/projects/nbandroid/sources/mercurial/content/project/src/org/netbeans/modules/android/project/AndroidProjectOperations.java

    Read the article

  • How can I modify a scalar reference passed to a subroutine reference

    - by Mark
    I have a function to convert documents into different formats, which then calls another function based on the type document. It's pretty straight forward for everything aside from HTML documents which require a bit of cleaning up, and that cleaning up is different based on where it's come from. So I had the idea that I could pass a reference to a subroutine to the convert function so the caller has the opportunity to modify the HTML, kinda like so (I'm not at work so this isn't copy-and-pasted): package Converter; ... sub convert { my ($self, $filename, $coderef) = @_; if ($filename =~ /html?$/i) { $self->_convert_html($filename, $coderef); } } sub _convert_html { my ($self, $filename, $coderef) = @_; my $html = $self->slurp($filename); $coderef->(\$html); #this modifies the html $self->save_to_file($filename, $html); } which is then called by: Converter->new->convert("./whatever.html", sub { s/<html>/<xml>/i }); I've tried a couple of different things along these lines but I keep on getting 'Use of uninitialized value in substitution (s///)'. Is there any way of doing what I'm trying to do? Thanks

    Read the article

  • C# reference collection for storing reference types

    - by ivo s
    I like to implement a collection (something like List<T>) which would hold all my objects that I have created in the entire life span of my application as if its an array of pointers in C++. The idea is that when my process starts I can use a central factory to create all objects and then periodically validate/invalidate their state. Basically I want to make sure that my process only deals with valid instances and I don't re-fetch information I already fetched from the database. So all my objects will basically be in one place - my collection. A cool thing I can do with this is avoid database calls to get data from the database if I already got it (even if I updated it after retrieval its still up-to-date if of course some other process didn't update it but that a different concern). I don't want to be calling new Customer("James Thomas"); again if I initted James Thomas already sometime in the past. Currently I will end up with multiple copies of the same object across the appdomain - some out of sync other in sync and even though I deal with this using timestamp field on the MSSQL server I'd like to keep only one copy per customer in my appdomain (if possible process would be better). I can't use regular collections like List or ArrayList for example because I cannot pass parameters by their real local reference to the their existing Add() methods where I'm creating them using ref so that's not to good I think. So how can this be implemented/can it be implemented at all ? A 'linked list' type of class with all methods working with ref & out params is what I'm thinking now but it may get ugly pretty quickly. Is there another way to implement such collection like RefList<T>.Add(ref T obj)? So bottom line is: I don't want re-create an object if I've already created it before during the entire application life unless I decide to re-create it explicitly (maybe its out-of-date or something so I have to fetch it again from the db). Is there alternatives maybe ?

    Read the article

  • Handling inconcistent resource availability in Project 2007

    - by Lachlan McDonald
    Afternoon all, I have four resources; a project manager, and three developers. The project manager can work anywhere from 9 to 5pm each day, but only for a total of 10 hours per week. It doesn't matter when he works, as long as he isn't over-allocated 10 hours per week. The developers on the other hand can only work up to 2 hours per day, for a total of 10 hours per week. If they work more than 2 hours in a day, they are over-allocated. How do I best configure Project to handle this kind of scheduling requirement?

    Read the article

  • C++: Reference and Pointer question (example regarding OpenGL)

    - by Jay
    I would like to load textures, and then have them be used by multiple objects. Would this work? class Sprite { GLuint* mTextures; // do I need this to also be a reference? Sprite( GLuint* textures ) // do I need this to also be a reference? { mTextures = textures; } void Draw( textureNumber ) { glBindTexture( GL_TEXTURE_2D, mTextures[ textureNumber ] ); // drawing code } }; // normally these variables would be inputed, but I did this for simplicity. const int NUMBER_OF_TEXTURES = 40; const int WHICH_TEXTURE = 10; void main() { std::vector<GLuint> the_textures; the_textures.resize( NUMBER_OF_TEXTURES ); glGenTextures( NUMBER_OF_TEXTURES, &the_textures[0] ); // texture loading code Sprite the_sprite( &the_textures[0] ); the_sprite.Draw( WHICH_TEXTURE ); } And is there a different way I should do this, even if it would work? Thanks.

    Read the article

  • QtOpenCl make errors. Please help.

    - by Skkard
    So I downloaded the ATI Stream SDK. I don't have a gpu now so I use the '-device cpu' and got the programs/examples in the OpenCl directory working by adding the directory to LD_LIBRARY_PATH etc. Now the problem is when installing QtOpenCl. configure script gives me: skkard@skkard-desktop:~/Applications/qt-labs-opencl$ ./configure This is the QtOpenCL configuration utility. Qt version ............. 4.6.2 qmake .................. /usr/bin/qmake OpenCL ................. yes OpenCL/OpenGL interop .. yes Extra QMAKE_CXXFLAGS ... Extra INCLUDEPATH ...... Extra LIBS ............. -lOpenCL QtOpenCL has been configured. Run '/usr/bin/make' to build. Make gives me: skkard@skkard-desktop:~/Applications/qt-labs-opencl$ make cd src/ && make -f Makefile make[1]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src' cd opencl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src/opencl' make[2]: Nothing to be done for `first'. make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src/opencl' cd openclgl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src/openclgl' make[2]: Nothing to be done for `first'. make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src/openclgl' make[1]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src' cd examples/ && make -f Makefile make[1]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples' cd opencl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl' cd vectoradd/ && make -f Makefile make[3]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl/vectoradd' g++ -o vectoradd vectoradd.o qrc_vectoradd.o -L/usr/lib -L../../../lib -L../../../bin -lQtOpenCL -lQtGui -lQtCore -lpthread ../../../lib/libQtOpenCL.so: undefined reference to `clBuildProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clSetCommandQueueProperty' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueNDRangeKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clSetKernelArg' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyBufferToImage' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clFinish' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueUnmapMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clGetMemObjectInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueReadImage' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMarker' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetCommandQueueInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyImage' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseContext' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseEvent' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWriteBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMapImage' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueReadBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clUnloadCompiler' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueBarrier' ../../../lib/libQtOpenCL.so: undefined reference to `clGetProgramBuildInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWaitForEvents' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateContext' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateImage3D' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMapBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clGetDeviceIDs' ../../../lib/libQtOpenCL.so: undefined reference to `clGetContextInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetDeviceInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetSamplerInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetPlatformIDs' ../../../lib/libQtOpenCL.so: undefined reference to `clGetSupportedImageFormats' ../../../lib/libQtOpenCL.so: undefined reference to `clGetPlatformInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clWaitForEvents' ../../../lib/libQtOpenCL.so: undefined reference to `clGetEventInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetEventProfilingInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetImageInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateProgramWithBinary' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetKernelWorkGroupInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainEvent' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainContext' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clFlush' ../../../lib/libQtOpenCL.so: undefined reference to `clGetProgramInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWriteImage' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateKernelsInProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateProgramWithSource' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateImage2D' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyImageToBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clGetKernelInfo' collect2: ld returned 1 exit status make[3]: *** [vectoradd] Error 1 make[3]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl/vectoradd' make[2]: *** [sub-vectoradd-make_default] Error 2 make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl' make[1]: *** [sub-opencl-make_default] Error 2 make[1]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples' make: *** [sub-examples-make_default-ordered] Error 2 Tried it using the '-no-openclgl', but none of the examples etc are compiled. I'm using ubuntu 10.04 using the Qt which is installed from synaptic.

    Read the article

  • Print Microsoft Project chart as giant PDF

    - by Eric
    Hi, I have Adobe's PDF creator installed and I'm using Microsoft Project 2007... I want to print my gantt chart as one giant single-page PDF. (Currently it's set to print on letter sized paper, and it's six pages in a 3x2 layout.) I can't figure out where or how to make those settings. The PDF page setup doesn't seem to be right, nor "page setup" in Project. Help :-)

    Read the article

  • How do I (tactfully) tell my project manager or lead developer that the project's codebase needs serious work?

    - by Adam Maras
    I just joined a (relatively) small development team that's been working on a project for several months, if not a year. As with most developer joining a project, I spent my first couple of days reviewing the project's codebase. The project (a medium- to large-sized ASP.NET WebForms internal line of business application) is, for lack of a more descriptive term, a disaster. There are three immediately noticeable problems with the coding standards: The standard is very loose. It describes more of what not to do (don't use Hungarian notation, etc..) than what to do. The standard isn't always followed. There are inconsistencies with the code formatting everywhere. The standard doesn't follow Microsoft's style guidelines. In my opinion, there's no value in deviating from the guidelines that were set forth by the developer of the framework and the largest contributor to the language specification. As for point 3, perhaps it bothers me more because I've taken the time to get my MCPD with a focus on web applications (specifically, ASP.NET). I'm also the only Microsoft Certified Professional on the team. Because of what I learned in all of my schooling, self-teaching, and on-the-job learning (including my preparation for the certification exams) I've also spotted several instances in the project's code where things are simply not done in the best way. I've only been on this team for a week, but I see so many issues with their codebase that I imagine I'll be spending more time fighting with what's already written to do things in "their way" than I would if I were working on a project that, for example, followed more widely accepted coding standards, architecture patterns, and best practices. This brings me to my question: Should I (and if so, how do I) propose to my project manager and team lead that the project needs to be majorly renovated? I don't want to walk into their office, waving my MCTS and MCPD certificates around, saying that their project's codebase is crap. But I also don't want to have to stay silent and have to write kludgey code atop their kludgey code, because I actually want to write quality software and I want the end product to be stable and easily maintainable.

    Read the article

  • Seperation of project responsibilities in new project

    - by dreza
    We have very recently started a new project (MVC 3.0) and some of our early discussion has been around how the work and development will be split amongst the team members to ensure we get the least amount of overlap of work and so help make it a bit easier for each developer to get on and do their work. The project is expected to take about 6 months - 1 year (although not all developers are likely to be on and might filter off towards the end), Our team is going to be small so this will help out a bit I believe. The team will essentially consist of: 3 x developers (1 a slightly more experienced and will be the lead) 1 x project manager / product owner / tester An external company responsbile for doing our design work General project/development decisions so far have included: Develop in an Agile way using SCRUM techniques (We are still very much learning this approach as a company) Use MVVM archectecture Use Ninject and DI where possible Attempt to use as TDD as much as possible to drive development. Keep our controllers as skinny as possible Keep our views as simple as possible During our discussions two approaches have been broached as too how to seperate the workload given our objectives outlined above. OPTION 1: A framework seperation where each person is responsible for conceptual areas with overlap and discussion primarily in the integration areas. The integration areas would the responsibily of both developers as required. View prototypes (**Graphic designer**) | - Mockups | Views (Razor and view helpers etc) & Javascript (**Developer 1**) | - View models (Integration point) | Controllers and Application logic (**Developer 2**) | - Models (Integration point) | Domain model and persistence (**Developer 3**) PROS: Integration points are quite clear and so developers can work without dependencies on others fairly easily Code practices such as naming conventions and style is more easily managed in regards to consistancy as primarily only one developer will be handling an area CONS: Completion of an entire feature becomes a bit grey as no single person is responsible for an entire feature (story?) A person might not have a full appreciation for all areas of the project and so code overlap might be lacking if suddenly that person left. OPTION 2: A more task orientated approach where each person is responsible for the completion of the entire task from view - controller - model. PROS: A person is responsible for one entire feature so it's "complete" state can be clearly defined Code overlap into different areas will occur so each individual has good coverage over the entire application CONS: Overlap of development will occur in all the modules and developers can develop/extend without a true understanding of what the original code owner was intending. This could potentially lead more easily to code bloat? Following a convention might be harder as developers are adding to all areas of the project If a developer sets up a way of doing things would it be harder to enforce the other developers to follow that convention or even build on it (or even discuss it?). Dunno.. Bugs could more easily be introduced into areas not thought about by the developer It's easier to possibly to carry a team member in so far as one member just hacks code together to complete a task whilst another takes time to build a foundation that could be used by others and so help make future tasks easier i.e. starts building a framework? QUESTION: As it might appear I'm more in favor of option 1, however I'm interested to see how others might have approached this or what is the standard or best or preferred way of undertaking a project. Or indeed any different approach to handling this?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • C++ Passing `this` into method by reference

    - by David
    I have a class constructor that expects a reference to another class object to be passed in as an argument. I understand that references are preferable to pointers when no pointer arithmetic will be performed or when a null value will not exist. This is the header declaration of the constructor: class MixerLine { private: MIXERLINE _mixerLine; public: MixerLine(const MixerDevice& const parentMixer, DWORD destinationIndex); ~MixerLine(); } This is the code that calls the constructor (MixerDevice.cpp): void MixerDevice::enumerateLines() { DWORD numLines = getDestinationCount(); for(DWORD i=0;i<numLines;i++) { MixerLine mixerLine( this, i ); // other code here removed } } Compilation of MixerDevice.cpp fails with this error: Error 3 error C2664: 'MixerLine::MixerLine(const MixerDevice &,DWORD)' : cannot convert parameter 1 from 'MixerDevice *const ' to 'const MixerDevice &' But I thought pointer values could be assigned to pointers, e.g. Foo* foo = new Foo(); Foo& bar = foo;

    Read the article

  • Parsing an MS Project 2007 xml project file.

    - by fred-22
    Has anyone got any idea how to read the XML file saved by MS Project 2007? The standard binary format is .MPP but I'd like to view a project in a different viewer. I've saved the project spec as XML and the viewer I'm using needs the parent task Id for each task. Where can i find that in the rather huge amount of XML data created by ms project?

    Read the article

  • Web Deployment Project builds files that are no longer part of the project

    - by Howard
    This is the error I get: Error 101 Could not load type 'control'. /Test.vbproj/x.ascx 1 1 WebDeployProject This is a left over file that was part of the project last week, but one of the developers deleted it from the project. I have to manually delete the file in order to get the WDP to build. Is there a way to tell the WDP to ignore the files that are not part of the project or to see that these files are not part of the project and delete them?

    Read the article

  • How can i use JIRA for project management with Green Hopper

    - by user22
    I am thinking of using JIRA + GreenHopper for my project management. I have seen that Green Hopper is for making User stories , sprints. I am not able to find how do i need to add tasks , or how to break user stories in to sub stoires. DO i first need to create project in JIRA and then use Green Hopper or i can use use Green Hopper as stand alone for project management. I am thinking of JIRA as issue tracker not project management.

    Read the article

  • New Reference Configuration: Accelerate Deployment of Virtual Infrastructure

    - by monica.kumar
    Today, Oracle announced the availability of Oracle VM blade cluster reference configuration based on Sun servers, storage and Oracle VM software. Assembling and integrating software and hardware systems from different vendors can be a huge barrier to deploying virtualized infrastructures as it is often a complicated, time-consuming, risky and expensive process. Using this tested configuration can help reduce the time to configure and deploy a virtual infrastructure by up to 98% as compared to putting together multi-vendor configurations. Once ready, the infrastructure can be used to easily deploy enterprise applications in a matter of minutes to hours as opposed to days/weeks, by using Oracle VM Templates. Find out more: Press Release Business whitepaper Technical whitepaper

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >