Search Results

Search found 3715 results on 149 pages for 'openoffice math'.

Page 20/149 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Are there studies on what programming languages does to the brain? [closed]

    - by Eduard Florinescu
    Are there studies on what effects have programming languages on the brain or for that matter any other artificial languages in general, like mathematics ? Speaking from my personal experience I feel very different every time I speak Italian, I feel like a virtuoso on a quest but at the other end when I coded in machine code in debug.exe I felt like the main charcter inp(Movie). Why do I bring this up because I am suspecting that languages affect your mind and popular legends back this up too often: are full of mathematicians that crossed the Rubicon.

    Read the article

  • Adding 'swerve' to a direction

    - by Skoder
    Hey. I'm not much of a maths expert, so this is probably quite straight forward. I was playing a soccer flash game where you take free kicks. You provide Power, Swerve and Direction. I'm reading up on vectors and such so I can use the direction and power information to shoot the ball with the correct velocity. What I don't understand is how the 'Swerve' information is used. What formula connects the Swerve information with the Direction and Power? (This is all in 2D) Thanks for any advice.

    Read the article

  • Automatically zoom out the camera to show all players

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a perspective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • Automatically zoom out the camera to show all players (XNA)

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a persepective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • How to transform mesh components?

    - by Lea Hayes
    I am attempting to transform the components of a mesh directly using a 4x4 matrix. This is working for the vertex positions, but it is not working for the normals (and probably not the tangents either). Here is what I have: // Transform vertex positions - Works like a charm! vertices = mesh.vertices; for (int i = 0; i < vertices.Length; ++i) vertices[i] = transform.MultiplyPoint(vertices[i]); // Does not work, lighting is messed up on mesh normals = mesh.normals; for (int i = 0; i < normals.Length; ++i) normals[i] = transform.MultiplyVector(normals[i]); Note: The input matrix converts from local to world space and is needed to combine multiple meshes together.

    Read the article

  • Directional and orientation problem

    - by Ahmed Saleh
    I have drawn 5 tentacles which are shown in red. I have drew those tentacles on a 2D Circle, and positioned them on 5 vertices of the that circle. BTW, The circle is never be drawn, I have used it to simplify the problem. Now I wanted to attached that circle with tentacles underneath the jellyfish. There is a problem with the current code but I don't know what is it. You can see that the circle is parallel to the base of the jelly fish. I want it to be shifted so that it be inside the jelly fish. but I don't know how. I tried to multiply the direction vector to extend it but that didn't work. // One tentacle is constructed from nodes // Get the direction of the first tentacle's node 0 to node 39 of that tentacle; Vec3f dir = m_tentacle[0]->geNodesPos()[0] - m_tentacle[0]->geNodesPos()[39]; // Draw the circle with tentacles on it Vec3f pos = m_SpherePos; drawCircle(pos,dir,30,m_tentacle.size()); for (int i=0; i<m_tentacle.size(); i++) { m_tentacle[i]->Draw(); } // Draw the jelly fish, and orient it on the 2D Circle gl::pushMatrices(); Quatf q; // assign quaternion to rotate the jelly fish around the tentacles q.set(Vec3f(0,-1,0),Vec3f(dir.x,dir.y,dir.z)); // tanslate it to the position of the whole creature per every frame gl::translate(m_SpherePos.x,m_SpherePos.y,m_SpherePos.z); gl::rotate(q); // draw the jelly fish at center 0,0,0 drawHemiSphere(Vec3f(0,0,0),m_iRadius,90); gl::popMatrices();

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • Circle-Line Collision Detection Problem

    - by jazzdawg
    I am currently developing a breakout clone and I have hit a roadblock in getting collision detection between a ball (circle) and a brick (convex polygon) working correctly. I am using a Circle-Line collision detection test where each line represents and edge on the convex polygon brick. For the majority of the time the Circle-Line test works properly and the points of collision are resolved correctly. Collision detection working correctly. However, occasionally my collision detection code returns false due to a negative discriminant when the ball is actually intersecting the brick. Collision detection failing. I am aware of the inefficiency with this method and I am using axis aligned bounding boxes to cut down on the number of bricks tested. My main concern is if there are any mathematical bugs in my code below. /* * from and to are points at the start and end of the convex polygons edge. * This function is called for every edge in the convex polygon until a * collision is detected. */ bool circleLineCollision(Vec2f from, Vec2f to) { Vec2f lFrom, lTo, lLine; Vec2f line, normal; Vec2f intersectPt1, intersectPt2; float a, b, c, disc, sqrt_disc, u, v, nn, vn; bool one = false, two = false; // set line vectors lFrom = from - ball.circle.centre; // localised lTo = to - ball.circle.centre; // localised lLine = lFrom - lTo; // localised line = from - to; // calculate a, b & c values a = lLine.dot(lLine); b = 2 * (lLine.dot(lFrom)); c = (lFrom.dot(lFrom)) - (ball.circle.radius * ball.circle.radius); // discriminant disc = (b * b) - (4 * a * c); if (disc < 0.0f) { // no intersections return false; } else if (disc == 0.0f) { // one intersection u = -b / (2 * a); intersectPt1 = from + (lLine.scale(u)); one = pointOnLine(intersectPt1, from, to); if (!one) return false; return true; } else { // two intersections sqrt_disc = sqrt(disc); u = (-b + sqrt_disc) / (2 * a); v = (-b - sqrt_disc) / (2 * a); intersectPt1 = from + (lLine.scale(u)); intersectPt2 = from + (lLine.scale(v)); one = pointOnLine(intersectPt1, from, to); two = pointOnLine(intersectPt2, from, to); if (!one && !two) return false; return true; } } bool pointOnLine(Vec2f p, Vec2f from, Vec2f to) { if (p.x >= min(from.x, to.x) && p.x <= max(from.x, to.x) && p.y >= min(from.y, to.y) && p.y <= max(from.y, to.y)) return true; return false; }

    Read the article

  • Hydraulics in game

    - by Mungoid
    I'm not completely sure if this would be better in the Physics site or not as this question is more about how hydraulics should work in game as opposed to how they really work (although that is taken into account) - So I apologize if this is in the wrong place. A project we are on, we have a machine with hydraulics that are powered (They don't just look like they move something, they are the only thing moving/turning/lifting something) - However, the hydraulic extends the same speed no matter what it is pushing. So, say there is a 10 ton object attached to one end of the hydraulic and the other end is attached to a plate on the ground. In real life it takes a few seconds to build up pressure depending on how heavy the object is, but in our project the hydraulics don't care about that. It will lift a 100 ton object the same speed as a 10 ton object. We have a way to fake the hydraulic pressurizing by reducing the 'drive amount' (how fast or slow the hydraulic extends) when we sense that it is touching the ground and that does a relatively decent job but we would like to be able to take other things into account like engine speed, ratios, loads, etc. but we aren't too sure what we need to think about. I'm kinda wondering if anyone here has any experience with this and could offer some suggestions on what to take into account?

    Read the article

  • Basics of drawing in 2d with OpenGL 3 shaders

    - by davidism
    I am new to OpenGL 3 and graphics programming, and want to create some basic 2d graphics. I have the following scenario of how I might go about drawing a basic (but general) 2d rectangle. I'm not sure if this is the correct way to think about it, or, if it is, how to implement it. In my head, here's how I imagine doing it: t = make_rectangle(width, height) build general VBO, centered at 0, 0 optionally: t.set_scale(2) optionally: t.set_angle(30) t.draw_at(x, y) calculates some sort of scale/rotate/translate matrix (or matrices), passes the VBO and the matrix to a shader program Something happens to clip the world to the view visible on screen. I'm really unclear on how 4 and 5 will work. The main problem is that all the tutorials I find either: use fixed function pipeline, are for 3d, or are unclear how to do something this "simple". Can someone provide me with either a better way to think of / do this, or some concrete code detailing performing the transformations in a shader and constructing and passing the data required for this shader transformation?

    Read the article

  • Finding closest object to a location within a specific perpendicular distance to direction vector

    - by Sniper
    I have a location and a direction vector indicating facing, I want to find the closest object to that location that is within some tolerance distance (perpendicular distance) to the ray formed by the location and direction vector. Basically I want to get the object that is being aimed at. I have thought about finding all objects within a box and then finding the closest object to my vector from them results, but I am sure that there is a more efficient way. The Z axis is optional, the objects are most likely within a few meters of the search vector.

    Read the article

  • Numerically stable(ish) method of getting Y-intercept of mouse position?

    - by Fraser
    I'm trying to unproject the mouse position to get the position on the X-Z plane of a ray cast from the mouse. The camera is fully controllable by the user. Right now, the algorithm I'm using is... Unproject the mouse into the camera to get the ray: Vector3 p1 = Vector3.Unproject(new Vector3(x, y, 0), 0, 0, width, height, nearPlane, farPlane, viewProj; Vector3 p2 = Vector3.Unproject(new Vector3(x, y, 1), 0, 0, width, height, nearPlane, farPlane, viewProj); Vector3 dir = p2 - p1; dir.Normalize(); Ray ray = Ray(p1, dir); Then get the Y-intercept by using algebra: float t = -ray.Position.Y / ray.Direction.Y; Vector3 p = ray.Position + t * ray.Direction; The problem is that the projected position is "jumpy". As I make small adjustments to the mouse position, the projected point moves in strange ways. For example, if I move the mouse one pixel up, it will sometimes move the projected position down, but when I move it a second pixel, the project position will jump back to the mouse's location. The projected location is always close to where it should be, but it does not smoothly follow a moving mouse. The problem intensifies as I zoom the camera out. I believe the problem is caused by numeric instability. I can make minor improvements to this by doing some computations at double precision, and possibly abusing the fact that floating point calculations are done at 80-bit precision on x86, however before I start micro-optimizing this and getting deep into how the CLR handles floating point, I was wondering if there's an algorithmic change I can do to improve this? EDIT: A little snooping around in .NET Reflector on SlimDX.dll: public static Vector3 Unproject(Vector3 vector, float x, float y, float width, float height, float minZ, float maxZ, Matrix worldViewProjection) { Vector3 coordinate = new Vector3(); Matrix result = new Matrix(); Matrix.Invert(ref worldViewProjection, out result); coordinate.X = (float) ((((vector.X - x) / ((double) width)) * 2.0) - 1.0); coordinate.Y = (float) -((((vector.Y - y) / ((double) height)) * 2.0) - 1.0); coordinate.Z = (vector.Z - minZ) / (maxZ - minZ); TransformCoordinate(ref coordinate, ref result, out coordinate); return coordinate; } // ... public static void TransformCoordinate(ref Vector3 coordinate, ref Matrix transformation, out Vector3 result) { Vector3 vector; Vector4 vector2 = new Vector4 { X = (((coordinate.Y * transformation.M21) + (coordinate.X * transformation.M11)) + (coordinate.Z * transformation.M31)) + transformation.M41, Y = (((coordinate.Y * transformation.M22) + (coordinate.X * transformation.M12)) + (coordinate.Z * transformation.M32)) + transformation.M42, Z = (((coordinate.Y * transformation.M23) + (coordinate.X * transformation.M13)) + (coordinate.Z * transformation.M33)) + transformation.M43 }; float num = (float) (1.0 / ((((transformation.M24 * coordinate.Y) + (transformation.M14 * coordinate.X)) + (coordinate.Z * transformation.M34)) + transformation.M44)); vector2.W = num; vector.X = vector2.X * num; vector.Y = vector2.Y * num; vector.Z = vector2.Z * num; result = vector; } ...which seems to be a pretty standard method of unprojecting a point from a projection matrix, however this serves to introduce another point of possible instability. Still, I'd like to stick with the SlimDX Unproject routine rather than writing my own unless it's really necessary.

    Read the article

  • How do I find the angle required to point to another object?

    - by Ginamin
    I am making an air combat game, where you can fly a ship in a 3D space. There is an opponent that flies around as well. When the opponent is not on screen, I want to display an arrow pointing in the direction the user should turn, as such: So, I took the camera location and the oppenent location and did this: double newDirection = atan2(activeCamera.location.y-ship_wrap.location.y, activeCamera.location.x-ship_wrap.location.x); After which, I get the position on the circumferance of a circle which surrounds my crosshairs, like such: trackingArrow.position = point((60*sin(angle)+240),60*cos(angle)+160); It all works fine, except it's the wrong angle! I assume my calculation for the new direction is incorrect. Can anyone help?

    Read the article

  • Render 3d object to 2d surface (embedded system)

    - by Martin Berger
    i am working on an embedded system of a sort, and in some free time i would like to test its drawing capabilities. System in question is ARM Cortex M3 microcontroller attached to EasyMX Stellaris board. And i have a small 320x240 TFT screen :) Now, i have some free time each day and i want to create rotating cube. Micro C PRO for ARM doesnt have 3d drawing capabilities, which means it must be done in software. From the book Introduction to 3D Game Programming with DirectX 10 i know matrix algebra for transformations but that is cool when you have DirectX to set camera right. I gues i could make 2d object to rotate, but how would i go with 3d one? Any ideas and examples are welcome. Although i would prefer advices. I'd like to understand this.

    Read the article

  • Quaternion LookAt for camera

    - by Homar
    I am using the following code to rotate entities to look at points. glm::vec3 forwardVector = glm::normalize(point - position); float dot = glm::dot(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector); float rotationAngle = (float)acos(dot); glm::vec3 rotationAxis = glm::normalize(glm::cross(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector)); rotation = glm::normalize(glm::quat(rotationAxis * rotationAngle)); This works fine for my usual entities. However, when I use this on my Camera entity, I get a black screen. If I flip the subtraction in the first line, so that I take the forward vector to be the direction from the point to my camera's position, then my camera works but naturally my entities rotate to look in the opposite direction of the point. I compute the transformation matrix for the camera and then take the inverse to be the View Matrix, which I pass to my OpenGL shaders: glm::mat4 viewMatrix = glm::inverse( cameraTransform->GetTransformationMatrix() ); The orthographic projection matrix is created using glm::ortho. What's going wrong?

    Read the article

  • How should I sort images in an isometric game so that they appear in the correct order?

    - by Andrew
    Hi! This seems like a rather simple problem but I am having a lot of difficulty with it. What should I do to properly sort images in an isometric game? In a normal 2d top-down game one could use the screen y axis to sort the images. In this example the trees are properly sorted but the isometric walls are not. Example image: sorted by screen y Wall2 is one pixel below wall1 therefore it is drawn after wall1. If I sort by the isometric y axis the walls appear in the correct order but the trees do not. Example image: sorted by isometric y

    Read the article

  • Logarithmic spacing of FFT subbands

    - by Mykel Stone
    I'm trying to do the examples within the GameDev.net Beat Detection article ( http://archive.gamedev.net/archive/reference/programming/features/beatdetection/index.html ) I have no issue with performing a FFT and getting the frequency data and doing most of the article. I'm running into trouble though in the section 2.B, Enhancements and beat decision factors. in this section the author gives 3 equations numbered R10-R12 to be used to determine how many bins go into each subband: R10 - Linear increase of the width of the subband with its index R11 - We can choose for example the width of the first subband R12 - The sum of all the widths must not exceed 1024 He says the following in the article: "Once you have equations (R11) and (R12) it is fairly easy to extract 'a' and 'b', and thus to find the law of the 'wi'. This calculus of 'a' and 'b' must be made manually and 'a' and 'b' defined as constants in the source; indeed they do not vary during the song." However, I cannot seem to understand how these values are calculated...I'm probably missing something simple, but learning fourier analysis in a couple of weeks has left me Decimated-in-Mind and I cannot seem to see it.

    Read the article

  • Layout of mathematical views (iOS)

    - by William Jockusch
    I am trying to figure out the right way to encapsulate graphical information about mathematical objects. It is not simple. For example, a matrix can include square brackets around its entries, or not. Some things carry down to sub-objects -- for example, a matrix might track the font size to be used by its entries. Similarly, the font color and the background color would carry down to the entries. Other things do not carry down. For example, the entries of the matrix do not need to know whether or not the matrix has those square brackets. Based on all of the above, I need to calculate sizes for everything, then frames. All of this can depend on the properties stored above. The size of a matrix depends on the sizes of its entries, and also on whether or not it has those brackets. What I am having a hard time with is not the individual ways to calculate sensible frames for this or that. It is the overall organizational structure of the whole thing. How can I keep track of it all without going crazy. One particular obstacle is worth mentioning -- for reasons I don't want to go into here, I need to calculate the sizes and frames for everything before I instantiate any actual views. So, for example, if I have a Matrix object, I need to calculate its size before I make a MatrixView. If I have an equation, I need to calculate the size of the view for the equation before I create the actual view. So I clearly need separate objects for those calculations. But I can't figure out a sensible class structure for those objects. If I put them all into a single class, I get some advantages because copying then becomes easy. But I also end up with a bloated class that contains info that is irrelevant for some objects -- such as whether or not to include those brackets around the matrix. But if I use a lot of different classes, copying properties becomes a real pain. If it matters, this is all in Objective C, for an iOS environment. Any pointers would be greatly appreciated.

    Read the article

  • How should I sort images in an isometric game so that they appear in the correct order?

    - by Andrew
    This seems like a rather simple problem but I am having a lot of difficulty with it. What should I do to properly sort images in an isometric game? In a normal 2d top-down game one could use the screen y axis to sort the images. In this example the trees are properly sorted but the isometric walls are not. Example image: sorted by screen y Wall2 is one pixel below wall1 therefore it is drawn after wall1. If I sort by the isometric y axis the walls appear in the correct order but the trees do not. Example image: sorted by isometric y

    Read the article

  • Adding tolerance to a point in polygon test

    - by David Gouveia
    I've been using this method which was taken from Game Coding Complete to detect whether a point is inside of a polygon. It works in almost every case, but is failing on a few edge cases, and I can't figure out the reason. For example, given a polygon with vertices at (0,0) (0,100) and (100,100), the algorithm is returning: True for any point strictly inside the polygon False for any of the vertices False for (0, 50) which lies on one of the edges of the polygon True (?) for (50,50) which is also on one of the edges of the polygon I'd actually like to relax the algorithm so that it returns true in all of these cases. In other words, it should return true for points that are strictly inside, for the vertices themselves, and for points on the edges of the polygon. If possible I'd also like to give it enough tolerance so that it always tend towards "true" in face of floating point fluctuations. For example, I have another method, that given a line segment and a point, returns the closest location on the line segment to the given point. Currently, given any point outside the polygon and one of its edges, there are cases where the result is categorized as being inside by the method above, while other points are considered outside. I'd like to give it enough tolerance so that it always returns true in this situation. The way I've currently solved the problem is an hack, which consists of using an external library to inflate the polygon by a few pixels, and performing the tests on the inflated polygon, but I'd really like to replace this with a proper solution.

    Read the article

  • Algorithm to calculate trajectories from vector field

    - by cheeesus
    I have a two-dimensional vector field, i.e., for each point (x, y) I have a vector (u, v), whereas u and v are functions of x and y. This vector field canonically defines a set of trajectories, i.e. a set of paths a particle would take if it follows along the vector field. In the following image, the vector field is depicted in red, and there are four trajectories which are partly visible, depicted in dark red: I need an algorithm which efficiently calculates some trajectories for a given vector field. The trajectories must satisfy some kind of minimum denseness in the plane (for every point in the plane we must have a 'nearby' trajectory), or some other condition to get a reasonable set of trajectories. I could not find anything useful on Google on this, and Stackexchange doesn't seem to handle the topic either. Before I start devising such an algorithm by myself: Are there any known algorithms for this problem? What is their name, for which keywords do I have to search?

    Read the article

  • Slerping rotation mirrors

    - by Esa
    I rotate my game character to watch at the target using the following code: transform.rotation = Quaternion.Slerp(startQuaternion, lookQuaternion, turningNormalizer*turningSpeed/10f) startQuaternion is the character's current rotation when a new target is given. lookQuaternion is the direction the character should look at and it's set like this: destinationVector = currentWaypoint.transform.position - transform.position; lookQuaternion = Quaternion.LookRotation(destinationVector, Vector3.up); turningNormalizer is just Time.deltaTime incremented and turningSpeed is a static value given in the editor. The problem is that while the character turns as it should most of the time, it has problems when it has to do close to 180 degrees. Then it at times jitters and mirrors the rotation: In this poorly drawn image the character(on the right) starts to turn towards the circle on the left. Instead of just turning either through left or right it starts this "mirror dance": It starts to rotate towards the new facing Then it suddenly snaps to the same angle but on other side and keeps rotating It does this "mirroring" so long until it looks at the target. Is this a thing with quaternions, slerping/lerping or something else?

    Read the article

  • Opengl-es picking object

    - by lacas
    I saw a lot of picking code opengl-es, but nothing worked. Can someone give me what am I missing? My code is (from tutorials/forums) Vec3 far = Camera.getPosition(); Vec3 near = Shared.opengl().getPickingRay(ev.getX(), ev.getY(), 0); Vec3 direction = far.sub(near); direction.normalize(); Log.e("direction", direction.x+" "+direction.y+" "+direction.z); Ray mouseRay = new Ray(near, direction); for (int n=0; n<ObjectFactory.objects.size(); n++) { if (ObjectFactory.objects.get(n)!=null) { IObject obj = ObjectFactory.objects.get(n); float discriminant, b; float radius=0.1f; b = -mouseRay.getOrigin().dot(mouseRay.getDirection()); discriminant = b * b - mouseRay.getOrigin().dot(mouseRay.getOrigin()) + radius*radius; discriminant = FloatMath.sqrt(discriminant); double x1 = b - discriminant; double x2 = b + discriminant; Log.e("asd", obj.getName() + " "+discriminant+" "+x1+" "+x2); } } my camera vectors: //cam Vec3 position =new Vec3(-obj.getPosX()+x, obj.getPosZ()-0.3f, obj.getPosY()+z); Vec3 direction =new Vec3(-obj.getPosX(), obj.getPosZ(), obj.getPosY()); Vec3 up =new Vec3(0.0f, -1.0f, 0.0f); Camera.set(position, direction, up); and my picking code: public Vec3 getPickingRay(float mouseX, float mouseY, float mouseZ) { int[] viewport = getViewport(); float[] modelview = getModelView(); float[] projection = getProjection(); float winX, winY; float[] position = new float[4]; winX = (float)mouseX; winY = (float)Shared.screen.width - (float)mouseY; GLU.gluUnProject(winX, winY, mouseZ, modelview, 0, projection, 0, viewport, 0, position, 0); return new Vec3(position[0], position[1], position[2]); } My camera moving all the time in 3d space. and my actors/modells moving too. my camera is following one actor/modell and the user can move the camera on a circle on this model. How can I change the above code to working?

    Read the article

  • 1 to 1 Comparison and Ranking System

    - by David
    I'm looking to create a comparison and ranking system which allows users to view 2 items, click on the one that they feel is the better one and then get presented with 2 more random items and continue to do this until they decide to stop. In the background, I want the system to use these wins and loses to rank each item in an overall ranking table so I can then see what is #1 and what isn't. I haven't got a clue where to begin with the formula, but I image I need to log wins and loses. Any help/direction appreciated!

    Read the article

  • Quaternion based rotation and pivot position

    - by Michael IV
    I can't figure out how to perform matrix rotation using Quaternion while taking into account pivot position in OpenGL.What I am currently getting is rotation of the object around some point in the space and not a local pivot which is what I want. Here is the code [Using Java] Quaternion rotation method: public void rotateTo3(float xr, float yr, float zr) { _rotation.x = xr; _rotation.y = yr; _rotation.z = zr; Quaternion xrotQ = Glm.angleAxis((xr), Vec3.X_AXIS); Quaternion yrotQ = Glm.angleAxis((yr), Vec3.Y_AXIS); Quaternion zrotQ = Glm.angleAxis((zr), Vec3.Z_AXIS); xrotQ = Glm.normalize(xrotQ); yrotQ = Glm.normalize(yrotQ); zrotQ = Glm.normalize(zrotQ); Quaternion acumQuat; acumQuat = Quaternion.mul(xrotQ, yrotQ); acumQuat = Quaternion.mul(acumQuat, zrotQ); Mat4 rotMat = Glm.matCast(acumQuat); _model = new Mat4(1); scaleTo(_scaleX, _scaleY, _scaleZ); _model = Glm.translate(_model, new Vec3(_pivot.x, _pivot.y, 0)); _model =rotMat.mul(_model);//_model.mul(rotMat); //rotMat.mul(_model); _model = Glm.translate(_model, new Vec3(-_pivot.x, -_pivot.y, 0)); translateTo(_x, _y, _z); notifyTranformChange(); } Model matrix scale method: public void scaleTo(float x, float y, float z) { _model.set(0, x); _model.set(5, y); _model.set(10, z); _scaleX = x; _scaleY = y; _scaleZ = z; notifyTranformChange(); } Translate method: public void translateTo(float x, float y, float z) { _x = x - _pivot.x; _y = y - _pivot.y; _z = z; _position.x = _x; _position.y = _y; _position.z = _z; _model.set(12, _x); _model.set(13, _y); _model.set(14, _z); notifyTranformChange(); } But this method in which I don't use Quaternion works fine: public void rotate(Vec3 axis, float angleDegr) { _rotation.add(axis.scale(angleDegr)); // change to GLM: Mat4 backTr = new Mat4(1.0f); backTr = Glm.translate(backTr, new Vec3(_pivot.x, _pivot.y, 0)); backTr = Glm.rotate(backTr, angleDegr, axis); backTr = Glm.translate(backTr, new Vec3(-_pivot.x, -_pivot.y, 0)); _model =_model.mul(backTr);///backTr.mul(_model); notifyTranformChange(); }

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >