Search Results

Search found 12603 results on 505 pages for 'shadow copy'.

Page 205/505 | < Previous Page | 201 202 203 204 205 206 207 208 209 210 211 212  | Next Page >

  • Properly Label Your Dangerous Projects

    - by Jason Fitzpatrick
    In the pursuit of science, fun, and laser-fueled hijinks, we often undertake projects that really should be labeled more properly. Download this effective label to visually warn “No really, you’ll burn the house down”. Courtesy of Flattr at Thingiverse, you can grab a copy of the “Warning: Will Burn Your House Down” graphic in high resolution image formats suitable for silk screening, laser engraving, or plain old fashioned sign printing. Warning: Will Burn Your House Down [Thingiverse via Make] How To Encrypt Your Cloud-Based Drive with BoxcryptorHTG Explains: Photography with Film-Based CamerasHow to Clean Your Dirty Smartphone (Without Breaking Something)

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Level Editor + Game -> Duplicating rendering/game specific code?

    - by Utkarsh Sinha
    I've been reading about how to design code for a game. One thing I haven't been able to figure out is - how do you manage writing an outside-game level editor (not an 'in-game level editor') without 'copying' code from the game? For example, you might have to copy all code about the different types of entities you can have. You'll have to add the game rendering code. My guess is this can be done by making a DLL out of the 'engine' part of the game. Then, share it between the actual game and the level editor. Or is there a better/easier way to do this?

    Read the article

  • LTSP: flash plugin crashes after updates

    - by v4169sgr
    I am running an alternate install 64 bit Ubuntu 12.04 with ltsp-server-standalone. I recently ran a few updates, including adding wine from the repos, adding Medibuntu, and adding google earth, all on the server, which runs as a user workstation. Before the updates, the flash plugin ran fine in thin clients. However, it now crashes. No problem with running the flash plugin on the server / workstation. I have since followed the LTSPManual pdf to copy over my sources list, add Medibuntu in the chroot, update and upgrade, and then update the image, but the flash plugin still crashes. I'd like to get the flash plugin working again in my thin clients. How do I do this? Suggestions appreciated! More information in this thread: http://ubuntuforums.org/forumdisplay.php?f=336 Thanks!

    Read the article

  • NTFS Issues in Windows 7 and 2008 R2 - 'Is it a Bug?'

    - by renewieldraaijer
    I have been using the various versions of the Microsoft Windows product line since NT4 and I really thought I knew the ins and outs about the NTFS filesystem by now. There were always a few rules of thumb to understand what happens if you move data around. These rules were: "If you copy data, the copied data will inherit the permissions of the location it is being copied to. The same goes for moving data between disk partitions. Only when you move data within the same partition, the permissions are kept."  Recently I was asked to assist in troubleshooting some NTFS related issues. This forced me to have another good look at this theory. To my surprise I found out that this theory does not completely stand anymore. Apparently some things have changed since the release of Windows Vista / Windows 2008. Since the release of these Operating Systems, a move within the same disk partition results in the data inheriting the permissions of the location it is being copied into. A major change in the NTFS filesystem you would think!  Not quite! The above only counts when the move operation is being performed by using Windows Explorer. A move by using the 'move' command from within a cmd prompt for example, retains the NTFS permissions, just like before in Windows XP and older systems. Conclusion: The Windows Explorer is responsible for changing the ACL's of the moved data. This is a remarkable change, but if you follow this theory, the resulting ACL after a move operation is still predictable.  We could say that since Windows Vista and Windows 2008, a new rule set applies: "If you copy data, the copied data will inherit the permissions of the location it is being copied to. Same goes for moving data between disk partitions and within disk partitions. Only when you move data within the same partition by using something else than the Windows Explorer, the permissions are kept." The above behavior should be unchanged in Windows 7 / Windows 2008 R2, compared to Windows Vista / 2008. But somehow the NTFS permissions are not so predictable in Windows 7 and Windows 2008 R2. Moving data within the same disk partition the one time results in the permissions being kept and the next time results in inherited permissions from the destination location. I will try to demonstrate this in a few examples: Example 1 (Incorrect behavior): Consider two folders, 'Folder A' and 'Folder B' with the following permissions configured.                    Now we create the test file 'test file 1.txt' in 'Folder A' and afterwards move this file to 'Folder B' using Windows Explorer.                       According to the new theory, the file should inherit the permissions of 'Folder B' and therefore 'Group B' should appear in the ACL of 'test file 1.txt'. In the screenshot below the resulting permissions are displayed. The permissions from the originating location are kept, while the permissions of 'Folder B' should be inherited.                   Example 2 (Correct behavior): Again, consider the same two folders. This time we make a small modification to the ACL of 'Folder A'. We add 'Group C' to the ACL and again we create a file in 'Folder A' which we name 'test file 2.txt'.                    Next, we move 'test file 2.txt' to 'Folder B'.                       Again, we check the permissions of 'test file 2.txt' at the target location. We can now see that the permissions are inherited. This is what should be happening, and can be considered 'correct behavior' for Windows Vista / 2008 / 7 / 2008 R2. It remains uncertain why this behavior is so inconsistent. At this time, this is under investigation with Microsoft Support. The investigation has been going for the last two weeks and it is beginning to look like there is no rational reason for this, other than a bug in the Windows Explorer in Windows 7 and 2008 R2. As soon as there is any certainty on this, I will note it here in this blog.                   The examples above are harmless tests, by using my own laptop. If you would create the same set of folders and groups, and configure exactly the same permissions, you will see exactly the same behavior. Be sure to use Windows 7 or Windows 2008 R2.   Initially the problem arose at a customer site where move operations on data on the fileserver by users would result in unpredictable results. This resulted in the wrong set of people having àccess permissions on data that they should not have permissions to. Off course this is something we want to prevent at all costs.   I have also done several tests with move operations by using the move command in a cmd prompt. This way the behavior is always consistent. The inconsistent behavior is only exposed when using the Windows Explorer to initiate the move operation, and only when using Windows 7 or Windows 2008 R2 systems. It is evident that this behavior changes when the ACL of a folder has been changed, for example by adding an extra entry. The reason for this remains uncertain though. To be continued…. A dutch version of this post can be found at: http://blogs.platani.nl/?p=612

    Read the article

  • How can I change guest session defaults with a script?

    - by Mauricio Andrés
    I need to create a script to change the guest session defaults because the computers I installed Ubuntu on have only 448mb RAM, which is not enough to have two sessions running simultaneously. I want to write a script that will... create the guest-session folder in /etc; create the skel folder in /etc/guest-session/; copy all the content (including subfolders and files) in /tmp/guest-xxxx/; paste all that content into /etc/guest-session/skel/; and change the default desktop to GNOME Classic instead of Unity 2D (this can be separate from the script if it's easier to do as a general setting), ...all within the guest-session. This is for a project installing Ubuntu in cyber-cafes so it's critical to the project. I appreciate any help you can offer.

    Read the article

  • Why do we need fork to create new process

    - by user3671483
    In Unix whenever we want to create a new process, we fork the current process i.e. we create a new child process which is exactly the same as the parent process and then we do exec system call to replace the child process with a new process i.e. we replace all the data for the parent process eith that for the new process. Why do we create a copy of the parent process in the first place and why don't we create a new process directly? I am new to Unix please explain in lay-man terms.

    Read the article

  • New Exadata Book Available Soon

    - by Rob Reynolds
    Oracle Press is set to released the first book on data warehouse performance and Exadata on March 14th. Achieving Extreme Performance with Oracle Exadata , by my colleagues Rick Greenwald, Robert Stackowiak, Maqsood Alam, and Mans Bhuller will be available at your favorite booksellers next week. I've seen a sneak peak of the content in this book and its a great way to fully grasp the power of Exadata and how to best apply it to achieve extreme data warehouse performance. From the publisher's description: Achieving Extreme Performance with Oracle Exadata and the Sun Oracle Database Machine is filled with best practices for deployments, hardware sizing, architecting the database machine environments for maximum availability, and backup and recovery. Oracle Database 11gR2 features used within these offerings, as well as migration options and paths for Oracle and non-Oracle databases to Oracle Exadata are covered. This Oracle Press guide also discusses architecture, administration, maintenance, monitoring, and tuning of Oracle Exadata Storage Servers and the Sun Oracle Database Machine. If your company is considering Exadata, or if you need more horsepower out of your data warehouse, I highly recommend grabbing a copy of this book next week.

    Read the article

  • HFS+ hard drive being mounted as read only

    - by DNA
    This is a recurring problem and occurs a few times a week. I have an external hard drive which is hfs+. Every couple of weeks, for no obviuous reason, when I mount it by pluggin it in to my Ubuntu 11.10, it is read only and I can't copy any files into it. I gksudo nautlius and change the ownership and it magically works in some time. But returns to the read only state soon in a few hours-days without any rhyme or reason. Right now my fstab doesn't have any entry for my hard drive. What gives? What in the world is going on with Linux/HFS+? This is frustrating. I can't reformat my hard drive because I have almost a terrabyte of data in it and no receptacle to hold it while I reformat it.

    Read the article

  • The Modern Marketer’s Guide to Connected Customer Journeys

    - by Richard Lefebvre
    By Amanda Batista on Thursday, August 14, 2014 in Marketing Efficiency Organizations are striving to deliver consistent experiences but very few feel they are there yet. It’s a simple consideration for marketers, really. Not only does industry data continue to support that customers demand personalized experiences when engaging with brands, but if you think about your own consumer driven shopping experiences, you, too, expect that stellar experience at every touch point. And when you don’t get it, that brand has potentially alienated the experience, as well as their shot at engaging with you in more meaningful ways. Oracle Marketing Cloud partnered with marketingfinder.co.uk to conduct a survey exploring how marketers are adapting to this new age of the customer and the challenges they face. Less than half (40%) of marketers in the study were able to track the customer journey across channels. These findings, as well as other data points showcasing marketers’ challenges, are explored in our latest eBook, “The Modern Marketer's Guide to Connected Customer Journeys.” Read the entire article and order your copy of the full report here

    Read the article

  • Ever helpful Windows&hellip;

    - by John Breakwell
    I’m doing some troubleshooting for a relative and asked them to send me a zipped copy of their registry which they dutifully did. When I tried to extract the registry file, though, Windows jumped in the way and said “No”. This made sense as registry files are dangerous things in the hands of the ignorant. So I clicked the link to see if it would tell me how to get at the reg file but found the result less than helpful. So off to the Internet and found an excellent answer on how to get round this: Now on to the much harder part of fixing the original problems.

    Read the article

  • Bing Desktop Automatically Downloads Bing Wallpapers to Your Computer

    - by Jason Fitzpatrick
    Windows 7: Bing Desktop is a new and lightweight offering from Microsoft that automatically swaps your desktop background every day and offers quick access to the Bing search engine. In addition to downloading the Bing wallpaper, Bing Desktop also includes a small search box that allows you to search Bing from your desktop–although most users will likely grab the app simply to get the daily wallpaper update. Hit up the link below to download a copy. Bing Desktop is free, Windows 7 only. Bing Desktop [via Quick Online Tips] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • How to Sync Any Folder With SkyDrive on Windows 8.1

    - by Chris Hoffman
    Before Windows 8.1, it was possible to sync any folder on your computer with SkyDrive using symbolic links. This method no longer works now that SkyDrive is baked into Windows 8.1, but there are other tricks you can use. Creating a symbolic link or directory junction inside your SkyDrive folder will give you an empty folder in your SkyDrive cloud storage. Confusingly, the files will appear inside the SkyDrive Modern app as if they were being synced, but they aren’t. The Solution With SkyDrive refusing to understand and accept symbolic links in its own folder, the best option is probably to use symbolic links anyway — but in reverse. For example, let’s say you have a program that automatically saves important data to a folder anywhere on your hard drive — whether it’s C:\Users\USER\Documents\, C:\Program\Data, or anywhere else. Rather than trying to trick SkyDrive into understanding a symbolic link, we could instead move the actual folder itself to SkyDrive and then use a symbolic link at the folder’s original location to trick the original program. This may not work for every single program out there. But it will likely work for most programs, which use standard Windows API calls to access folders and save files. We’re just flipping the old solution here — we can’t trick SkyDrive anymore, so let’s try to trick other programs instead. Moving a Folder and Creating a Symbolic Link First, ensure no program is using the external folder. For example, if it’s a program data or settings folder, close the program that’s using the folder. Next, simply move the folder to your SkyDrive folder. Right-click the external folder, select Cut, go to the SkyDrive folder, right-click and select Paste. The folder will now be located in the SkyDrive folder itself, so it will sync normally. Next, open a Command Prompt window as Administrator. Right-click the Start button on the taskbar or press Windows Key + X and select Command Prompt (Administrator) to open it. Run the following command to create a symbolic link at the original location of the folder: mklink /d “C:\Original\Folder\Location” “C:\Users\NAME\SkyDrive\FOLDERNAME\” Enter the correct paths for the exact location of the original folder and the current location of the folder in your SkyDrive. Windows will then create a symbolic link at the folder’s original location. Most programs should hopefully be tricked by this symbolic location, saving their files directly to SkyDrive. You can test this yourself. Put a file into the folder at its original location. It will be saved to SkyDrive and sync normally, appearing in your SkyDrive storage online. One downside here is that you won’t be able to save a file onto SkyDrive without it taking up space on the same hard drive SkyDrive is on. You won’t be able to scatter folders across multiple hard drives and sync them all. However, you could always change the location of the SkyDrive folder on Windows 8.1 and put it on a drive with a larger amount of free space. To do this, right-click the SkyDrive folder in File Explorer, select Properties, and use the options on the Location tab. You could even use Storage Spaces to combine the drives into one larger drive. Automatically Copy the Original Files to SkyDrive Another option would be to run a program that automatically copies files from another folder on your computer to your SkyDrive folder. For example, let’s say you want to sync copies of important log files that a program creates in a specific folder. You could use a program that allows you to schedule automatic folder-mirroring, configuring the program to regularly copy the contents of your log folder to your SkyDrive folder. This may be a useful alternative for some use cases, although it isn’t the same as standard syncing. You’ll end up with two copies of the files taking up space on your system, which won’t be ideal for large files. The files also won’t be instantly uploaded to your SkyDrive storage after they’re created, but only after the scheduled task runs. There are many options for this, including Microsoft’s own SyncToy, which continues to work on Windows 8. If you were using the symbolic link trick to automatically sync copies of PC game save files with SkyDrive, you could just install GameSave Manager. It can be configured to automatically create backup copies of your computer’s PC game save files on a schedule, saving them to SkyDrive where they’ll be synced and backed up online. SkyDrive support was completely rewritten for Windows 8.1, so it’s not surprising that this trick no longer works. The ability to use symbolic links in previous versions of SkyDrive was never officially supported, so it’s not surprising to see it break after a rewrite. None of the methods above are as convenient and quick as the old symbolic link method, but they’re the best we can do with the SkyDrive integration Microsoft has given us in Windows 8.1. It’s still possible to use symbolic links to easily sync other folders with competing cloud storage services like Dropbox and Google Drive, so you may want to consider switching away from SkyDrive if this feature is critical to you.     

    Read the article

  • Install ubuntu-11.10-desktop-amd64 with Logitech diNovo Edge

    - by MyGGaN
    I know there are problems (and have been for quite some time) with the diNovo Edge keyboard. The solution could be found easily and often you can use the on-screen keyboard to fix it. Now I'm installing Ubuntu from scratch and the only keyboard I have is my diNovo, am I screwed? You are able to get to System Config during the install process and from there to Accessibility menu where you usually can start the on-screen keyboard. This doesn't work, no keyboard in sight... What if I can do some ninja copy-paste with the mouse?? Nope, no pasting allowed in the feilds: username, password, etc. Is there a chance I can fix this somehow within the .iso file before I create the bootable USB drive I use to install from? Or do I have to buy a keyboard to be able to install Ubuntu?

    Read the article

  • Uploading to a PPA using quickly

    - by Andres
    I am trying to participate in ubuntu showdown. I followed Jono's tutorial to do a browser using quickly. I did some modifications including choosing license (gpl v3), putting my name in copy right ( without special spanish charecters since quicky does not like it) $quickly run to make sure it worked I used bazaar to commit a change with a line of comment. I packaged it using quickly. Managed to install it ignoring some warnings but it would not run. I want to share code to get feedback. I have a launchpad account, signed terms and coditions, created a ppa. I got my commandline to talk to lauchpad using the encription key. But when I run $quickly release or $quickly share and it says the project does not exist. There seems to be another command $dput ... But i don't seem to get the wording right because it requests some sort of signed file that i cannot manage to add the correct way.

    Read the article

  • How to keep menu in a single place without using frames

    - by TJ Ellis
    This is probably a duplicate, but I can't find the answer anywhere (maybe I'm searching for the wrong thing?) and so I'm going to go ahead and ask. What is the accepted standard practice for creating a menu that is stored in a single file, but is included on every page across a site? Back in the day, one used frames, but this seems to be taboo now. I can get things layed out just the way I want, but copy/pasting across every page is a pain. I have seen php-based solutions, but my cheap-o free hosting doesn't support php (which is admittedly a pain, but it's a fairly simple webpage...). Any ideas for doing this that does not require server-side scripting?

    Read the article

  • Use Drive Mirroring for Instant Backup in Windows 7

    - by Trevor Bekolay
    Even with the best backup solution, a hard drive crash means you’ll lose a few hours of work. By enabling drive mirroring in Windows 7, you’ll always have an up-to-date copy of your data. Windows 7’s mirroring – which is only available in Professional, Enterprise, and Ultimate editions – is a software implementation of RAID 1, which means that two or more disks are holding the exact same data. The files are constantly kept in sync, so that if one of the disks fails, you won’t lose any data. Note that mirroring is not technically a backup solution, because if you accidentally delete a file, it’s gone from both hard disks (though you may be able to recover the file). As an additional caveat, having mirrored disks requires changing them to “dynamic disks,” which can only be read within modern versions of Windows (you may have problems working with a dynamic disk in other operating systems or in older versions of Windows). See this Wikipedia page for more information. You will need at least one empty disk to set up disk mirroring. We’ll show you how to mirror an existing disk (of equal or lesser size) without losing any data on the mirrored drive, and how to set up two empty disks as mirrored copies from the get-go. Mirroring an Existing Drive Click on the start button and type partitions in the search box. Click on the Create and format hard disk partitions entry that shows up. Alternatively, if you’ve disabled the search box, press Win+R to open the Run window and type in: diskmgmt.msc The Disk Management window will appear. We’ve got a small disk, labeled OldData, that we want to mirror in a second disk of the same size. Note: The disk that you will use to mirror the existing disk must be unallocated. If it is not, then right-click on it and select Delete Volume… to mark it as unallocated. This will destroy any data on that drive. Right-click on the existing disk that you want to mirror. Select Add Mirror…. Select the disk that you want to use to mirror the existing disk’s data and press Add Mirror. You will be warned that this process will change the existing disk from basic to dynamic. Note that this process will not delete any data on the disk! The new disk will be marked as a mirror, and it will starting copying data from the existing drive to the new one. Eventually the drives will be synced up (it can take a while), and any data added to the E: drive will exist on both physical hard drives. Setting Up Two New Drives as Mirrored If you have two new equal-sized drives, you can format them to be mirrored copies of each other from the get-go. Open the Disk Management window as described above. Make sure that the drives are unallocated. If they’re not, and you don’t need the data on either of them, right-click and select Delete volume…. Right-click on one of the unallocated drives and select New Mirrored Volume…. A wizard will pop up. Click Next. Click on the drives you want to hold the mirrored data and click Add. Note that you can add any number of drives. Click Next. Assign it a drive letter that makes sense, and then click Next. You’re limited to using the NTFS file system for mirrored drives, so enter a volume label, enable compression if you want, and then click Next. Click Finish to start formatting the drives. You will be warned that the new drives will be converted to dynamic disks. And that’s it! You now have two mirrored drives. Any files added to E: will reside on both physical disks, in case something happens to one of them. Conclusion While the switch from basic to dynamic disks can be a problem for people who dual-boot into another operating system, setting up drive mirroring is an easy way to make sure that your data can be recovered in case of a hard drive crash. Of course, even with drive mirroring, we advocate regular backups to external drives or online backup services. Similar Articles Productive Geek Tips Rebit Backup Software [Review]Disabling Instant Search in Outlook 2007Restore Files from Backups on Windows Home ServerSecond Copy 7 [Review]Backup Windows Home Server Folders to an External Hard Drive TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010

    Read the article

  • Please Help with ATI Radeon 4250 and Xinerama

    - by Luis Enrique
    I am using ubuntu 11.10 fresh install and I am having problems making the second screen to work, I remember before I was able to do it by extending the desktop to a larger number like 3840 X 1080 but since I am new I completely forgot how to do it, Now I have a philips 230 E monitor full 1920 X 1080 and a Toshiba tv HDMI and I want to activate the second monitor to be able to use Xinerama but I don't know how to go about this, I want to keep the Phillips as a primary monitor since it's the smaller one and use the TV from time to time to play videos movies and presentations. I installed all the additional drivers and don't know what else to do. I would prefer if I can use a list of exact commands to copy and paste onto the terminal since that is all I know how to use LOL . Thank you so much for your help. If you need more details of my mother board or video card or cpu just ask thank you. Luis

    Read the article

  • Do Not Optimize Without Measuring

    - by Alois Kraus
    Recently I had to do some performance work which included reading a lot of code. It is fascinating with what ideas people come up to solve a problem. Especially when there is no problem. When you look at other peoples code you will not be able to tell if it is well performing or not by reading it. You need to execute it with some sort of tracing or even better under a profiler. The first rule of the performance club is not to think and then to optimize but to measure, think and then optimize. The second rule is to do this do this in a loop to prevent slipping in bad things for too long into your code base. If you skip for some reason the measure step and optimize directly it is like changing the wave function in quantum mechanics. This has no observable effect in our world since it does represent only a probability distribution of all possible values. In quantum mechanics you need to let the wave function collapse to a single value. A collapsed wave function has therefore not many but one distinct value. This is what we physicists call a measurement. If you optimize your application without measuring it you are just changing the probability distribution of your potential performance values. Which performance your application actually has is still unknown. You only know that it will be within a specific range with a certain probability. As usual there are unlikely values within your distribution like a startup time of 20 minutes which should only happen once in 100 000 years. 100 000 years are a very short time when the first customer tries your heavily distributed networking application to run over a slow WIFI network… What is the point of this? Every programmer/architect has a mental performance model in his head. A model has always a set of explicit preconditions and a lot more implicit assumptions baked into it. When the model is good it will help you to think of good designs but it can also be the source of problems. In real world systems not all assumptions of your performance model (implicit or explicit) hold true any longer. The only way to connect your performance model and the real world is to measure it. In the WIFI example the model did assume a low latency high bandwidth LAN connection. If this assumption becomes wrong the system did have a drastic change in startup time. Lets look at a example. Lets assume we want to cache some expensive UI resource like fonts objects. For this undertaking we do create a Cache class with the UI themes we want to support. Since Fonts are expensive objects we do create it on demand the first time the theme is requested. A simple example of a Theme cache might look like this: using System; using System.Collections.Generic; using System.Drawing; struct Theme { public Color Color; public Font Font; } static class ThemeCache { static Dictionary<string, Theme> _Cache = new Dictionary<string, Theme> { {"Default", new Theme { Color = Color.AliceBlue }}, {"Theme12", new Theme { Color = Color.Aqua }}, }; public static Theme Get(string theme) { Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } return cached; } } class Program { static void Main(string[] args) { Theme item = ThemeCache.Get("Theme12"); item = ThemeCache.Get("Theme12"); } } This cache does create font objects only once since on first retrieve of the Theme object the font is added to the Theme object. When we let the application run it should print “Creating new font” only once. Right? Wrong! The vigilant readers have spotted the issue already. The creator of this cache class wanted to get maximum performance. So he decided that the Theme object should be a value type (struct) to not put too much pressure on the garbage collector. The code Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } does work with a copy of the value stored in the dictionary. This means we do mutate a copy of the Theme object and return it to our caller. But the original Theme object in the dictionary will have always null for the Font field! The solution is to change the declaration of struct Theme to class Theme or to update the theme object in the dictionary. Our cache as it is currently is actually a non caching cache. The funny thing was that I found out with a profiler by looking at which objects where finalized. I found way too many font objects to be finalized. After a bit debugging I found the allocation source for Font objects was this cache. Since this cache was there for years it means that the cache was never needed since I found no perf issue due to the creation of font objects. the cache was never profiled if it did bring any performance gain. to make the cache beneficial it needs to be accessed much more often. That was the story of the non caching cache. Next time I will write something something about measuring.

    Read the article

  • Design a T-shirt for .NET Reflector Pro

    - by Laila
    Win a .NET Reflector Pro license, a box of Red Gate goodies, and a t-shirt printed with your design! Red Gate likes t-shirts. Each of our teams has one. In fact, each individual person has one, numbered according to when they joined the company: Red Gate's 1st, 2nd, and so on right up to Red Gate's 170th, with the slogan "More than just a number". Those t-shirts are important, chiefly because they remind the people wearing them that they are important. But that isn't enough. What really makes us great are the people who choose to use our tools. So we'd like to extend our tradition of t-shirts to include you and put the design of our next shirt entirely in your hands. We'd like you to come up with a witty slogan or create an inventive or simply beautiful t-shirt design for .NET Reflector Pro, our add-in for Visual Studio, which allows you to step into decompiled assemblies whilst debugging in Visual Studio. When you're done, post your masterpiece to Twitter with the hash tag #reflectortees, and @redgate will take a look! We'll pick the best design, and the winner will get a licensed copy of .NET Reflector Pro and a box of Red Gate goodies - not to mention a copy of their t-shirt. The winning design will go into production and be worn and given out at tradeshows, conferences, and user group events across the world, proudly bearing the name of their designer. We'll also pick three runners-up who will receive licenses for .NET Reflector Pro. Red Gate goodie box Interested? If you're up for the challenge, then we've got some resources to get you started. Inside the .zip file you'll find high-quality versions of the following: T-shirt templates: don't forget to design the front and the back! Different versions of the .NET Reflector Pro logo and Red Gate logo. Colour sheets to give you an easy reference to the Red Gate colours, including hex and RGB values. You can create and send us as many designs as you like, and each of them will be considered for the prize. To submit your designs, simply tweet including the competition hash tag, #reflectortees, and a link to somewhere we can see your design: either an image hosting site such as Twitpic, Flickr or Picasa, or a personal blog. You will need to create a Twitter account (which is free), if you don't already have one. You only have three limits: The background colour of the t-shirt should be one of our brand colours (red, light/dark grey or black), though you're welcome to use other colours in the rest of the design. You need to make use of either the .NET Reflector Pro logo OR the Red Gate logo (please keep them as they are) If you include any text or slogan, stick with just one or two colors for it. Apart from that, go wild. Go and do whatever it is you do when you get creative: whether you walk barefoot on the grass with a pencil and paper, sit cross-legged on a pile of cushions with a laptop, or simply close your eyes and float through a mist of ideas, now is your chance. Make sure you enjoy it. We're looking forward to seeing your creations. Terms and conditions 1. The closing date for entries is June 11th, 2010 (4 p.m. UK time). Red Gate Software Ltd reserves the right to extend the competition deadline at its discretion. If there is a revision, the revised date will be published on this blog and the date for announcing the results will be postponed accordingly. 2. The winning designer will be notified on June 14th, 2010 through Twitter. The winner must claim his/her prize by sending us a high-resolution image of their design via email (i.e. Illustrator EPS files or appropriate format, ideally at 300dpi). If the winner does not come forward within 3 days of the announcement, they will forfeit their prize and another winner will be selected from the runners-up. The names of the winner and runners-up will be posted on this blog by June 18th.  3. Entry is completed on the designer posting a link to their entry in a tweet with the correct hash tag, #reflectortees. 4. Red Gate Software needs to hold the rights to using the winning design in order to put the t-shirt into production. We will make sure that this is fine with the winner before we do so, but if you do not want us holding the rights to your design, please do not submit your designs. We reserve the right to slightly alter or adjust any artwork we decide to use (mainly to make it easier to print), but we will make sure we contact the winner for approval first. The winner will also need to allow us the use of his/her name for purposes of promoting your design. 5. Entries must be entirely your own original work and must not breach any copyright or third party rights. Red Gate Software Ltd will not be made partially or fully liable for any non-original work submitted by you. 6. This competition is free: you do not need to buy anything or be an existing customer to enter. 7. This competition is not open to employees of Red Gate Software Ltd, their families, or any other company directly connected with the administration of this promotion.

    Read the article

  • Dissection of Google indexing services

    - by Pankaj Upadhyay
    There are more than a few questions that hop into mind when someone thinks about Google's indexing services. Jeff Atwood wrote about them at The Elephant in the Room: Google Monoculture and Trouble In the House of Google. I have two questions: How does google index dynamic websites? This site has dynamic pages, QUESTIONS, TAGS, USERS, BADGES, UNANSWERED, ASK QUESTION. The content of these pages is dynamically generated, therefore we access the dynamic content and not the physical files on the server. But how does Google shows every question of the site or other dynamic websites? What does Google index and keep on its servers? Does it copy the complete page into its server or just the title, meta tags and body?

    Read the article

  • How Curiosity Took Its Self Portrait [Video]

    - by Jason Fitzpatrick
    There was enough confusion among the public as to how exactly the Curiosity Rover was able to photograph itself without the camera arm intruding into the photo that NASA released this video detailing the process. For those readers familiar with photograph blending and stitching using multiple photo sources, this should come as no surprise. For the unfamiliar, it’s an interesting look at how dozens of photos can be blended together so effectively that the arm–robotic or otherwise–of the photographer can be taken right out. Hit up the link below to read more about how NASA practiced on Earth for the shot and to see a high-res copy of the actual self portrait. Mars Rover Self-Portrait Shoot Uses Arm Choreography [NASA] Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot

    Read the article

  • Pricing options at O’Reilly

    - by Nick Harrison
    I was browsing through the new options for books on O'Reilly and Associates and noticed something kind of cool    If you buy the print edition of a book, you can get the ebook for just a couple dollars more.  This is pure genius marketing. I may question whether or not I want the ebook at 20 or the print copy at 25, but to get them both for 28, well that's a no brainer.  This is actually a strategy examined at great depth in Predictably Rational In all honesty, $20 is probably over priced for the ebook, but $3 if you are already buying the print edition is actually a pretty good deal  .

    Read the article

  • Yet another ADF book - Oracle ADF Real World Developer’s Guide

    - by Chris Muir
    I'm happy to report that the number of ADF published books is expanding yet again, with this time Oracle's own Jobinesh Purushothaman publishing the Oracle ADF Real World Developer’s Guide.  I can remember the dim dark days when there was but just 1 Oracle book besides the documentation, so today it's great to have what I think might be the 7 or 8th ADF book publicly available, and not to forgot all our other technical docs too. Jobinesh has even published some extra chapters online that will give you a good taste of what to expect.  If you're interested in positive reviews, the ADF EMG already has it's first happy customer. Now to see if I can get Oracle to expense me a copy.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 201 202 203 204 205 206 207 208 209 210 211 212  | Next Page >