Search Results

Search found 36719 results on 1469 pages for 'value chain'.

Page 213/1469 | < Previous Page | 209 210 211 212 213 214 215 216 217 218 219 220  | Next Page >

  • Core Animation cross-dissolve between one string (or image) and another when changing bound value?

    - by danwood
    I have an NSTextView and an NSImageView that is bound to a NSString and an NSImage in my code. I would like to have the displayed string and image cross-dissolve when I change the string and image in code. Any way to do this? Do I need to stop using bindings? (And if I do, is there any trick to getting the string and the image to cross-dissolve when I change the value, or do I have to do something weird like fade it out and fade a new one back in?)

    Read the article

  • How to pass values from array into mysql with php

    - by moustafa
    my original code is this <tr> <th> <label for="user_level"> User Level: * <?php echo isset($valid_user_level) ? $valid_user_level : NULL; ?> </label> </th> </tr> <td> <select name="user_level" id="user_level" class="sel"> <option value="">Select one…</option> <option value="1">User</option> <option value="5">Admin</option> </select> </td> this give me the option to select one of choice from the drop down menu i.e. user and when user is selected and the submit button is pressed this will insert the value 1 into the database which will when the user logs in tell the system that they are are normal user. I want to change the code to the following <tr> <td> <select name="user_level" id="user_level" class="sel"> <option value="">Select one…</option> <?php if(!empty($level)) { foreach($level as $value) { echo "<option value='{$value}'"; echo getSticky(2,'user_level',$value); echo ">{$value}</option>"; } } ?> </select> </td> </tr> With this being my array query $level = array('User','Admin'); How can I pass the values of 1 for user level and 5 for admin in this code so when the user is selected it inouts 1 into the database?

    Read the article

  • [C++] which is better, throw an exception or return nonzero value?

    - by xis19
    While you are doing C++ programming, you have two choices of reporting an error. I suppose many teachers would suggest you throw an exception, which is derived from std::exception. Another way, which might be more "C" style, is to return a non-zero value, as zero is "ERROR_SUCCESS". Definitively, return an exception can provide much more information of the error and recovery; while the code will bloat a little bit, and making exception-safe in your mind is a little difficult for me, at least. Other way like returning something else, will make reporting an error much easier; the defect is that managing recovery will be a possibly big problem. So folks, as good programmers, which would be your preference, not considering your boss' opinion? For me, I would like to return some nonzero values.

    Read the article

  • How to get the default value of a column of MS Access Database using C++?

    - by user198750
    This is the sql script I used to create a table in MS Access Database. CREATE TABLE Contracts ( id int NULL DEFAULT 0, sex varchar(255) DEFAULT 'female' NOT NULL ) Now I want to programmatically get the default value of the field: "sex", I know it's 'female' but I don't know how to get it using C++ ADO interface. Below is a snippet of my code: m_pRecordset->Fields->get_Item(vIntegerType, &pvObject); bstrColName = pvObject->GetName(); dtype = pvObject->GetType(); attr = pvObject->GetAttributes();

    Read the article

  • How do I display/compare a dynamic value of a mysql row in a if statement?

    - by Ralph The Mouf
    I have a checkboxes on my site that when unchecked, update their row in in the db as unchecked, and if checked,update their row in the db as checked. I am creating an ifstatement that will commence with its command if checked, and not if unchecked. I have echoed the variable and it is holding the proper value (checked or unchecked) but not sure if I am syntactically correct on displaying the state of the row in the db. This is what I am trying and will not work. I am new at php still and thank you very much for any help. if($auth->check_prof == 'checked'){// do the stuff in here}

    Read the article

  • Set first options selected using jquery

    - by user947668
    There are two options lists with different names, i need to set first options selected in both of them. <input type="radio" name="first_list" value="0">abc <input type="radio" name="first_list" value="1">cba <input type="radio" name="second_list" value="0">opc <input type="radio" name="second_list" value="1">cpo Sure, i can do this way: $("input:radio[name='first_list'][value='0']").attr("checked", "checked"); $("input:radio[name='second_list'][value='0']").attr("checked", "checked"); Maybe there is another more compact way to do this?

    Read the article

  • What is better: to delete pointer or set it with a new value?

    - by user63898
    Hi simple question in c++ , say i have a loop and i have function that returns pointer to item so i have to define inner loop pointer so my question is what to do with the pointer inside the loop , delete it ? or to set it with new value is good for example: for(int i =0;i<count();i++) { ptrTmp* ptr = getItemPtr(); // do somthing with the ptr ... // what to do here ? to delete the poinetr or not? delete ptr; // ?? }

    Read the article

  • Why hashCode() returns the same value for a object in all consecutive executions?

    - by Vijay Shanker
    Hi, I am trying some code around object equality in java. As I have read somewhere hashCode() is a number which is generated by applying the hash function. Hash Function can be different for each object but can also be same. At the object level, it returns the memory address of the object. Now, I have sample program, which I run 10 times, consecutively. Every time i run the program I get the same value as hash code. If hashCode() function returns the memory location for the object, how come the java(JVM) store the object at same memory address in the consecutive runs? Can you please give me some insight and your view over this issue?

    Read the article

  • How to create a NSPredicate to find entries with leading numerical value?

    - by Toastor
    Hello, I'm using NSPredicates to fetch entities based on a name attribute. Creating a predicate for names beginning with letters was easy (@"name BEGINSWITH %@", searchLetter), however now I'd like to fetch all entities with a name that begins with a numerical value, or rather a non-alphabetical number. What would be the appropriate predicate expression here? Right now I don't want to get too deep into predicate programming, as this is all I need right now and time flies. So, please, don't point me to the Predicate Programming Guide, I just need that expression.. :) Thanks alot guys!

    Read the article

  • PHP - Get value of imput box, without a form?

    - by Dodi300
    Hello. Does anyone know how I can get the value of an imput box, without having a form? I want a sumbit button, but instead of submiting a form, I want it to change data in a MySQL database. Something like this maybe? $img1="WHAT DO I PUT HERE?" $idx=1 $sql="INSERT INTO games SET img1='$img1' WHERE id=$idx"; $result=mysql_query($sql); Could I use that code on a "onclick" event? The imput box is named "img1". Thanks for the help!

    Read the article

  • How to get the value of an attribute from XML file in PHP?

    - by Matt
    Hi, Sorry if this seems like an easy question, but I've started pulling hair out on this... I have a XML file which looks like this... <VAR VarNum="90"> <option>1</option> </VAR> I'm trying to get the VarNum. So far I've been successful using the follow code to get the other information: $xml=simplexml_load_file($file); $option=$xml->option; I just can't get VarNum (the attribute value I think?) Thanks!

    Read the article

  • Can we overload a function based on only whether a parameter is a value or a reference?

    - by skydoor
    I got the answer NO! Because passing by value and passing by reference looks identical to the caller. However, the code below compiles right class A { public: void f(int i) {} void f(int& i) {} }; But when I try to use it, there is compile error. int main () { A a; int i = 9; int& j = i; a.f(1); a.f(i); a.f(j); return 0; } Why does not the compiler disable it even without knowing it is going to be used?

    Read the article

  • How can I use a variable as a jQuery option value?

    - by mattgorecki
    I currently have jQuery code that looks like this: if ($.url.param("s") == "error") { $.gritter.add({ title: 'Error!', text: $.url.param('message') }); } I'm checking to see if the request variable s exists in the url (ie. http://example.com/?s=error&message=this%20is%20my%20message and then showing a popup message that contains information from request variable message. The popup works just fine, but the message variable isn't populated, the plugin asks for a string as a value for the text option. What is the proper way to grab the message variable?

    Read the article

  • in c++ what is bettr to delete poiner or set it with new value?

    - by user63898
    Hi simple question in c++ , say i have a loop and i have function that returns pointer to item so i have to define inner loop pointer so my question is what to do with the pointer inside the loop , delete it ? or to set it with new value is good for example: for(int i =0;i<count();i++) { ptrTmp* ptr = getItemPtr(); // do somthing with the ptr ... // what to do here ? to delete the poinetr or not? delete ptr; // ?? }

    Read the article

  • Android-SQLite: How to Count specific value from Column?

    - by sanpatil
    I have two table (TABLE_EXAM,TABLE_RESULT). Here is value of my TABLE_RESULT. result_id exam_id question_id correct_answer 1 2 4 y 2 2 5 y 3 2 6 n 4 2 7 y I need to count how many correct_answer='y' where exam_id=2. I try following code but it return 0. public int calculateResult(int examId,String confirmAnswer) { int correctAnswer=0; try { SQLiteDatabase db=this.getWritableDatabase(); String selectQuery=("select count(correctAnswer) from result where exam_id ='" + examId + "' and correctAnswer ='" + 'y' +"'" ); // String selectQuery=("SELECT COUNT(*)FROM result WHERE exam_id ='" + examId + "' and correctAnswer ='" + confirmAnswer +"'" ); Cursor cursor = db.rawQuery(selectQuery, null); if(cursor.moveToLast()) { correctAnswer=cursor.getInt(3); } } catch(Exception e) { e.printStackTrace(); } return correctAnswer; } In variable confirm_answer i pass "y". Give me some hint or reference. Any help is appreciated. Thanks in Advance

    Read the article

  • How to sort a hash by value in descending order and output a hash in ruby?

    - by tipsywacky
    output.sort_by {|k, v| v}.reverse and for keys h = {"a"=>1, "c"=>3, "b"=>2, "d"=>4} => {"a"=>1, "c"=>3, "b"=>2, "d"=>4} Hash[h.sort] Right now I have these two. But I'm trying to sort hash in descending order by value so that it will return => {"d"=>4, "c"=>3, "b"=>2, "a"=>1 } Thanks in advance. Edit: let me post the whole code. def count_words(str) # YOUR CODE HERE output = Hash.new(0) sentence = str.gsub(/,/, "").gsub(/'/,"").gsub(/-/, "").downcase words = sentence.split() words.each do |item| output[item] += 1 end puts Hash[output.sort_by{ |_, v| -v }] return Hash[output.sort_by{|k, v| v}.reverse] end

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Auto-Suggest via &lsquo;Trie&rsquo; (Pre-fix Tree)

    - by Strenium
    Auto-Suggest (Auto-Complete) “thing” has been around for a few years. Here’s my little snippet on the subject. For one of my projects, I had to deal with a non-trivial set of items to be pulled via auto-suggest used by multiple concurrent users. Simple, dumb iteration through a list in local cache or back-end access didn’t quite cut it. Enter a nifty little structure, perfectly suited for storing and matching verbal data: “Trie” (http://tinyurl.com/db56g) also known as a Pre-fix Tree: “Unlike a binary search tree, no node in the tree stores the key associated with that node; instead, its position in the tree defines the key with which it is associated. All the descendants of a node have a common prefix of the string associated with that node, and the root is associated with the empty string. Values are normally not associated with every node, only with leaves and some inner nodes that correspond to keys of interest.” This is a very scalable, performing structure. Though, as usual, something ‘fast’ comes at a cost of ‘size’; fortunately RAM is more plentiful today so I can live with that. I won’t bore you with the detailed algorithmic performance here - Google can do a better job of such. So, here’s C# implementation of all this. Let’s start with individual node: Trie Node /// <summary> /// Contains datum of a single trie node. /// </summary> public class AutoSuggestTrieNode {     public char Value { get; set; }       /// <summary>     /// Gets a value indicating whether this instance is leaf node.     /// </summary>     /// <value>     ///     <c>true</c> if this instance is leaf node; otherwise, a prefix node <c>false</c>.     /// </value>     public bool IsLeafNode { get; private set; }       public List<AutoSuggestTrieNode> DescendantNodes { get; private set; }         /// <summary>     /// Initializes a new instance of the <see cref="AutoSuggestTrieNode"/> class.     /// </summary>     /// <param name="value">The phonetic value.</param>     /// <param name="isLeafNode">if set to <c>true</c> [is leaf node].</param>     public AutoSuggestTrieNode(char value = ' ', bool isLeafNode = false)     {         Value = value;         IsLeafNode = isLeafNode;           DescendantNodes = new List<AutoSuggestTrieNode>();     }       /// <summary>     /// Gets the descendants of the pre-fix node, if any.     /// </summary>     /// <param name="descendantValue">The descendant value.</param>     /// <returns></returns>     public AutoSuggestTrieNode GetDescendant(char descendantValue)     {         return DescendantNodes.FirstOrDefault(descendant => descendant.Value == descendantValue);     } }   Quite self-explanatory, imho. A node is either a “Pre-fix” or a “Leaf” node. “Leaf” contains the full “word”, while the “Pre-fix” nodes act as indices used for matching the results.   Ok, now the Trie: Trie Structure /// <summary> /// Contains structure and functionality of an AutoSuggest Trie (Pre-fix Tree) /// </summary> public class AutoSuggestTrie {     private readonly AutoSuggestTrieNode _root = new AutoSuggestTrieNode();       /// <summary>     /// Adds the word to the trie by breaking it up to pre-fix nodes + leaf node.     /// </summary>     /// <param name="word">Phonetic value.</param>     public void AddWord(string word)     {         var currentNode = _root;         word = word.Trim().ToLower();           for (int i = 0; i < word.Length; i++)         {             var child = currentNode.GetDescendant(word[i]);               if (child == null) /* this character hasn't yet been indexed in the trie */             {                 var newNode = new AutoSuggestTrieNode(word[i], word.Count() - 1 == i);                   currentNode.DescendantNodes.Add(newNode);                 currentNode = newNode;             }             else                 currentNode = child; /* this character is already indexed, move down the trie */         }     }         /// <summary>     /// Gets the suggested matches.     /// </summary>     /// <param name="word">The phonetic search value.</param>     /// <returns></returns>     public List<string> GetSuggestedMatches(string word)     {         var currentNode = _root;         word = word.Trim().ToLower();           var indexedNodesValues = new StringBuilder();         var resultBag = new ConcurrentBag<string>();           for (int i = 0; i < word.Trim().Length; i++)  /* traverse the trie collecting closest indexed parent (parent can't be leaf, obviously) */         {             var child = currentNode.GetDescendant(word[i]);               if (child == null || word.Count() - 1 == i)                 break; /* done looking, the rest of the characters aren't indexed in the trie */               indexedNodesValues.Append(word[i]);             currentNode = child;         }           Action<AutoSuggestTrieNode, string> collectAllMatches = null;         collectAllMatches = (node, aggregatedValue) => /* traverse the trie collecting matching leafNodes (i.e. "full words") */             {                 if (node.IsLeafNode) /* full word */                     resultBag.Add(aggregatedValue); /* thread-safe write */                   Parallel.ForEach(node.DescendantNodes, descendandNode => /* asynchronous recursive traversal */                 {                     collectAllMatches(descendandNode, String.Format("{0}{1}", aggregatedValue, descendandNode.Value));                 });             };           collectAllMatches(currentNode, indexedNodesValues.ToString());           return resultBag.OrderBy(o => o).ToList();     }         /// <summary>     /// Gets the total words (leafs) in the trie. Recursive traversal.     /// </summary>     public int TotalWords     {         get         {             int runningCount = 0;               Action<AutoSuggestTrieNode> traverseAllDecendants = null;             traverseAllDecendants = n => { runningCount += n.DescendantNodes.Count(o => o.IsLeafNode); n.DescendantNodes.ForEach(traverseAllDecendants); };             traverseAllDecendants(this._root);               return runningCount;         }     } }   Matching operations and Inserts involve traversing the nodes before the right “spot” is found. Inserts need be synchronous since ordering of data matters here. However, matching can be done in parallel traversal using recursion (line 64). Here’s sample usage:   [TestMethod] public void AutoSuggestTest() {     var autoSuggestCache = new AutoSuggestTrie();       var testInput = @"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero.                 Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris.                 Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. Class aptent taciti sociosqu ad                 litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc.                 Curabitur tortor. Pellentesque nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis tristique sem.                 Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel, suscipit quis, luctus non, massa. Fusce ac                 turpis quis ligula lacinia aliquet. Mauris ipsum. Nulla metus metus, ullamcorper vel, tincidunt sed, euismod in, nibh. Quisque                 volutpat condimentum velit. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam                 nec ante. Sed lacinia, urna non tincidunt mattis, tortor neque adipiscing diam, a cursus ipsum ante quis turpis. Nulla                 facilisi. Ut fringilla. Suspendisse potenti. Nunc feugiat mi a tellus consequat imperdiet. Vestibulum sapien. Proin quam. Etiam                 ultrices. Suspendisse in justo eu magna luctus suscipit. Sed lectus. Integer euismod lacus luctus magna. Quisque cursus, metus                 vitae pharetra auctor, sem massa mattis sem, at interdum magna augue eget diam. Vestibulum ante ipsum primis in faucibus orci                 luctus et ultrices posuere cubilia Curae; Morbi lacinia molestie dui. Praesent blandit dolor. Sed non quam. In vel mi sit amet                 augue congue elementum. Morbi in ipsum sit amet pede facilisis laoreet. Donec lacus nunc, viverra nec.";       testInput.Split(' ').ToList().ForEach(word => autoSuggestCache.AddWord(word));       var testMatches = autoSuggestCache.GetSuggestedMatches("le"); }   ..and the result: That’s it!

    Read the article

  • Take Control Of Web Control ClientID Values in ASP.NET 4.0

    Each server-side Web control in an ASP.NET Web Forms application has an ID property that identifies the Web control and is name by which the Web control is accessed in the code-behind class. When rendered into HTML, the Web control turns its server-side ID value into a client-side id attribute. Ideally, there would be a one-to-one correspondence between the value of the server-side ID property and the generated client-side id, but in reality things aren't so simple. By default, the rendered client-side id is formed by taking the Web control's ID property and prefixed it with the ID properties of its naming containers. In short, a Web control with an ID of txtName can get rendered into an HTML element with a client-side id like ctl00_MainContent_txtName. This default translation from the server-side ID property value to the rendered client-side id attribute can introduce challenges when trying to access an HTML element via JavaScript, which is typically done by id, as the page developer building the web page and writing the JavaScript does not know what the id value of the rendered Web control will be at design time. (The client-side id value can be determined at runtime via the Web control's ClientID property.) ASP.NET 4.0 affords page developers much greater flexibility in how Web controls render their ID property into a client-side id. This article starts with an explanation as to why and how ASP.NET translates the server-side ID value into the client-side id value and then shows how to take control of this process using ASP.NET 4.0. Read on to learn more! Read More >

    Read the article

  • Take Control Of Web Control ClientID Values in ASP.NET 4.0

    Each server-side Web control in an ASP.NET Web Forms application has an ID property that identifies the Web control and is name by which the Web control is accessed in the code-behind class. When rendered into HTML, the Web control turns its server-side ID value into a client-side id attribute. Ideally, there would be a one-to-one correspondence between the value of the server-side ID property and the generated client-side id, but in reality things aren't so simple. By default, the rendered client-side id is formed by taking the Web control's ID property and prefixed it with the ID properties of its naming containers. In short, a Web control with an ID of txtName can get rendered into an HTML element with a client-side id like ctl00_MainContent_txtName. This default translation from the server-side ID property value to the rendered client-side id attribute can introduce challenges when trying to access an HTML element via JavaScript, which is typically done by id, as the page developer building the web page and writing the JavaScript does not know what the id value of the rendered Web control will be at design time. (The client-side id value can be determined at runtime via the Web control's ClientID property.) ASP.NET 4.0 affords page developers much greater flexibility in how Web controls render their ID property into a client-side id. This article starts with an explanation as to why and how ASP.NET translates the server-side ID value into the client-side id value and then shows how to take control of this process using ASP.NET 4.0. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • MySQL – Introduction to User Defined Variables

    - by Pinal Dave
    MySQL supports user defined variables to have some data that can be used later part of your query. You can save a value to a variable using a SELECT statement and later you can access its value. Unlike other RDBMSs, you do not need to declare the data type for a variable. The data type is automatically assumed when you assign a value. A value can be assigned to a variable using a SET command as shown below SET @server_type:='MySQL'; When you above command is executed, the value, MySQL is assigned to the variable called @server_type. Now you can use this variable in the later part of the code. Suppose if you want to display the value, you can use SELECT statement. SELECT @server_type; The result is MySQL. Once the value is assigned it remains for the entire session until changed by the later statements. So unlike SQL Server, you do not need to have this as part the execution code every time. (Because in SQL Server, the variables are execution scoped and dropped after the execution). You can give column name as below SELECT @server_type AS server_type; You can also SELECT statement to DECLARE and SELECT the values for a variable. SELECT @message:='Welcome to MySQL' AS MESSAGE; The result is Message -------- Welcome to MySQL You can make use of variables to effectively apply many logics. One of the useful method is to generate the row number as shown in this post MySQL – Generating Row Number for Each Row using Variable. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Tips and Tricks, T SQL

    Read the article

  • String.IsNullOrWhiteSpace

    - by Scott Dorman
    An empty string is different than an unassigned string variable (which is null), and is a string containing no characters between the quotes (""). The .NET Framework provides String.Empty to represent an empty string, and there is no practical difference between ("") and String.Empty. One of the most common string comparisons to perform is to determine if a string variable is equal to an empty string. The fastest and simplest way to determine if a string is empty is to test if the Length property is equal to 0. However, since strings are reference types it is possible for a string variable to be null, which would result in a runtime error when you tried to access the Length property. Since testing to determine if a string is empty is such a common occurrence, the .NET Framework provides the static method String.IsNullOrEmpty method: public static bool IsNullOrEmpty(string value) { if (value != null) { return (value.Length == 0); }   return true; } It is also very common to determine if a string is empty and contains more than just whitespace characters. For example, String.IsNullOrEmpty("   ") would return false, since this string is actually made up of three whitespace characters. In some cases, this may be acceptable, but in many others it is not. TO help simplify testing this scenario, the .NET Framework 4 introduces the String.IsNullOrWhiteSpace method: public static bool IsNullOrWhiteSpace(string value) { if (value != null) { for (int i = 0; i < value.Length; i++) { if (!char.IsWhiteSpace(value[i])) { return false; } } } return true; }   Using either String.IsNullOrEmpty or String.IsNullOrWhiteSpace helps ensure correctness, readability, and consistency, so they should be used in all situations where you need to determine if a string is null, empty, or contains only whitespace characters. Technorati Tags: .NET,C# 4

    Read the article

  • New Release of Oracle Berkeley DB

    - by Eric Jensen
    We are pleased to announce that a new release of Oracle Berkeley DB, version 11.2.5.2.28, is available today. Our latest release includes yet more value added features for SQLite users, as well as several performance enhancements and new customer-requested features to the key-value pair API.  We continue to provide technology leadership, features and performance for SQLite applications.  This release introduces additional features that are not available in native SQLite, and adds functionality allowing customers to create richer, more scalable, more concurrent applications using the Berkeley DB SQL API. This release is compelling to Oracle’s customers and partners because it: delivers a complete, embeddable SQL92 database as a library under 1MB size drop-in API compatible with SQLite version 3 no-oversight, zero-touch database administration industrial quality, battle tested Berkeley DB B-TREE for concurrent transactional data storage New Features Include: MVCC support for even higher concurrency direct SQL support for HA/replication transactionally protected Sequence number generation functions lower memory requirements, shared memory regions and faster/smaller memory on startup easier B-TREE page size configuration with new ''db_tuner" utility New Key-Value API Features Include: HEAP access method for constrained disk-space applications (key-value API) faster QUEUE access method operations for highly concurrent applications -- up 2-3X faster! (key-value API) new X/open compliant XA resource manager, easily integrated with Oracle Tuxedo (key-value API) additional HA/replication management and communication options (key-value API) and a lot more! BDB is hands-down the best edge, mobile, and embedded database available to developers. Downloads available today on the Berkeley DB download pageProduct Documentation

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

< Previous Page | 209 210 211 212 213 214 215 216 217 218 219 220  | Next Page >