Search Results

Search found 1354 results on 55 pages for 'compute scalar'.

Page 22/55 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • Finding complexity of a program as a service [on hold]

    - by Seshu
    I would like to find the complexity of a specific code chunk written in Java. Is there a place/web site/service where I can find out the complexity of any arbitrary program. This program might include loops/recursion. Using theory we can compute complexity ourselves. But, just curious in finding if any service is out there to find such complexity. We have several code quality related tools does any of such tools will also find complexity of given code? Could any one point me or direct me to such a utility/site/service?

    Read the article

  • Using a subset of GetHashCode() to increase AzureTable performance through partitioning

    - by makerofthings7
    Generally speaking, Azure Table IO performance improves as more partitions are used (with some tradeoffs in continuation tokens and batch updates I won't go into). Since the partition key is always a string I am considering using a "natural" load balancing technique based on a subset of the GetHashCode() of the partition key, and appending this subset to the partition key itself. This will allow all direct PK/RK queries to be computed with little overhead and with ease. Batch updates may just need an intermediate to group similar PKs together prior to submission. Question: Should I use GetHashCode() to compute the partition key? Is a better function available? If I use GetHashCode() does it matter which character I use for my PK? Is there an abstraction for Azure Table and Blob storage that does this for me already?

    Read the article

  • Simple iOS glDrawElements - BAD_ACCESS

    - by user699215
    You can copy paste this into the default OpenGl template created in Xcode. Why am I not seeing anything :-) It is strange as the glDrawArrays(GL_TRIANGLES, 0, 3); is working fine, but with glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte), GL_UNSIGNED_BYTE, indices); Is giving BAD_ACCESS? Copy paste this into Xcode default OpenGl template: ViewController #import "ViewController.h" #define BUFFER_OFFSET(i) ((char *)NULL + (i)) // Uniform index. enum { UNIFORM_MODELVIEWPROJECTION_MATRIX, UNIFORM_NORMAL_MATRIX, NUM_UNIFORMS }; GLint uniforms[NUM_UNIFORMS]; // Attribute index. enum { ATTRIB_VERTEX, ATTRIB_NORMAL, NUM_ATTRIBUTES }; @interface ViewController () { GLKMatrix4 _modelViewProjectionMatrix; GLKMatrix3 _normalMatrix; float _rotation; GLuint _vertexArray; GLuint _vertexBuffer; NSArray* arrayOfVertex; } @property (strong, nonatomic) EAGLContext *context; @property (strong, nonatomic) GLKBaseEffect *effect; - (void)setupGL; - (void)tearDownGL; @end @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2]; GLKView *view = (GLKView *)self.view; view.context = self.context; view.drawableDepthFormat = GLKViewDrawableDepthFormat24; [self setupGL]; } - (void)dealloc { [self tearDownGL]; if ([EAGLContext currentContext] == self.context) { [EAGLContext setCurrentContext:nil]; } } - (void)didReceiveMemoryWarning { [super didReceiveMemoryWarning]; if ([self isViewLoaded] && ([[self view] window] == nil)) { self.view = nil; [self tearDownGL]; if ([EAGLContext currentContext] == self.context) { [EAGLContext setCurrentContext:nil]; } self.context = nil; } // Dispose of any resources that can be recreated. } GLuint vertexBufferID; GLuint indexBufferID; static const GLfloat vertices[9] = { -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5 }; static const GLubyte indices[3] = { 0, 1, 2 }; - (void)setupGL { [EAGLContext setCurrentContext:self.context]; // [self loadShaders]; self.effect = [[GLKBaseEffect alloc] init]; self.effect.light0.enabled = GL_TRUE; self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); glEnable(GL_DEPTH_TEST); // glGenVertexArraysOES(1, &_vertexArray); // glBindVertexArrayOES(_vertexArray); glGenBuffers(1, &vertexBufferID); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferID); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glGenBuffers(1, &indexBufferID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferID); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glEnableVertexAttribArray(GLKVertexAttribPosition); glVertexAttribPointer(GLKVertexAttribPosition, // Specifies the index of the generic vertex attribute to be modified. 3, // Specifies the number of components per generic vertex attribute. Must be 1, 2, 3, 4. GL_FLOAT, // GL_FALSE, // 0, // BUFFER_OFFSET(0)); // // glBindVertexArrayOES(0); } - (void)tearDownGL { [EAGLContext setCurrentContext:self.context]; glDeleteBuffers(1, &_vertexBuffer); glDeleteVertexArraysOES(1, &_vertexArray); self.effect = nil; } #pragma mark - GLKView and GLKViewController delegate methods - (void)update { float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); self.effect.transform.projectionMatrix = projectionMatrix; GLKMatrix4 baseModelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f); baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f); // Compute the model view matrix for the object rendered with GLKit GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); self.effect.transform.modelviewMatrix = modelViewMatrix; // Compute the model view matrix for the object rendered with ES2 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); _normalMatrix = GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix), NULL); _modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); _rotation += self.timeSinceLastUpdate * 0.5f; } int i; - (void)glkView:(GLKView *)view drawInRect:(CGRect)rect { glClearColor(0.65f, 0.65f, 0.65f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // glBindVertexArrayOES(_vertexArray); // Render the object with GLKit [self.effect prepareToDraw]; //glDrawArrays(GL_TRIANGLES, 0, 3); // Render the object again with ES2 // glDrawArrays(GL_TRIANGLES, 0, 3); glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte), GL_UNSIGNED_BYTE, indices); } @end

    Read the article

  • Nginx and Google Appengine Reverse Proxy Security

    - by jmq
    The scenario is that I have a Google compute node running Nginx as a reverse proxy to the google appengine. The appengine is used to service REST calls from an single page application (SPA). HTTPS is used to the Nginx front end from the Internet. Do I also need to make the traffic from the Nginx reverse proxy to the appengine secure by turning on HTTPS on the appengine? I would like to avoid the overhead of HTTPS between the proxy and the backend. My thinking was that once the traffic has arrived at Nginx encrypted, decrypted in Nginx, and then sent via the reverse proxy inside of Google's infrastructure it would be secure. Is it safe in this case to not use HTTPS?

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 1)

    Over the past couple of months I've been working on a couple of projects that have used the free <a href="http://code.google.com/apis/maps/">Google Maps API</a> to add interactive maps and <a href="http://en.wikipedia.org/wiki/Geocoding">geocoding</a> capabilities to ASP.NET websites. In a nutshell, the Google Maps API allow you to display maps on your website, to add markers onto the map, and to compute the latitude and longitude of an address, among many other tasks.With some Google Maps API experience under my belt, I decided it would be fun to implement a store locator feature and share it here on 4Guys. A store locator lets a visitor enter an address or postal code and then shows the nearby stores. Typically, store locators display the

    Read the article

  • Windows Azure Tools for Microsoft Visual Studio 1.2 (June 2010)

    - by Eric Nelson
    Yey – we have a public release of the Windows Azure Tools which fully supports Visual Studio 2010 RTM and the .NET 4 Framework. And the biggy I have been waiting for – IntelliTrace support to debug your cloud deployed services (Requires  VS2010 Ultimate) Download today http://bit.ly/azuretoolsjune New for version 1.2: Visual Studio 2010 RTM Support: Full support for Visual Studio 2010 RTM. .NET 4 support: Choose to build services targeting either the .NET 3.5 or .NET 4 framework. Cloud storage explorer: Displays a read-only view of Windows Azure tables and blob containers through Server Explorer. Integrated deployment: Deploy services directly from Visual Studio by selecting ‘Publish’ from Solution Explorer. Service monitoring: Keep track of the state of your services through the ‘compute’ node in Server Explorer. IntelliTrace support for services running in the cloud: Adds support for debugging services in the cloud by using the Visual Studio 2010 IntelliTrace feature. This is enabled by using the deployment feature, and logs are retrieved through Server Explorer. Related Links: http://ukazure.ning.com for UK fans of Windows Azure IntelliTrace explained

    Read the article

  • Kepler orbit : get position on the orbit over time

    - by Artefact2
    I'm developing a space-simulation related game, and I am having some trouble implementing the movement of binary stars, like this: The two stars orbit their centroid, and their trajectories are ellipses. I basically know how to determine the angular velocity at any position, but not the angular velocity over time. So, for a given angle, I can very easily compute the stars position (cf. http://en.wikipedia.org/wiki/Orbit_equation). I'd want to get the stars position over time. The parametric equations of the ellipse works but doesn't give the correct speed : { X(t) = a×cos(t) ; Y(t) = b×sin(t) }. Is it possible, and how can it be done?

    Read the article

  • Parallel Computing in .Net 4.0

    - by kaleidoscope
    Technorati Tags: Ram,Parallel Computing in .Net 4.0 Parallel computing is the simultaneous use of multiple compute resources to solve a computational problem: To be run using multiple CPUs A problem is broken into discrete parts that can be solved concurrently Each part is further broken down to a series of instructions Instructions from each part execute simultaneously on different CPUs Parallel Extensions in .NET 4.0 provides a set of libraries and tools to achieve the above mentioned objectives. This supports two paradigms of parallel computing Data Parallelism – This refers to dividing the data across multiple processors for parallel execution.e.g we are processing an array of 1000 elements we can distribute the data between two processors say 500 each. This is supported by the Parallel LINQ (PLINQ) in .NET 4.0 Task Parallelism – This breaks down the program into multiple tasks which can be parallelized and are executed on different processors. This is supported by Task Parallel Library (TPL) in .NET 4.0 A high level view is shown below:

    Read the article

  • Speaking at AMD Fusion conference

    - by Daniel Moth
    Next Wednesday at 2pm I will be presenting a session at the AMD Fusion developer summit in Bellevue, Washington State. For more on this conference please visit the official website. If you filter the catalog by 'Speaker Last Name' to "Moth", you'll find my talk. For your convenience, below is the title and abstract Blazing-fast code using GPUs and more, with Microsoft Visual C++ To get full performance out of mainstream hardware, high-performance code needs to harness, not only multi-core CPUs, but also GPUs (whether discrete cards or integrated in the processor) and other compute accelerators to achieve orders-of-magnitude speed-up for data parallel algorithms. How can you as a C++ developer fully utilize all that heterogeneous hardware from your Visual Studio environment? How can your code benefit from this tremendous performance boost without sacrificing your developer productivity or the portability of your solution? The answers will be presented in this session that introduces a new technology from Microsoft. Hope to see many of you there! Comments about this post welcome at the original blog.

    Read the article

  • how do I go about removing all the language packs I don't need

    - by knotech
    I just noticed that in /usr/share/help I have the ubuntu help files in 70 different languages. I only speak 2, and I only really compute in one. I also noticed that it is full of broken symbolic links to /usr/share/help-langpack. I want just want to get rid of all the languages I don't need. How can I do this without getting all rm -r happy? I'm preferably looking for a way to do this without installing any new packages, as my main goal is to get rid of excess stuff on my machine. I'd like to find a way to do this preferably with dpkg, or apt.

    Read the article

  • What's the most efficient way to find barycentric coordinates?

    - by bobobobo
    In my profiler, finding barycentric coordinates is apparently somewhat of a bottleneck. I am looking to make it more efficient. It follows the method in shirley, where you compute the area of the triangles formed by embedding the point P inside the triangle. Code: Vector Triangle::getBarycentricCoordinatesAt( const Vector & P ) const { Vector bary ; // The area of a triangle is real areaABC = DOT( normal, CROSS( (b - a), (c - a) ) ) ; real areaPBC = DOT( normal, CROSS( (b - P), (c - P) ) ) ; real areaPCA = DOT( normal, CROSS( (c - P), (a - P) ) ) ; bary.x = areaPBC / areaABC ; // alpha bary.y = areaPCA / areaABC ; // beta bary.z = 1.0f - bary.x - bary.y ; // gamma return bary ; } This method works, but I'm looking for a more efficient one!

    Read the article

  • Defaulting the HLSL Vertex and Pixel Shader Levels to Feature Level 9_1 in VS 2012

    - by Michael B. McLaughlin
    I love Visual Studio 2012. But this is not a post about that. This is a post about tweaking one particular parameter that I’ve found a bit annoying. Disclaimer: You will be modifying important MSBuild files. If you screw up you will break your build tools. And maybe your computer will catch fire. I’m not responsible. No warranties or guaranties of any sort. This info is provided “as is”. By default, if you add a new vertex shader or pixel shader item to a project, it will be set to build with shader profile 4.0_level_9_3. If you need 9_3 functionality, this is all well and good. But (especially for Windows Store apps) you really want to target the lowest shader profile possible so that your game will run on as many computers as possible. So it’s a good idea to default to 9_1. To do this you could add in new HLSL files via “Add->New Item->Visual C++->HLSL->______ Shader File (.hlsl)” and then edit the shader files’ properties to set them manually to use 9_1 via “Properties->HLSL Compiler->General->Shader Model”. This is fine unless you forget to do this once and then submit your game with 9_3 shaders instead of 9_1 shaders to the Windows Store or to some other game store. Then you’d wind up with either rejection or angry “this doesn’t work on my computer! ripoff!” messages. There’s another option though. In “Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplates\VC\HLSL\1033\VertexShader” (note the path might vary slightly for you if you are using a 32-bit system or have a non-ENU version of Visual Studio 2012) you will find a “VertexShader.vstemplate” file. If you open this file in a text editor (e.g. Notepad++), then inside the CustomParameters tag within the TemplateContent tag you should see a CustomParameter tag for the ShaderType, i.e.: <CustomParameter Name="$ShaderType$" Value="Vertex"/> On a new line, we are going to add another CustomParameter tag to the CustomParameters tag. It will look like this: <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/> such that we now have:     <CustomParameters>       <CustomParameter Name="$ShaderType$" Value="Vertex"/>       <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/>     </CustomParameters> You can then save the file (you will need to be an Administrator or have Administrator access). Back in the 1033 directory (or whatever the number is for your language), go into the “PixelShader” directory. Edit the “PixelShader.vstemplate” file and make the same change (note that this time $ShaderType$ is “Pixel” not “Vertex”; you shouldn’t be changing that line anyway, but if you were to just copy and replace the above four lines then you will wind up creating pixel shaders that the HLSL compiler would try to compile as vertex shaders, with all sort of weird errors as a result). Once you’ve added the $ShaderModel$ line to “PixelShader.vstemplate” and have saved it, everything should be done. Since Feature Level 9_1 and 9_3 don’t support any of the other shader types, those are set to default to their appropriate minimums already (Compute and Geometry are set to “4.0” and Domain and Hull are set to “5.0”, which are their respective minimums (though not all 4.0 cards support Compute shaders; they were an optional feature added with DirectX 10.1 and only became required for DirectX 11 hardware). In case you are wondering where these magic values come from, you can find them all in the “fxc.xml” file in the “\Program Files (x86)\MSBuild\Microsoft.CPP\v4.0\V110\1033” directory (or whatever your language number is; 1033 is ENU and various other product languages have their own respective numbers (see: http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx ) such that Japanese is 1041 (for example), though for all I know MSBuild tasks might be 1033 for everyone). If, like me, you installed VS 2012 to a drive other than the C:\ drive, you will find the vstemplate files in the drive to which you installed VS 2012 (D:\ in my case) but you will find the fxc.xml file on the C:\ drive. You should not edit fxc.xml. You will almost definitely break things by doing that; it’s just something you can look through to see all the other options that the FXC task takes such that you could, if needed, add further CustomParameter tags if you wanted to default to other supported options. I haven’t tried any others though so I don’t have any advice on how to set them.

    Read the article

  • Unexpected advantage of Engineered Systems

    - by user12244672
    It's not surprising that Engineered Systems accelerate the debugging and resolution of customer issues. But what has surprised me is just how much faster issue resolution is with Engineered Systems such as SPARC SuperCluster. These are powerful, complex, systems used by customers wanting extreme database performance, app performance, and cost saving server consolidation. A SPARC SuperCluster consists or 2 or 4 powerful T4-4 compute nodes, 3 or 6 extreme performance Exadata Storage Cells, a ZFS Storage Appliance 7320 for general purpose storage, and ultra fast Infiniband switches.  Each with its own firmware. It runs Solaris 11, Solaris 10, 11gR2, LDoms virtualization, and Zones virtualization on the T4-4 compute nodes, a modified version of Solaris 11 in the ZFS Storage Appliance, a modified and highly tuned version of Oracle Linux running Exadata software on the Storage Cells, another Linux derivative in the Infiniband switches, etc. It has an Infiniband data network between the components, a 10Gb data network to the outside world, and a 1Gb management network. And customers can run whatever middleware and apps they want on it, clustered in whatever way they want. In one word, powerful.  In another, complex. The system is highly Engineered.  But it's designed to run general purpose applications. That is, the physical components, configuration, cabling, virtualization technologies, switches, firmware, Operating System versions, network protocols, tunables, etc. are all preset for optimum performance and robustness. That improves the customer experience as what the customer runs leverages our technical know-how and best practices and is what we've tested intensely within Oracle. It should also make debugging easier by fixing a large number of variables which would otherwise be in play if a customer or Systems Integrator had assembled such a complex system themselves from the constituent components.  For example, there's myriad network protocols which could be used with Infiniband.  Myriad ways the components could be interconnected, myriad tunable settings, etc. But what has really surprised me - and I've been working in this area for 15 years now - is just how much easier and faster Engineered Systems have made debugging and issue resolution. All those error opportunities for sub-optimal cabling, unusual network protocols, sub-optimal deployment of virtualization technologies, issues with 3rd party storage, issues with 3rd party multi-pathing products, etc., are simply taken out of the equation. All those error opportunities for making an issue unique to a particular set-up, the "why aren't we seeing this on any other system ?" type questions, the doubts, just go away when we or a customer discover an issue on an Engineered System. It enables a really honed response, getting to the root cause much, much faster than would otherwise be the case. Here's a couple of examples from the last month, one found in-house by my team, one found by a customer: Example 1: We found a node eviction issue running 11gR2 with Solaris 11 SRU 12 under extreme load on what we call our ExaLego test system (mimics an Exadata / SuperCluster 11gR2 Exadata Storage Cell set-up).  We quickly established that an enhancement in SRU12 enabled an 11gR2 process to query Infiniband's Subnet Manager, replacing a fallback mechanism it had used previously.  Under abnormally heavy load, the query could return results which were misinterpreted resulting in node eviction.  In several daily joint debugging sessions between the Solaris, Infiniband, and 11gR2 teams, the issue was fully root caused, evaluated, and a fix agreed upon.  That fix went back into all Solaris releases the following Monday.  From initial issue discovery to the fix being put back into all Solaris releases was just 10 days. Example 2: A customer reported sporadic performance degradation.  The reasons were unclear and the information sparse.  The SPARC SuperCluster Engineered Systems support teams which comprises both SPARC/Solaris and Database/Exadata experts worked to root cause the issue.  A number of contributing factors were discovered, including tunable parameters.  An intense collaborative investigation between the engineering teams identified the root cause to a CPU bound networking thread which was being starved of CPU cycles under extreme load.  Workarounds were identified.  Modifications have been put back into 11gR2 to alleviate the issue and a development project already underway within Solaris has been sped up to provide the final resolution on the Solaris side.  The fixed SPARC SuperCluster configuration greatly aided issue reproduction and dramatically sped up root cause analysis, allowing the correct workarounds and fixes to be identified, prioritized, and implemented.  The customer is now extremely happy with performance and robustness.  Since the configuration is common to other customers, the lessons learned are being proactively rolled out to other customers and incorporated into the installation procedures for future customers.  This effectively acts as a turbo-boost to performance and reliability for all SPARC SuperCluster customers.  If this had occurred in a "home grown" system of this complexity, I expect it would have taken at least 6 months to get to the bottom of the issue.  But because it was an Engineered System, known, understood, and qualified by both the Solaris and Database teams, we were able to collaborate closely to identify cause and effect and expedite a solution for the customer.  That is a key advantage of Engineered Systems which should not be underestimated.  Indeed, the initial issue mitigation on the Database side followed by final fix on the Solaris side, highlights the high degree of collaboration and excellent teamwork between the Oracle engineering teams.  It's a compelling advantage of the integrated Oracle Red Stack in general and Engineered Systems in particular.

    Read the article

  • Understanding how texCUBE works and writing cubemaps properly into a cube rendertarget

    - by cubrman
    My goal is to create accurate reflections, sampled from a dynamic cubemap, for specific 3d objects (mostly lights) in XNA 4.0. To sample the cubemap I compute the 3d reflection vector in a classic way: half3 ReflectionVec = reflect(-directionToCamera, Normal.rgb); I then use the vector to get the actual reflected color: half3 ReflectionCol = texCUBElod(ReflectionSampler, float4(ReflectionVec, 0)); The cubemap I am sampling from is a RenderTarget with 6 flat faces. So my question is, given the 3d world position of an arbitrary 3d object, how can I make sure that I get accurate reflections of this object, when I re-render the cubemap. Should I build the ViewProjection matrix in a specific way? Or is there any other approach?

    Read the article

  • multithreading problem with Nvidia PhysX

    - by xcrypt
    I'm having a multithreading problem with Nvidia PhysX. the SDK requires that you call Simulate() (starts computing new physics positions within a new thread) and FetchResults(waits 'till the physics computations are done). Inbetween Simulate() and FetchResults() you may not 'compute new physics' It is proposed (in a sample) that we create a game loop as such: Logic (you may calculate physics here and other stuff) Render + Simulate() at start of Render call and FetchResults at end of Render() call However, this has given me various little errors that stack up: since you actually render the scene that was computed in the previous iteration in the game loop. I wonder if there's a way around this? I've been trying and trying, but I can't think of a solution...

    Read the article

  • Arbitrary projection matrix from 6 arbitrary frustum planes

    - by Doub
    A projection matrix represent a tranformation from the camera view space to the rendering system clip space. In other words, it defines the transormation between a 6-sided frustum to the clip cube. The glOrtho and glFrustum use only 6 parameter to define such a projection, but impose several constraints on the frustum that will get projected to the clip cube: the near and far planes are parallel, the left and right planes intersect on a vertical line, and the top and bottom planes intersect on a horizontal lines, both lines being parallel to the near and far planes. I'd like to lift these restrictions. So, from the definition of the 6 frustum side planes (in whatever representation you see fit), how can I compute a general projection matrix?

    Read the article

  • Is there any advantage in using DX10/11 for a 2D game?

    - by David Gouveia
    I'm not entirely familiar with the feature set introduced by DX10/11 class hardware. I'm vaguely familiar with the new stages added to the programmable graphics pipeline, such as the geometry shader, the compute shader, and the new tesselation stages. I don't see how any of these make much of a difference for a 2D game though. Is there any compelling reason to make the switch to DX10/11 (or the OpenGL equivalents) for a 2D game, or would it be wiser to stick with DX9 considering that that a significant share of the market still runs on older technologies (e.g. the February 2012 Steam surveys lists around 17% of users as still using Windows XP)?

    Read the article

  • How do I properly use multithreading with Nvidia PhysX?

    - by xcrypt
    I'm having a multithreading problem with Nvidia PhysX. the SDK requires that you call Simulate() (starts computing new physics positions within a new thread) and FetchResults() (waits 'till the physics computations are done). Inbetween Simulate() and FetchResults() you may not "compute new physics". It is proposed (in a sample) that we create a game loop as such: Logic (you may calculate physics here and other stuff) Render + Simulate() at start of Render call and FetchResults at end of Render() call However, this has given me various little errors that stack up: since you actually render the scene that was computed in the previous iteration in the game loop. Does anyone have a solution to this?

    Read the article

  • Impact of variable-length loops on GPU shaders

    - by Will
    Its popular to render procedural content inside the GPU e.g. in the demoscene (drawing a single quad to fill the screen and letting the GPU compute the pixels). Ray marching is popular: This means the GPU is executing some unknown number of loop iterations per pixel (although you can have an upper bound like maxIterations). How does having a variable-length loop affect shader performance? Imagine the simple ray-marching psuedocode: t = 0.f; while(t < maxDist) { p = rayStart + rayDir * t; d = DistanceFunc(p); t += d; if(d < epsilon) { ... emit p return; } } How are the various mainstream GPU families (Nvidia, ATI, PowerVR, Mali, Intel, etc) affected? Vertex shaders, but particularly fragment shaders? How can it be optimised?

    Read the article

  • Q&amp;A: Does it make sense to run a personal blog on the Windows Azure Platform?

    - by Eric Nelson
    I keep seeing people wanting to do this (or something very similar) and then being surprised at how much it might cost them if they went with Windows Azure. Time for a Q&A. Short answer: No, definitely not. Madness, sheer madness. (Hopefully that was clear enough) Longer answer: No because It would cost you a heck of a lot more than just about any other approach to running a blog. A site that can easily be run on a shared hosting solution (as many blogs do today) does not require the rich capabilities of Windows Azure. Capabilities such as simplified deployed and management, dedicated resources, elastic resources, “unlimited” storage etc. It is simply not the type of application the Windows Azure Platform has been designed for. Related Links: Q&A- How can I calculate the TCO and ROI when considering the Windows Azure Platform? Q&A- When do I get charged for compute hours on Windows Azure? Q&A- What are the UK prices for the Windows Azure Platform

    Read the article

  • How does a BSP tree work for Z sorting?

    - by Jenko
    I'm developing a 3D engine in software, and so I must compute Z sorting manually. I'm currently using the painters algorithm to sort triangles and then drawing them back-to-front. This causes artifacts that I'm trying to correct. Would using a dynamic BSP-tree ensure "correct Z sorting" of triangles? Why? Because the bounding volumes of triangles would be similar? Since I would have a single "world" BSP tree, would I have to remove and re-add any moved/scaled/rotated object into the tree? Is it possible to add triangles into a BSP tree without the expensive cutting process? Why do you need to cut triangles on the axis planes anyway? Is it faster to traverse a BSP tree from any angle, than to sort all tris each draw like the painters algorithm?

    Read the article

  • Top Questions and Answers for Pluging into Oracle Database as a Service

    - by David Swanger
    Yesterday we hosted a comprehensive online forum that shared a comprehensive path to help your organization design, deploy, and deliver a Database as a Service cloud. If you missed the online forum, you can watch it on demand by registering here. We received numerous questions.  Below are highlights of the most informative: DBaaS requires a lengthy and careful design efforts. What is the minimum requirements of setting up a scaled-down environment and test it out? You should have an OEM 12c environment for DBaaS administration and then a target database deployment platform that has the key characteristics of what your production environment will look like. This could be a single server or it could be a small pool of hosts if your production DBaaS will be larger and you want to test a more robust / real world configuration with Zones and Pools or DR capabilities for example. How does this benefit companies having their own data center? This allows companies to transform their internal IT to a service delivery model for the database. The benefits to the company are significant cost savings, improved business agility and reduced risk. The benefits to the consumers (internal) of services if much fast provisioning, and response to change in business requirements. From a deployment perspective, is DBaaS's job solely DBA's job? The best deployment model enables the DBA (or end-user) to control the entire process. All resources required to deploy the service are pre-provisioned, and there are no external dependencies (on network, storage, sysadmins teams). The service is created either via a self-service portal or by the DBA. The purpose of self service seems to be that the end user does not rely on the DBA. I just need to give him a template. He decides how much AMM he needs. Why shall I set it one by one. That doesn't seem to be the purpose of self service. Most customers we have worked with define a standardized service catalog, with a few (2 to 5) different classes of service. For each of these classes, there is a pre-defined deployment template, and the user has the ability to select from some pre-defined service sizes. The administrator only has to create this catalog once. Each user then simply selects from the options offered in the catalog.  Looking at DBaaS service definition, it seems to be no different from a service definition provided by a well defined DBA team. Why do you attribute it to DBaaS? There are a couple of perspectives. First, some organizations might already be operating with a high level of standardization and a higher level of maturity from an ITIL or Service Management perspective. Their journey to DBaaS could be shorter and their Service Definition will evolve less but they still might need to add capabilities such as Self Service and Metering/Chargeback. Other organizations are still operating in highly siloed environments with little automation and their formal Service Definition (if they have one) will be a lot less mature today. Therefore their future state DBaaS will look a lot different from their current state, as will their Service Definition. How database as a service impact or help with "Click to Compute" or deploying "Database in cloud infrastructure" DBaaS enables Click to Compute. Oracle DBaaS can be implemented using three architecture models: Oracle Multitenant 12c, native consolidation using Oracle Database and consolidation using virtualization in infrastructure cloud. As Deploy session showed, you get higher consolidating density and efficiency using Multitenant and higher isolation using infrastructure cloud. Depending upon your business needs, DBaaS can be implemented using any of these models. How exactly is the DBaaS different from the traditional db? Storage/OS/DB all together to 'transparently' provide service to applications? Will there be across-databases access by application/user. Some key differences are: 1) The services run on a shared platform. 2) The services can be rapidly provisioned (< 15 minutes). 3) The services are dynamic and can be relocated, grown, shrunk as needed to meet business needs without disruption and rapidly. 4) The user is able to provision the services directly from a standardized service catalog.. With 24x7x365 databases its difficult to find off peak hrs to do basic admin tasks such as gathering stats, running backups, batch jobs. How does pluggable database handle this and different needs/patching downtime of apps databases might be serving? You can gather stats in Oracle Multitenant the same way you had been in regular databases. Regarding patching/upgrading, Oracle Multitenant makes patch/upgrade very efficient in that you can pre-provision a new version/patched multitenant db in a different ORACLE_HOME and then unplug a PDB from its CDB and plug it into the newer/patched CDB in seconds.  Thanks for all the great questions!  If you'd like to learn more and missed the online forum, you can watch it on demand here.

    Read the article

  • Windows Azure XDrive

    - by kaleidoscope
    This allows your Windows Azure compute applications running in our cloud to use the existing NTFS APIs to store their data in a durable drive. The drive is backed by a Windows Azure Page Blob formatted as a single NTFS volume VHD.   The Page Blob can be mounted as a drive within the Windows Azure cloud, where all non-buffered/flushed NTFS writes are made durable to the drive (Page Blob).   If the application using the drive crashes, the data is kept persistent via the Page Blob, and can be remounted when the application instance is restarted or remounted elsewhere for a different application instance to use.   Since the drive is an NTFS formatted Page Blob, you can also use the standard blob interfaces to uploaded and download your NTFS VHDs to the cloud. More details can be found at: http://microsoftpdc.com/Sessions/SVC14 Anish, S

    Read the article

  • scaling point sprites with distance

    - by Will
    How can you scale a point sprite by its distance from the camera? GLSL fragment shader: gl_PointSize = size / gl_Position.w; seems along the right tracks; for any given scene all sprites seem nicely scaled by distance. Is this correct? How do you compute the proper scaling for my vertex attribute size? I want each sprite to be scaled by the modelview matrix. I had played with arbitrary values and it seems that size is the radius in pixels at the camera, and is not in modelview scale. I've also tried: gl_Position = pMatrix * mvMatrix * vec4(vertex,1.0); vec4 v2 = pMatrix * mvMatrix * vec4(vertex.x,vertex.y+0.5*size,vertex.z,1.0); gl_PointSize = length(gl_Position.xyz-v2.xyz) * gl_Position.w; But this makes the sprites be bigger in the distance, rather than smaller:

    Read the article

  • AMD Catalyst diskless cluster

    - by Nathan Moos
    I'm using Ubuntu 13.10 to set up a diskless compute cluster. When I use the procedure detailed in https://help.ubuntu.com/community/DisklessUbuntuHowto, I successfully am able to boot all four nodes. However, once I install Catalyst, I immediately have problems: only one diskless node boots properly, with the other two hanging while attempting to start X. My assumption is that my Catalyst build was somehow specific to the node which I booted from first, which somehow prevents the other nodes from loading Catalyst. Can anyone provide hints to help solve this? Thank you in advance!

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >