Search Results

Search found 1354 results on 55 pages for 'compute scalar'.

Page 24/55 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • LINQ: Single vs. SingleOrDefault

    - by Paulo Morgado
    Like all other LINQ API methods that extract a scalar value from a sequence, Single has a companion SingleOrDefault. The documentation of SingleOrDefault states that it returns a single, specific element of a sequence of values, or a default value if no such element is found, although, in my opinion, it should state that it returns a single, specific element of a sequence of values, or a default value if no such element is found. Nevertheless, what this method does is return the default value of the source type if the sequence is empty or, like Single, throws an exception if the sequence has more than one element. I received several comments to my last post saying that SingleOrDefault could be used to avoid an exception. Well, it only “solves” half of the “problem”. If the sequence has more than one element, an exception will be thrown anyway. In the end, it all comes down to semantics and intent. If it is expected that the sequence may have none or one element, than SingleOrDefault should be used. If it’s not expect that the sequence is empty and the sequence is empty, than it’s an exceptional situation and an exception should be thrown right there. And, in that case, why not use Single instead? In my opinion, when a failure occurs, it’s best to fail fast and early than slow and late. Other methods in the LINQ API that use the same companion pattern are: ElementAt/ElementAtOrDefault, First/FirstOrDefault and Last/LastOrDefault.

    Read the article

  • Intelligence as a vector quantity

    - by Senthil Kumaran
    I am reading this wonderful book called "Coders at Work: Reflections on the Craft of Programming" by Peter Seibel and I am at part wherein the conversation is with Joshua Bloch and I found this answer which is an important point for a programmer. The paragraph, goes something like this. There's this problem, which is, programming is so much of an intellectual meritocracy and often these people are the smartest people in the organization; therefore they figure they should be allowed to make all the decisions. But merely the fact they are the smartest people in the organization does not mean that they should be making all the decisions, because intelligence is not a scalar quantity; it's a vector quantity. Here at the last sentence, I fail to get the insight which is he trying to share. Can someone explain it in a little further as what he means by a vector quantity, possibly trying to present the same insight. Further down, I get the point that he is not taking about having an organization where non-technical people (sometimes clueless) can be managers of the technical people for some reason that they can spend more time to write emails well, because the very next statement following the above paragraph was. And if you lack empathy or emotional intelligence, then you shouldn't be designing APIs or GUIs or languages. I understand that he is saying that in Software engineering, programmers should know how the users will see their product and design for them. I felt the above paragraph was very interesting.

    Read the article

  • Term for unit testing that separates test logic from test result data

    - by mario
    So I'm not doing any unit testing. But I've had an idea to make it more appropriate for my field of use. Yet it's not clear if something like this exists, and if, how it would possibly be called. Ordinary unit tests combine the test logic and the expected outcome. In essence the testing framework only checks for booleans (did this match, did the expected result result). To generalize, the test code itself references the audited functions, and also explicites the result values like so: unit::assert( test_me() == 17 ) What I'm looking for is a separation of concerns. The test itself should only contain the tested logic. The outcome and result data should be handled by the unit testing or assertion framework. As example: unit::probe( test_me() ) Here the probe actually doubles as collector in the first run, and afterwards as verification method. The expected 17 is not mentioned in the test code, but stored or managed elsewhere. How is this scheme called? Or how would you call it? I hope I can find some actual implementations with the proper terminology. Obviously such a pattern is unfit for TDD. It's strictly for regression testing. Also obviously, it cannot be used for all cases. Only the simpler test subjects can be analyzed that way, for anything else the ordinary unit test setup and assertion steps are required. And yes, this could be manually accomplished by crafting a ResultWhateverObject, but that would still require hardwiring that to the test logic. Also keep in mind that I'm inquiring for use with scripting languages, and not about Java. I'm aware that the xUnit pattern originates there, and why it's hence as elaborate as it is. Btw, I've discovered one test execution framework which allows for shortening simple test notations to: test_me(); // 17 While thus the result data is no longer coded in (it's a comment), that's still not a complete separation and of course would work only for scalar results.

    Read the article

  • Is NAN suitable for communicating that an invalid parameter was involved in a calculation?

    - by Arman
    I am currently working on a numerical processing system that will be deployed in a performance-critical environment. It takes inputs in the form of numerical arrays (these use the eigen library, but for the purpose of this question that's perhaps immaterial), and performs some range of numerical computations (matrix products, concatenations, etc.) to produce outputs. All arrays are allocated statically and their sizes are known at compile time. However, some of the inputs may be invalid. In these exceptional cases, we still want the code to be computed and we still want outputs not "polluted" by invalid values to be used. To give an example, let's take the following trivial example (this is pseudo-code): Matrix a = {1, 2, NAN, 4}; // this is the "input" matrix Scalar b = 2; Matrix output = b * a; // this results in {2, 4, NAN, 8} The idea here is that 2, 4 and 8 are usable values, but the NAN should signal to the receipient of the data that that entry was involved in an operation that involved an invalid value, and should be discarded (this will be detected via a std::isfinite(value) check before the value is used). Is this a sound way of communicating and propagating unusable values, given that performance is critical and heap allocation is not an option (and neither are other resource-consuming constructs such as boost::optional or pointers)? Are there better ways of doing this? At this point I'm quite happy with the current setup but I was hoping to get some fresh ideas or productive criticism of the current implementation.

    Read the article

  • Performing Aggregate Functions on Multi-Million Row Tables

    - by Daniel Short
    I'm having some serious performance issues with a multi-million row table that I feel I should be able to get results from fairly quick. Here's a run down of what I have, how I'm querying it, and how long it's taking: I'm running SQL Server 2008 Standard, so Partitioning isn't currently an option I'm attempting to aggregate all views for all inventory for a specific account over the last 30 days. All views are stored in the following table: CREATE TABLE [dbo].[LogInvSearches_Daily]( [ID] [bigint] IDENTITY(1,1) NOT NULL, [Inv_ID] [int] NOT NULL, [Site_ID] [int] NOT NULL, [LogCount] [int] NOT NULL, [LogDay] [smalldatetime] NOT NULL, CONSTRAINT [PK_LogInvSearches_Daily] PRIMARY KEY CLUSTERED ( [ID] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 90) ON [PRIMARY] ) ON [PRIMARY] This table has 132,000,000 records, and is over 4 gigs. A sample of 10 rows from the table: ID Inv_ID Site_ID LogCount LogDay -------------------- ----------- ----------- ----------- ----------------------- 1 486752 48 14 2009-07-21 00:00:00 2 119314 51 16 2009-07-21 00:00:00 3 313678 48 25 2009-07-21 00:00:00 4 298863 0 1 2009-07-21 00:00:00 5 119996 0 2 2009-07-21 00:00:00 6 463777 534 7 2009-07-21 00:00:00 7 339976 503 2 2009-07-21 00:00:00 8 333501 570 4 2009-07-21 00:00:00 9 453955 0 12 2009-07-21 00:00:00 10 443291 0 4 2009-07-21 00:00:00 (10 row(s) affected) I have the following index on LogInvSearches_Daily: /****** Object: Index [IX_LogInvSearches_Daily_LogDay] Script Date: 05/12/2010 11:08:22 ******/ CREATE NONCLUSTERED INDEX [IX_LogInvSearches_Daily_LogDay] ON [dbo].[LogInvSearches_Daily] ( [LogDay] ASC ) INCLUDE ( [Inv_ID], [LogCount]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] I need to pull inventory only from the Inventory for a specific account id. I have an index on the Inventory as well. I'm using the following query to aggregate the data and give me the top 5 records. This query is currently taking 24 seconds to return the 5 rows: StmtText ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- SELECT TOP 5 Sum(LogCount) AS Views , DENSE_RANK() OVER(ORDER BY Sum(LogCount) DESC, Inv_ID DESC) AS Rank , Inv_ID FROM LogInvSearches_Daily D (NOLOCK) WHERE LogDay DateAdd(d, -30, getdate()) AND EXISTS( SELECT NULL FROM propertyControlCenter.dbo.Inventory (NOLOCK) WHERE Acct_ID = 18731 AND Inv_ID = D.Inv_ID ) GROUP BY Inv_ID (1 row(s) affected) StmtText ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |--Top(TOP EXPRESSION:((5))) |--Sequence Project(DEFINE:([Expr1007]=dense_rank)) |--Segment |--Segment |--Sort(ORDER BY:([Expr1006] DESC, [D].[Inv_ID] DESC)) |--Stream Aggregate(GROUP BY:([D].[Inv_ID]) DEFINE:([Expr1006]=SUM([LOALogs].[dbo].[LogInvSearches_Daily].[LogCount] as [D].[LogCount]))) |--Sort(ORDER BY:([D].[Inv_ID] ASC)) |--Nested Loops(Inner Join, OUTER REFERENCES:([D].[Inv_ID])) |--Nested Loops(Inner Join, OUTER REFERENCES:([Expr1011], [Expr1012], [Expr1010])) | |--Compute Scalar(DEFINE:(([Expr1011],[Expr1012],[Expr1010])=GetRangeWithMismatchedTypes(dateadd(day,(-30),getdate()),NULL,(6)))) | | |--Constant Scan | |--Index Seek(OBJECT:([LOALogs].[dbo].[LogInvSearches_Daily].[IX_LogInvSearches_Daily_LogDay] AS [D]), SEEK:([D].[LogDay] > [Expr1011] AND [D].[LogDay] < [Expr1012]) ORDERED FORWARD) |--Index Seek(OBJECT:([propertyControlCenter].[dbo].[Inventory].[IX_Inventory_Acct_ID]), SEEK:([propertyControlCenter].[dbo].[Inventory].[Acct_ID]=(18731) AND [propertyControlCenter].[dbo].[Inventory].[Inv_ID]=[LOA (13 row(s) affected) I tried using a CTE to pick up the rows first and aggregate them, but that didn't run any faster, and gives me essentially the same execution plan. (1 row(s) affected) StmtText ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --SET SHOWPLAN_TEXT ON; WITH getSearches AS ( SELECT LogCount -- , DENSE_RANK() OVER(ORDER BY Sum(LogCount) DESC, Inv_ID DESC) AS Rank , D.Inv_ID FROM LogInvSearches_Daily D (NOLOCK) INNER JOIN propertyControlCenter.dbo.Inventory I (NOLOCK) ON Acct_ID = 18731 AND I.Inv_ID = D.Inv_ID WHERE LogDay DateAdd(d, -30, getdate()) -- GROUP BY Inv_ID ) SELECT Sum(LogCount) AS Views, Inv_ID FROM getSearches GROUP BY Inv_ID (1 row(s) affected) StmtText ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |--Stream Aggregate(GROUP BY:([D].[Inv_ID]) DEFINE:([Expr1004]=SUM([LOALogs].[dbo].[LogInvSearches_Daily].[LogCount] as [D].[LogCount]))) |--Sort(ORDER BY:([D].[Inv_ID] ASC)) |--Nested Loops(Inner Join, OUTER REFERENCES:([D].[Inv_ID])) |--Nested Loops(Inner Join, OUTER REFERENCES:([Expr1008], [Expr1009], [Expr1007])) | |--Compute Scalar(DEFINE:(([Expr1008],[Expr1009],[Expr1007])=GetRangeWithMismatchedTypes(dateadd(day,(-30),getdate()),NULL,(6)))) | | |--Constant Scan | |--Index Seek(OBJECT:([LOALogs].[dbo].[LogInvSearches_Daily].[IX_LogInvSearches_Daily_LogDay] AS [D]), SEEK:([D].[LogDay] > [Expr1008] AND [D].[LogDay] < [Expr1009]) ORDERED FORWARD) |--Index Seek(OBJECT:([propertyControlCenter].[dbo].[Inventory].[IX_Inventory_Acct_ID] AS [I]), SEEK:([I].[Acct_ID]=(18731) AND [I].[Inv_ID]=[LOALogs].[dbo].[LogInvSearches_Daily].[Inv_ID] as [D].[Inv_ID]) ORDERED FORWARD) (8 row(s) affected) (1 row(s) affected) So given that I'm getting good Index Seeks in my execution plan, what can I do to get this running faster? Thanks, Dan

    Read the article

  • Update Since Microsoft/PSC Office Open XML Case Study

    - by Tim Murphy
    In 2009 Microsoft released a case study about a project that we had done using the OOXML SDK 1.0 for Research Directors Inc.  Since that time Microsoft has released version 2.0 of the SDK and PSC has done significant development with it.  Below are some of the mile stones we have reached since the original case study. At the time of the original case study two report types had been automated to output as PowerPoint presentations.  Now that the all the main products have been delivered we have added three reports with Word document outputs and five more reports with PowerPoint outputs. One improvement we made over the original application was to create a PowerPoint Add-In which allows the users to tag a slide.  These tags along with the strongly typed SDK 2.0 allows for the code to use LINQ to easily search for slides in the template files.  This allows for a more flexible architecture base on assembling a presentation from copied slide extracted from the template. The new library we created also enabled us to create two new Word based reports in two weeks.  The library we created abstracts the generation of the documents from the business logic and the data retrieval.  The key to this is the mark up.  Content Controls are a good method for identifying sections of a template to be modified or replaced.  Join this with the concept of all data being generically either scalar or two dimensional and the code becomes more generic. In the end we found the OOXML SDK 2.0 to be a great tool for accelerating document generation development and creating happy clients.  del.icio.us Tags: PSC Group,OOXML,Case Study,Office Open XML,Word,PowerPoint

    Read the article

  • Non use of persisted data – Part deux

    - by Dave Ballantyne
    In my last blog I showed how persisted data may not be used if you have used the base data on an include on an index. That wasn't the only problem ive had that showed the same symptom.  Using the same code as before,  I was executing similar to the below : select BillToAddressID,SOD.SalesOrderDetailID,SOH.CleanedGuid from sales.salesorderheader SOH join Sales.SalesOrderDetail SOD on SOH.SalesOrderID = SOD.SalesOrderID But,  due to a distribution error in statistics i found it necessary to use a table hint.  In this case, I wanted to force a loop join select BillToAddressID,SOD.SalesOrderDetailID,SOH.CleanedGuid from sales.salesorderheader SOH inner loop join Sales.SalesOrderDetail SOD on SOH.SalesOrderID = SOD.SalesOrderID   But, being the diligent  TSQL developer that I am ,looking at the execution plan I noticed that the ‘compute scalar’ operator was again calling the function.  Again,  profiler is a more graphic way to view this…..   All very odd,  just because ive forced a join , that has NOTHING, to do with my persisted data then something is causing the data to be re-evaluated. Not sure if there is any easy fix you can do to the TSQL here, but again its a lesson learned (or rather reinforced) examine the execution plan of every query you write to ensure that it is operating as you thought it would.

    Read the article

  • Implementing Circle Physics in Java

    - by Shijima
    I am working on a simple physics based game where 2 balls bounce off each other. I am following a tutorial, 2-Dimensional Elastic Collisions Without Trigonometry, for the collision reactions. I am using Vector2 from the LIBGDX library to handle vectors. I am a bit confused on how to implement step 6 in Java from the tutorial. Below is my current code, please note that the code strictly follows the tutorial and there are redundant pieces of code which I plan to refactor later. Note: refrences to this refer to ball 1, and ball refers to ball 2. /* * Step 1 * * Find the Normal, Unit Normal and Unit Tangential vectors */ Vector2 n = new Vector2(this.position[0] - ball.position[0], this.position[1] - ball.position[1]); Vector2 un = n.normalize(); Vector2 ut = new Vector2(-un.y, un.x); /* * Step 2 * * Create the initial (before collision) velocity vectors */ Vector2 v1 = this.velocity; Vector2 v2 = ball.velocity; /* * Step 3 * * Resolve the velocity vectors into normal and tangential components */ float v1n = un.dot(v1); float v1t = ut.dot(v1); float v2n = un.dot(v2); float v2t = ut.dot(v2); /* * Step 4 * * Find the new tangential Velocities after collision */ float v1tPrime = v1t; float v2tPrime = v2t; /* * Step 5 * * Find the new normal velocities */ float v1nPrime = v1n * (this.mass - ball.mass) + (2 * ball.mass * v2n) / (this.mass + ball.mass); float v2nPrime = v2n * (ball.mass - this.mass) + (2 * this.mass * v1n) / (this.mass + ball.mass); /* * Step 6 * * Convert the scalar normal and tangential velocities into vectors??? */

    Read the article

  • Software Installation Failure!

    - by NIKOS ANTONIOU
    I get the same error whenever I try to install software on my laptop, for example: I want to install Pavucontrol. So, I open the terminal and I type sudo apt-get install pavucontrol and my terminal output is: Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: libgconfmm-2.6-1c2 libglademm-2.4-1c2a libpulse-mainloop-glib0 padevchooser paman paprefs pavumeter pulseaudio-module-zeroconf The following NEW packages will be installed: libgconfmm-2.6-1c2 libglademm-2.4-1c2a libpulse-mainloop-glib0 padevchooser paman paprefs pavucontrol pavumeter pulseaudio-module-zeroconf 0 upgraded, 9 newly installed, 0 to remove and 172 not upgraded. 1 not fully installed or removed. Need to get 0B/345kB of archives. After this operation, 2044kB of additional disk space will be used. Do you want to continue [Y/n]? Y perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: LANGUAGE = (unset), LC_ALL = (unset), LANG = "el_GR.UTF-8" are supported and installed on your system. perl: warning: Falling back to the standard locale ("C"). Can't exec "locale": No such file or directory at /usr/share/perl5/Debconf/Encoding.pm line 16. Use of uninitialized value $Debconf::Encoding::charmap in scalar chomp at /usr/share/perl5/Debconf/Encoding.pm line 17. dpkg: `ldconfig' not found on PATH. dpkg: 1 expected program(s) not found on PATH. NB: root's PATH should usually contain /usr/local/sbin, /usr/sbin and /sbin. E: Sub-process /usr/bin/dpkg returned an error code (2) What is the problem and how do I fix it?

    Read the article

  • Problem with SAT collision detection overlap checking code

    - by handyface
    I'm trying to implement a script that detects whether two rotated rectangles collide for my game, using SAT (Separating Axis Theorem). I used the method explained in the following article for my implementation in Google Dart. 2D Rotated Rectangle Collision I tried to implement this code into my game. Basically from what I understood was that I have two rectangles, these two rectangles can produce four axis (two per rectangle) by subtracting adjacent corner coordinates. Then all the corners from both rectangles need to be projected onto each axis, then multiplying the coordinates of the projection by the axis coordinates (point.x*axis.x+point.y*axis.y) to make a scalar value and checking whether the range of both the rectangle's projections overlap. When all the axis have overlapping projections, there's a collision. First of all, I'm wondering whether my comprehension about this algorithm is correct. If so I'd like to get some pointers in where my implementation (written in Dart, which is very readable for people comfortable with C-syntax) goes wrong. Thanks! EDIT: The question has been solved. For those interested in the working implementation: Click here

    Read the article

  • Algorithm for computing the inverse of a polynomial

    - by Neville
    I'm looking for an algorithm (or code) to help me compute the inverse a polynomial, I need it for implementing NTRUEncrypt. An algorithm that is easily understandable is what I prefer, there are pseudo-codes for doing this, but they are confusing and difficult to implement, furthermore I can not really understand the procedure from pseudo-code alone. Any algorithms for computing the inverse of a polynomial with respect to a ring of truncated polynomials?

    Read the article

  • Jython webapp performance

    - by DrPep
    I'm currently building a Jython web app but am concerned about Jython application performance. I take some comfort in that any compute intensive tasks I can write in a separate Java jar and invoke them from Jython. Has anyone had problems doing this, or forsee issues with such a setup?

    Read the article

  • BIRT number to word as computed column

    - by Erwin
    Hi fellow programmer I want to ask how to add a computed column in BIRT that compute a number to its word representation? (ex. 100 to "one hundred") So in my data set I can have a column that holds the string I'm new at BIRT hopefully there's a pointer or two for me

    Read the article

  • Math.max and Math.min outputting highest and lowest values allowed

    - by user1696162
    so I'm trying to make a program that will output the sum, average, and smallest and largest values. I have everything basically figured out except the smallest and largest values are outputting 2147483647 and -2147483647, which I believe are the absolute smallest and largest values that Java will compute. Anyway, I want to compute the numbers that a user enters, so this obviously isn't correct. Here is my class. I assume something is going wrong in the addValue method. public class DataSet { private int sum; private int count; private int largest; private int smallest; private double average; public DataSet() { sum = 0; count = 0; largest = Integer.MAX_VALUE; smallest = Integer.MIN_VALUE; average = 0; } public void addValue(int x) { count++; sum = sum + x; largest = Math.max(x, largest); smallest = Math.min(x, smallest); } public int getSum() { return sum; } public double getAverage() { average = sum / count; return average; } public int getCount() { return count; } public int getLargest() { return largest; } public int getSmallest() { return smallest; } } And here is my tester class for this project: public class DataSetTester { public static void main(String[] arg) { DataSet ds = new DataSet(); ds.addValue(13); ds.addValue(-2); ds.addValue(3); ds.addValue(0); System.out.println("Count: " + ds.getCount()); System.out.println("Sum: " + ds.getSum()); System.out.println("Average: " + ds.getAverage()); System.out.println("Smallest: " + ds.getSmallest()); System.out.println("Largest: " + ds.getLargest()); } } Everything outputs correctly (count, sum, average) except the smallest and largest numbers. If anyone could point me in the right direction of what I'm doing wrong, that would be great. Thanks.

    Read the article

  • Formula in all cells in a column

    - by paulj3000
    Hi, Simple question: I want to create a formula which, in column Cn, will compute the values of An * Bn. example column C1 = column A1 * column B1 column C2 = column A2 * column B2 column C3 = column A3 * column B3 ...etc all the way down to column Cn = column An * column Bn Thanks

    Read the article

  • How to find minimum of nonlinear, multivariate function using Newton's method (code not linear algeb

    - by Norman Ramsey
    I'm trying to do some parameter estimation and want to choose parameter estimates that minimize the square error in a predicted equation over about 30 variables. If the equation were linear, I would just compute the 30 partial derivatives, set them all to zero, and use a linear-equation solver. But unfortunately the equation is nonlinear and so are its derivatives. If the equation were over a single variable, I would just use Newton's method (also known as Newton-Raphson). The Web is rich in examples and code to implement Newton's method for functions of a single variable. Given that I have about 30 variables, how can I program a numeric solution to this problem using Newton's method? I have the equation in closed form and can compute the first and second derivatives, but I don't know quite how to proceed from there. I have found a large number of treatments on the web, but they quickly get into heavy matrix notation. I've found something moderately helpful on Wikipedia, but I'm having trouble translating it into code. Where I'm worried about breaking down is in the matrix algebra and matrix inversions. I can invert a matrix with a linear-equation solver but I'm worried about getting the right rows and columns, avoiding transposition errors, and so on. To be quite concrete: I want to work with tables mapping variables to their values. I can write a function of such a table that returns the square error given such a table as argument. I can also create functions that return a partial derivative with respect to any given variable. I have a reasonable starting estimate for the values in the table, so I'm not worried about convergence. I'm not sure how to write the loop that uses an estimate (table of value for each variable), the function, and a table of partial-derivative functions to produce a new estimate. That last is what I'd like help with. Any direct help or pointers to good sources will be warmly appreciated. Edit: Since I have the first and second derivatives in closed form, I would like to take advantage of them and avoid more slowly converging methods like simplex searches.

    Read the article

  • Map API with Building Elevation

    - by Laserallan
    Hi! I'm looking for a map API where I can get detailed elevation for points. I'm not looking elevation differences for certain paths along roads on the map but actual building heights. Getting the the 3d meshes for buildings would also be fine since I can compute the height myself using that information. Does any of the map API's out there support giving out this kind of information?

    Read the article

  • mosso versus gogrid which is better?

    - by goodwill
    I have reasonable experience to manage my own server, so gogrid style management is not a problem. But seems mosso is a tag cheaper somewhat- except the very difficult to access compute cycles terms. Anyone could share about this would be very welcomed.

    Read the article

  • php object : get value of attribute by computed name

    - by groovehunter
    hi simple question - How do I access an attribute of an object by name, if i compute the name at runtime? Ie. i loop over keys and want to get each value of the attributes "field_".$key In python there is getattribute(myobject, attrname) It works, of course, with eval("$val=$myobject-".$myattr.";"); but IMO this is ugly!! TIA florian

    Read the article

  • Is html font size using em still important

    - by JohnnyHTML
    In a web LOB web based SaaS product we are developing that we explicitly not support IE 6, only IE7/8, FF 3, Chrome, Opera, WebKit etc... which allow px resize as standard, is it still important to use em rather than px? Its a lot more work to consider the compute font size (size em are computed from their inheritance chain) especially when nesting html reuse components where a font-size has already been specified in an outer container.

    Read the article

  • O(log n) algorithm for computing rank of union of two sorted lists?

    - by Eternal Learner
    Given two sorted lists, each containing n real numbers, is there a O(log?n) time algorithm to compute the element of rank i (where i coresponds to index in increasing order) in the union of the two lists, assuming the elements of the two lists are distinct? I can think of using a Merge procedure to merge the 2 lists and then find the A[i] element in constant time. But the Merge would take O(n) time. How do we solve it in O(log n) time?

    Read the article

  • Simple 3x3 matrix inverse code (C++)

    - by batty
    What's the easiest way to compute a 3x3 matrix inverse? I'm just looking for a short code snippet that'll do the trick for non-singular matrices, possibly using Cramer's rule. It doesn't need to be highly optimized. I'd prefer simplicity over speed. I'd rather not link in additional libraries. Primarily I was hoping to have this on Stack Overflow so that I wouldn't have to hunt around for it or rewrite from scratch again next time.

    Read the article

  • MPIexec.exe Access denide

    - by shake
    I have installed microsoft compute cluster and MPI.net, now i have trouble to run program using mpiexec.exe on cluster. When i try to run it on console i get message: "Access Denied", and pop up: "mpiexec.exe is not valid win32 application". I tried google it, but found nothing. Pls help. :)

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >