Search Results

Search found 5001 results on 201 pages for 'life cycle'.

Page 22/201 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • What trivial real-life example do you use to explain programming to total non-programmers?

    - by anon
    Programmers seem to live in a world of their own (as this site indicates), with their own vibrant culture - and their own premises and vocabulary. Once we've been in the field for a bit, we take a lot of things for granted. But I'm often faced with the question "What do you do?" Or "What is programming?" I generally try to answer this with a small, often trivial, real-world example of how programming is prevalent in our everyday lives and keeps things running. The example I use most often is an elevator - someone has to program the logic of that... And I've seen elevators that are "smart" and ones that are quite backwards and foolish. (And you can easily understand if/decision and looping from that... incorporates a lot of important programming concepts in a very small example.) I've sometimes heard people use traffic lights as an example. What example do you / would you use to explain the concept of programming to someone completely clueless?

    Read the article

  • Is regex too slow? Real life examples where simple non-regex alternative is better

    - by polygenelubricants
    I've seen people here made comments like "regex is too slow!", or "why would you do something so simple using regex!" (and then present a 10+ lines alternative instead), etc. I haven't really used regex in industrial setting, so I'm curious if there are applications where regex is demonstratably just too slow, AND where a simple non-regex alternative exists that performs significantly (maybe even asymptotically!) better. Obviously many highly-specialized string manipulations with sophisticated string algorithms will outperform regex easily, but I'm talking about cases where a simple solution exists and significantly outperforms regex. What counts as simple is subjective, of course, but I think a reasonable standard is that if it uses only String, StringBuilder, etc, then it's probably simple.

    Read the article

  • IE7 is making my life miserable! Getting gaps between html table columns (w/ colspan) with css togg

    - by Art Peterson
    Copy/paste this html code snippet and try it out in IE7. When you toggle the hidden columns it leaves a gap between the columns. In Firefox it works fine, the columns touch when minimized. Haven't tried IE8 yet, would be curious to hear how it works there. Any ideas? I've tried a bunch of things in the CSS like table-layout:fixed but no luck. Note: Not looking for a different toggling method because the table I'm really dealing with is 50+ columns wide and 4000+ rows so looping/jquery techniques are too slow. Here's the code - if someone can re-post a working version of it I'll instantly give them the check and be forever in your debt! <DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <script> function toggle() { var tableobj = document.getElementById("mytable"); if (tableobj.className == "") { tableobj.className = "hide1 hide2"; } else { tableobj.className = ""; } } </script> <style> table { border-collapse: collapse; } td, th { border: 1px solid silver; } .hide1 .col1 { display: none; } .hide2 .col2 { display: none; } </style> </head> <body> <input type="button" value="toggle" onclick="toggle();" /> <table id="mytable"> <tr> <th>A</th> <th colspan="2">B</th> <th colspan="2" class="col1">B1</th> <th colspan="2">C</th> <th colspan="2" class="col2">C1</th> </tr> <tr> <td>123</td> <td>456</td> <td>789</td> <td class="col1">123</td> <td class="col1">456</td> <td>789</td> <td>123</td> <td class="col2">456</td> <td class="col2">789</td> </tr> </table> </body> </html>

    Read the article

  • Windows Forms Dead. Long life to WPF.

    - by pho3nix
    In PDC sessions i see only Framework 4.0, Azure and WPF. My all applications is in windows forms and asp.net (codebehind) and framework 2.0 or 3.5. I see i'am obsolete, ok. But my questions is Windows Forms is dead, i need start migrate to WPF or Silverlight? or my Windows forms with Devexpress can leave more than 3 years?

    Read the article

  • Retain, alloc, properties ... Topic to make your Obj-c life easier !

    - by gotye
    Hey everyone, The more I code, the more I get lost ... so I decided to create a topic entirely dedicated to the memory management for me (and others) not to waste hours understanding obj-c basics ... I'll update it as new questions are asked ! Okay below is some examples : // myArray is property (retain) myArray = otherArray; //myArray isn't a property myArray = otherArray; //myArray is a property (retain) myArray = [[NSArray alloc] init]; //myArray isn't a property myArray = [[NSArray alloc] init]; Could you explain to me what happens in every cases ? And especially the number 3 ;) Thanks for the time. Gotye.

    Read the article

  • Will iPhone OS4 make your life easier or harder as a lone app developer?

    - by Matt
    I am interested to hear what people feel about the new iPhone OS4 release. It is obviously very exciting having access to all the new features, apparently (from apple.com) it has over 1500 new APIs. My original thoughts were "Wow, this is awesome", and I suppose it is. I was just getting comfortable with OS 3.2 development though, and now there is a raft of additional stuff to learn in order to keep up with the pack. So I am feeling quite frustrated! Do you think, when working as an individual app developer, having access to these additional features would improve your applications or just water down the quality? I guess being giving the opportunity to improve applications and provide better features should be welcomed. I think frustration comes from struggling to keep up with the continuous changes, but thats the industry we are in I suppose! Any thoughts/comments?

    Read the article

  • What's the life-time of a thread-local value in Python?

    - by Carlos Valiente
    import threading mydata = threading.local() def run(): # When will the garbage collector be able to destroy the object created # here? After the thread exits from ``run()``? After ``join()`` is called? # Or will it survive the thread in which it was created, and live until # ``mydata`` is garbage-collected? mydata.foo = object() t = threading.Thread(target=run) t.start() t.join()

    Read the article

  • Websites' color scheme generators - what to do with them in real life?

    - by Marco Demaio
    On the web there are plenty of color scheme/palette generator tools and color palettes galleries. All of these tools/gelleries show many 3 to 5 colors palette as final result. Some of these tools: http://kuler.adobe.com, http://www.colorexplorer.com I know my question might sound ridicolous to someone who is involved in web dedign, but I don't understand what to do with these color palette. I mean, if I have to create a website, how am I supposed to apply this color palette to the website. Which color goes as foreground text, which one as background, which one for the links, which one for the page titles and so on? What are these color palette generators useful for then?! Thanks!

    Read the article

  • What's Your favorite f# use? where does f# makes life (a lot) easier (compared to c#)?

    - by luckyluke
    I've skimmed the stack and did not get the overflow as there is probably no such question. I'm just learning f# and I am A seasoned c# and .net dev. I am into financial apps and currently F# helps me a lot with maths calcs like zero finding or minimum finding (although I still want some good maths library there). I see that processing multiple items (files or smth) tends to be easier, but my GUI (web, win) are still c# based. I am in the team of 5 devs and we know that the new tool is out, we are learning it after hours (to pimp ourselves up) but maybe we shouldn't bash the door somebody already opened. So in business apps, whats Your first killer part of soft You would code in F# (if You could and would know IT would be easier, faster, more testable, easier to maintain etc.? Business rules? ImageProcessing? Data processing? hope it's not to subjective. luke

    Read the article

  • How to give new life into a five years old, simple but reliable PHP form?

    - by Sam
    Hi all. I have a script in php 5.2. I want to use a simple form. I found something a programmer made for me about 5 years ago. When I use it, PHP outputs an error now unless I set register_long_arrays = On, then it works fine. On the PHP website, however, it says: Warning This feature has been DEPRECATED as of PHP 5.3.0. Relying on this feature is highly discouraged. It's recommended to turn them off, for performance reasons. Instead, use the superglobal arrays, like $_GET. Should I listen to PHP's warning, or just enable the option and keep using my old form happily? If the former, then how/where do I change this simple form, so it does not rely on the deprecated setting? Your answer is much appreciated. form.htm <html><body> <form method="POST" action="form_sent.php"> ... </form> </body></html> form_sent.php <html><body> <?php $email = $HTTP_POST_VARS[email]; $mailto = "[email protected]"; $mailsubj = "A Form was Sent from Website!"; $mailhead = "From: $email\n"; reset ($HTTP_POST_VARS); $mailbody = "Values submitted from web site form:\n"; while (list($key, $val) = each ($HTTP_POST_VARS)){$mailbody .= "$key : $val\n";} if (!eregi("\n",$HTTP_POST_VARS[email])) { mail($mailto, $mailsubj, $mailbody, $mailhead); } ?> <b>Form Sent. Thank you.</b> </body></html>

    Read the article

  • How to Load Dependent Files on Demand + Check if They're Loaded or Not?

    - by br4inwash3r
    I'm trying to implement an assets/dependency loader that i've found from an old article at 24Ways.org. most of you might be familiar with it. it's from this article by Christian Heilmann: http://24ways.org/2007/keeping-javascript-dependencies-at-bay i've modified the script to load CSS files as well. and it's now quite close to what i want. but i still need to do some checking to see wether an asset have been completely loaded or not. just wondering if you guys have any ideas :) here's what my script currently looked like: var assetLoader = { assets: { products: { js: 'products.js', css: 'products.css', loaded: false }, articles: { js: 'articles.js', css: 'articles.css', loaded: false }, [...] cycle: { js: 'jquery.cycle.min.js', loaded: false }, swfobject: { js: 'jquery.swfobject.min.js', loaded: false } }, add: function(asset) { var comp = assetLoader.assets[asset]; var path = '/path/to/assets/'; if (comp && comp.loaded == false) { if (comp.js) { // load js var js = document.createElement('script'); js.src = path + 'js/' + comp.js; js.type = 'text/javascript'; js.charset = 'utf-8'; // append to document document.getElementsByTagName('body')[0].appendChild(js); } if (comp.css) { // load css var css = document.createElement('link'); css.rel = 'stylesheet'; css.href = path + 'css/' + comp.css; css.type = 'text/css'; css.media = 'screen, projection'; css.charset = 'utf-8'; // append to document document.getElementsByTagName('head')[0].appendChild(css); } } }, check: function(asset) { assetLoader.assets[asset].loaded = true; } } Christian explains this method in his article in great detail. I don't want to confuse you guys anymore with my bad english :P and here's an example of how i run the script: ... // load jquery cycle plugin if (page=='tvc' || page=='products') { if (!assetLoader.assets.cycle.loaded) { assetLoader.add('cycle'); } } // load products page assets if (!assetLoader.assets.products.loaded) { assetLoader.add('products'); } ... this kind of approach is very problematic though. coz assets loads asynchronously, which means some of the code inside products.js that depends on jquery.cycle.js might continue running before jquery.cycle.js is even loaded resulting in errors. while i'm quite aware that scripts can be attached with an onload event, i'm just not really sure how to implement it to my script. anyone care to help me? please... :P

    Read the article

  • Few basic Billing facts

    - by Rajesh Sharma
    Quick basic points on Billing: In batch billing, there can be one and ONLY ONE bill for an Account, per Bill Cycle. If an Account has been already billed within the current Bill Cycle's window period, it will not be billed again and will be skipped by the Bill Segment generation program, part of batch eligibility check routine. If an Account does not have any Stopped Service Agreements and you attempt to generate a Bill for that Account that too for a period for which it was already billed, no Bill Segments are generated and a Pending Bill is created for that Account. If a Pending Bill exists for an Account and was generated from a batch, the Account will be re-billed in the next batch run. In contrast, if a Pending Bill exists for an Account and was generated online, the Account will be skipped in the next batch run of the Account's Bill Cycle. Bill generation source, Batch or Online at DB level is determined as following: Batch = CI_BILL.BILL_CYC_CD = {Bill Cycle Code} and CI_BILL.WIN_START_DT = {Window Start Date} Online = CI_BILL.BILL_CYC_CD = "" and CI_BILL.WIN_START_DT IS NULL Bill generation source, Batch or Online from Bill page is determined as following: Batch Online   Closing/Final Bill segment is generated for Stopped Service Agreements and is determined as follows: DB level CI_BSEG.CLOSING_BSEG_SW = "Y" Bill Segment page

    Read the article

  • ?????Exadata????

    - by Liu Maclean(???)
    ??check Exadata Image & OS versions , GI & DB patches sundiag exacheck cellserv ==> imageinfo dbhost ==> /usr/local/bin/imagehistory Also check the version of the switch. Login to Switch and execute the following command [root@myswitch-1 sbin]# version [root@dmorlsw-ib2 sbin]# cd /usr/local/bin [root@dmorlsw-ib2 bin]# ls -lrt version -rwxr-xr-x 1 root root 20356 Apr 4 2011 version Output will look as below. [root@dmorlsw-ib2 ~]# version SUN DCS 36p version: 1.3.3-2 Build time: Apr 4 2011 11:15:19 SP board info: Manufacturing Date: 2009.05.05 Serial Number: "NCD3X0178" Hardware Revision: 0x0006 Firmware Revision: 0x0102 BIOS version: NOW1R112 BIOS date: 04/24/2009 ib8# cat /sys/class/infiniband/is4_0/fw_ver 7.2.300 ib8 # cat /sys/class/dmi/id/bios_version NOW1R112 ib8 # nm2version NM2-36p version: 1.0.1-1 Build time: Sep 14 2009 12:52:51 ComExpress info: Manufacturing Date: 2009.08.19 Serial Number: Hardware Revision: 0x0006 Firmware Revision: 0x0102 { case `uname` in Linux ) ILOM="/usr/bin/ipmitool sunoem cli" ;; SunOS ) ILOM="/opt/ipmitool/bin/ipmitool sunoem cli" ;; esac ; ImageInfo="/opt/oracle.cellos/imageinfo" ; uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; $ILOM "show /SP system_description system_identifier" | grep = ; $ImageInfo -activated -node -status -ver | grep -v ^$ ; } | tee /tmp/ExaInfo.log $GRID_HOME/OPatch/opatch lsinv -all -oh $GRID_HOME | tee /tmp/OPatchInv.log $ORACLE_HOME/OPatch/opatch lsinv -all | tee -a /tmp/OPatchInv.log cat /tmp/ExaInfo.log Linux 2.6.18-128.1.16.0.1.el5 x86_64 ==> /etc/enterprise-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) ==> /etc/redhat-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) 20:37:56 up 458 days system_description = SUN FIRE X4170 SERVER, ILOM v3.0.6.10.b, r52264 system_identifier = Sun Oracle Database Machine Active image version: 11.2.1.2.3 Active image activated: XXXX-XX-XX 12:27:12 +0800 Active image status: success Active node type: COMPUTE Inactive image version: undefined FileName: OPatchInv.log ---------------- ... Oracle Home       : /u01/app/11.2.0/grid Central Inventory : /u01/app/oraInventory   from           : /etc/oraInst.loc OPatch version    : 11.2.0.1.2 OUI version       : 11.2.0.1.0 OUI location      : /u01/app/11.2.0/grid/oui ... -------------------------------------------------------------------------------- List of Oracle Homes:   Name                                       Location   Ora11g_gridinfrahome1         /u01/app/11.2.0/grid   OraDb11g_home1                  /u01/app/oracle/product/11.2.0/dbhome_1 -------------------------------------------------------------------------------- Installed Top-level Products (1): Oracle Grid Infrastructure                                           11.2.0.1.0 ... Interim patches (2) : Patch  9524394      : applied on Thu Jun 03 20:46:05 CST 2010 ... {TRACKING BUG FOR 11.2.0.1 DB MACHINE BUNDLE PATCH 3} Patch  9455587      : applied on Fri Apr 02 18:27:47 CST 2010 ... {MERGE REQUEST ON TOP OF 11.2.0.1.0 FOR BUGS 8483425 8667622 8702731 8730804} Rac system comprising of multiple nodes  Local node = dbserv01  Remote node = dbserv02  Remote node = dbserv03  Remote node = dbserv04 -------------------------------------------------------------------------------- OPatch succeeded. ... Oracle Home       : /u01/app/oracle/product/11.2.0/dbhome_1 ... Oracle Database 11g                                                  11.2.0.1.0 ... Interim patches (5) : Patch  8888434      : applied on Sat Jan 08 00:27:33 CST 2011 ... {AIX-ASM-CF: LMHB TERMINATE INSTANCE WHEN OFFLINE ONE FAILGROUP IN ASM DG} Patch  8730312      : applied on Thu Jun 03 21:30:03 CST 2010 ... {FWD MERGE FOR BASE BUG 8715387 FOR 12G} Patch  9502717      : applied on Thu Jun 03 21:25:54 CST 2010 ... {LMS HIT ORA-600 [KJBLDRMNEXTPKEY:SEEN] AND CRASHED THE INSTANCE} { + same 2 as GI above} ?? cell server Cache Policy cell08# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU cell09# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU Cache policy is in WB Would recommend proactive  battery repalcement. Example : a. /opt/MegaRAID/MegaCli/MegaCli64 -LDGetProp  -Cache -LALL -aALL ####( Will list the cache policy) b. /opt/MegaRAID/MegaCli/MegaCli64 -LDSetProp  -WB  -LALL -aALL ####( Will try to change teh policy from xx to WB)     So policy Change to WB will not come into effect immediately     Set Write Policy to WriteBack on Adapter 0, VD 0 (target id: 0) success     Battery capacity is below the threshold value ??cell BBU??????: cell08# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 BBU status for Adapter: 0 BatteryType: iBBU Voltage: 4061 mV Current: 0 mA Temperature: 36 C BBU Firmware Status: Charging Status : None Voltage : OK Temperature : OK Learn Cycle Requested : No Learn Cycle Active : No Learn Cycle Status : OK Learn Cycle Timeout : No I2c Errors Detected : No Battery Pack Missing : No Battery Replacement required : No Remaining Capacity Low : Yes Periodic Learn Required : No Battery state: GasGuageStatus: Fully Discharged : No Fully Charged : Yes Discharging : Yes Initialized : Yes Remaining Time Alarm : No Remaining Capacity Alarm: No Discharge Terminated : No Over Temperature : No Charging Terminated : No Over Charged : No Relative State of Charge: 99 % Charger System State: 49168 Charger System Ctrl: 0 Charging current: 0 mA Absolute state of charge: 21 % Max Error: 2 % Exit Code: 0x00 ????BBU ??: dcli -g ~/cell_group -l root -t '{ uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; imagehistory ; ipmitool sunoem cli "show /SP system_description system_identifier" | grep = ; ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 | egrep -i 'BBU|Battery|Charge:|Fully|Low|Learn' ; }' | tee /tmp/ExaInfo.log Target cells: ['cellserv01', 'cellserv02', 'cellserv03', 'cellserv04', 'cellserv05', 'cellserv06', 'cellserv07'] cellserv01: Linux 2.6.18-128.1.16.0.1.el5 x86_64 cellserv01: ==> /etc/enterprise-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: cellserv01: ==> /etc/redhat-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: 01:17:39 up 635 days cellserv01: Version : 11.2.1.2.1 cellserv01: Image activation date : 2011-03-25 11:59:34 -0800 cellserv01: Imaging mode : fresh cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.3 cellserv01: Image activation date : 2011-04-13 12:15:46 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.6 cellserv01: Image activation date : 2011-05-27 23:08:22 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: system_description = SUN FIRE X4275 SERVER, ILOM v3.0.6.10.b, r52264 cellserv01: system_identifier = Sun Oracle Database Machine cellserv01: Connected. Use ^D to exit. cellserv01: -> show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED cellserv01: show: No matching properties found. cellserv01: cellserv01: -> Session closed cellserv01: Disconnected cellserv01: BBU status for Adapter: 0 cellserv01: BatteryType: iBBU cellserv01: BBU Firmware Status: cellserv01: Learn Cycle Requested : No cellserv01: Learn Cycle Active : No cellserv01: Learn Cycle Status : OK cellserv01: Learn Cycle Timeout : No cellserv01: Battery Pack Missing : No cellserv01: Battery Replacement required : No cellserv01: Remaining Capacity Low : Yes cellserv01: Periodic Learn Required : No cellserv01: Battery state: cellserv01: Fully Discharged : No cellserv01: Fully Charged : Yes cellserv01: Relative State of Charge: 99 % cellserv01: Absolute state of charge: 21 % dcli -l root -g /root/all_group '/opt/MegaRAID/MegAaCli/MegaCli64 -AdpBbuCmd -a0' > BBU.out check ipmi: dcli -g ~/cell_group -l root -t '{ > ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED" | grep = ; MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' ; }' | tee /tmp/ExaCells.log

    Read the article

  • Odd optimization problem under MSVC

    - by Goz
    I've seen this blog: http://igoro.com/archive/gallery-of-processor-cache-effects/ The "weirdness" in part 7 is what caught my interest. My first thought was "Thats just C# being weird". Its not I wrote the following C++ code. volatile int* p = (volatile int*)_aligned_malloc( sizeof( int ) * 8, 64 ); memset( (void*)p, 0, sizeof( int ) * 8 ); double dStart = t.GetTime(); for (int i = 0; i < 200000000; i++) { //p[0]++;p[1]++;p[2]++;p[3]++; // Option 1 //p[0]++;p[2]++;p[4]++;p[6]++; // Option 2 p[0]++;p[2]++; // Option 3 } double dTime = t.GetTime() - dStart; The timing I get on my 2.4 Ghz Core 2 Quad go as follows: Option 1 = ~8 cycles per loop. Option 2 = ~4 cycles per loop. Option 3 = ~6 cycles per loop. Now This is confusing. My reasoning behind the difference comes down to the cache write latency (3 cycles) on my chip and an assumption that the cache has a 128-bit write port (This is pure guess work on my part). On that basis in Option 1: It will increment p[0] (1 cycle) then increment p[2] (1 cycle) then it has to wait 1 cycle (for cache) then p[1] (1 cycle) then wait 1 cycle (for cache) then p[3] (1 cycle). Finally 2 cycles for increment and jump (Though its usually implemented as decrement and jump). This gives a total of 8 cycles. In Option 2: It can increment p[0] and p[4] in one cycle then increment p[2] and p[6] in another cycle. Then 2 cycles for subtract and jump. No waits needed on cache. Total 4 cycles. In option 3: It can increment p[0] then has to wait 2 cycles then increment p[2] then subtract and jump. The problem is if you set case 3 to increment p[0] and p[4] it STILL takes 6 cycles (which kinda blows my 128-bit read/write port out of the water). So ... can anyone tell me what the hell is going on here? Why DOES case 3 take longer? Also I'd love to know what I've got wrong in my thinking above, as i obviously have something wrong! Any ideas would be much appreciated! :) It'd also be interesting to see how GCC or any other compiler copes with it as well! Edit: Jerry Coffin's idea gave me some thoughts. I've done some more tests (on a different machine so forgive the change in timings) with and without nops and with different counts of nops case 2 - 0.46 00401ABD jne (401AB0h) 0 nops - 0.68 00401AB7 jne (401AB0h) 1 nop - 0.61 00401AB8 jne (401AB0h) 2 nops - 0.636 00401AB9 jne (401AB0h) 3 nops - 0.632 00401ABA jne (401AB0h) 4 nops - 0.66 00401ABB jne (401AB0h) 5 nops - 0.52 00401ABC jne (401AB0h) 6 nops - 0.46 00401ABD jne (401AB0h) 7 nops - 0.46 00401ABE jne (401AB0h) 8 nops - 0.46 00401ABF jne (401AB0h) 9 nops - 0.55 00401AC0 jne (401AB0h) I've included the jump statetements so you can see that the source and destination are in one cache line. You can also see that we start to get a difference when we are 13 bytes or more apart. Until we hit 16 ... then it all goes wrong. So Jerry isn't right (though his suggestion DOES help a bit), however something IS going on. I'm more and more intrigued to try and figure out what it is now. It does appear to be more some sort of memory alignment oddity rather than some sort of instruction throughput oddity. Anyone want to explain this for an inquisitive mind? :D Edit 3: Interjay has a point on the unrolling that blows the previous edit out of the water. With an unrolled loop the performance does not improve. You need to add a nop in to make the gap between jump source and destination the same as for my good nop count above. Performance still sucks. Its interesting that I need 6 nops to improve performance though. I wonder how many nops the processor can issue per cycle? If its 3 then that account for the cache write latency ... But, if thats it, why is the latency occurring? Curiouser and curiouser ...

    Read the article

  • Why does my int, booleans, doubles does not work?

    - by SystemNetworks
    As you see, my code does not work. When armor1 is true, it would add my life. goldA is another class. public void goldenArmor(GameContainer gc, StateBasedGame sbg, Graphics g) { if(armor1==true) { goldA.life = life; goldA.intelligence = intelligence; goldA.power = power; goldA.lifeLeft = lifeLeft; goldA.head(); goldA.body(); goldA.legs(); } } My other class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; /* Note: Copyright(C)2012 System Networks | Square NET | Julius Bryan Gambe. You cannot copy the style, story of the game and gameplay! To programmers: The int,doubles,strings,booleans are properly sorted out. Please don't mess it up. */ /* NOTE: We have loops but not for programming. The loop is: 1.show the world to user 2.Obtain input from the user 3.Shows the update, repeat step 1 */ import org.newdawn.slick.*; import org.newdawn.slick.state.*; import org.lwjgl.input.Mouse; //contents: // public class GoldenArmor{ //get it from play public int life; public double intelligence; public int lifeLeft; public double power; public GoldenArmor() { // TODO Auto-generated constructor stub } //start here public void head() { life += 10; intelligence +=0.5; } public void body() { lifeLeft += 100; } public void legs() { power += 100; } } /* SYSTEM NETWORKS(C) 2012 NET FRONT */ The life, intelligence, power, lifeLeft are nothing but to use it as just reference to prevent stack overflow. And at my main class, it becomes my real booleans, int, doubles. How do I fix this? It does not add it to my normal int.

    Read the article

  • Is text-only mode a saving or a problem for battery savings?

    - by Robottinosino
    A friend is flying to the US from Europe and asked me a very thought-provoking question, which I am not remotely able to answer with substance so I am asking it here: How to absolutely maximise battery life on an Ubuntu (laptop) install? do not rush to mark this as duplicate, there is an important point here: does -GNOME- help or worsen battery life? Let me provide some context: The only task he needs to perform is: edit text files in Vim. He is unsure whether running GNOME will drain his battery life more or actually save him some battery life given the smarts of GNOME's power management features like "switch this peripheral to -power save- after X minutes..." (GNOME might just be a configuration front-end for settings that are governed by command-line utils for all I know?) He could perfectly well boot the system in text-only mode and use the automatic 6 virtual consoles for his needs, if that's a saving at all over running tmux (I think so because of all the smart buffering/history/etc the latter does by default?) Exactly how would you advise him to run his laptop during his flight? What I told him already: power off WiFi in the BIOS, not from the "GUI" power off Bluetooth switch off the courtesy light and use low monitor brightness play music off of his phone, not mp3blaster do not use his tiny portable mouse (and do not attach any other USB gimmicks like "screen light", etc) stop development services he will not be using, especially apache2, tomcat, dovecot, postgresql, etc. Potentially: - switch off his cron jobs? (he does an rsync + tar + 7za of his "work in progress" every so often) I think the above is standard stuff one could get off StackExchange, and with many duplicates... the core of this question is, I think: __ will running Ubuntu in text-only mode be a saving in terms of battery life or a problem? why? (provide some technical arguments) __ I think it will be a saving but I am also scared about "other things" detecting and enabling advanced chipset power management features only when some services are started.. and fear these "services" may be off in text-only mode?

    Read the article

  • Unity, Unrealistic Sphere On Inclined Plane

    - by user1086516
    So I am trying to model a ball rolling down an inclined surface in Unity based on what I am observing in real life but it is still quite off. In Unity it takes the ball about 3 seconds to travel from a place to another specified place where in real life it only takes 1 second. The ball isn't as fast to react to the incline as in real life (even though I have tried giving the ball and surface low or zero friction values) The ball does not accelerate as nearly as fast as it does in real life What do I do to give the ball more realistic behavior ? I have tried messing around with mass, physics materials, drag, and angular drag on the ball and surface but it doesn't seem to be helping.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • remastersys created Live DVD hangs in "Choose a picture"

    - by eos2012
    I used remastersys to create a Live DVD. Then, I used the Live DVD for the installation on another computer. The installation hung at the "Choose a picture" session. Both the "Back" and "Continue" buttons were disabled. It seemed like the installation was hung. I had to power-cycle the computer and reinstall from the Live DVD again. After the power-cycle, the installation from the Live DVD went successfully. Any idea why the installation hung at the "Choose a picture" session, and how to fix it without power-cycle the computer? Thanks a lot!

    Read the article

  • How to add LDAP user to existing local group in RHEL?

    - by Highway of Life
    I'm attempting to add some of our LDAP users to a locally defined group on our RHEL server, however I get an error stating that the LDAP user is not found in /etc/passwd. What would be the best way to allow LDAP users to be added to local groups? My feeling is that this must be done manually. I could edit: /etc/group and add the LDAP group to the list. Would that be ideal? [server]# id apache uid=409(apache) gid=409(apache) groups=409(apache) context=user_u:system_r:unconfined_t:s0 [server]# id john.doe uid=11389(john.doe) gid=6097(ABC_Corporate_US) groups=6097(ABC_Corporate_US) context=user_u:system_r:unconfined_t:s0 [server]# /usr/sbin/usermod -a -G apache john.doe usermod: john.doe not found in /etc/passwd OS: RHEL (Red Hat Enterprise Linux Server release 5.3 (Tikanga)) Note: Updating the OS on this machine is not an option.

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >