Search Results

Search found 60102 results on 2405 pages for 'true type fonts'.

Page 23/2405 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • Application windows have colossal fonts in Enlightenment 17, while system windows are untouched

    - by Matt
    I'm trying to get used to using Enlightenment instead of KDE on my Slackware64 multilib computer, but I'm having a terrible time getting one problem fixed. My fonts are HUGE on application windows - from Firefox to Gimp to Xchat to anything else, all the fonts are 3x the size they should be. But at the same time, the system menu is the correct size. I'm at a loss - I want the applications to have the same DPI as the system menu. When I'm in KDE, they all look normal. I've included a screenshot to show what I'm talking about.

    Read the article

  • Excel fonts: Embedding or fallback options?

    - by Brendan
    I'm working with making a form in Excel instead of Illustrator or InDesign, as I typically do. One of the benefits about working with Adobe (and the subsequent PDFs) is that I control the fonts 100%. This is not the case when I am required to work with an Excel file that'll be passed around. So, is there a way to embed fonts? I'd like to embed Calibri. If not, is there a way to specify a fallback font, such as Tahoma? My thinking is along the lines of a CSS font stack; not sure if there's anything like that in Excel.

    Read the article

  • Unable to cast transparent proxy to type &lt;type&gt;

    - by Rick Strahl
    This is not the first time I've run into this wonderful error while creating new AppDomains in .NET and then trying to load types and access them across App Domains. In almost all cases the problem I've run into with this error the problem comes from the two AppDomains involved loading different copies of the same type. Unless the types match exactly and come exactly from the same assembly the typecast will fail. The most common scenario is that the types are loaded from different assemblies - as unlikely as that sounds. An Example of Failure To give some context, I'm working on some old code in Html Help Builder that creates a new AppDomain in order to parse assembly information for documentation purposes. I create a new AppDomain in order to load up an assembly process it and then immediately unload it along with the AppDomain. The AppDomain allows for unloading that otherwise wouldn't be possible as well as isolating my code from the assembly that's being loaded. The process to accomplish this is fairly established and I use it for lots of applications that use add-in like functionality - basically anywhere where code needs to be isolated and have the ability to be unloaded. My pattern for this is: Create a new AppDomain Load a Factory Class into the AppDomain Use the Factory Class to load additional types from the remote domain Here's the relevant code from my TypeParserFactory that creates a domain and then loads a specific type - TypeParser - that is accessed cross-AppDomain in the parent domain:public class TypeParserFactory : System.MarshalByRefObject,IDisposable { …/// <summary> /// TypeParser Factory method that loads the TypeParser /// object into a new AppDomain so it can be unloaded. /// Creates AppDomain and creates type. /// </summary> /// <returns></returns> public TypeParser CreateTypeParser() { if (!CreateAppDomain(null)) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! TypeParser parser = null; try { Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); } catch (Exception ex) { this.ErrorMessage = ex.GetBaseException().Message; return null; } return parser; } private bool CreateAppDomain(string lcAppDomain) { if (lcAppDomain == null) lcAppDomain = "wwReflection" + Guid.NewGuid().ToString().GetHashCode().ToString("x"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //setup.PrivateBinPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "bin"); this.LocalAppDomain = AppDomain.CreateDomain(lcAppDomain,null,setup); // Need a custom resolver so we can load assembly from non current path AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve); return true; } …} Note that the classes must be either [Serializable] (by value) or inherit from MarshalByRefObject in order to be accessible remotely. Here I need to call methods on the remote object so all classes are MarshalByRefObject. The specific problem code is the loading up a new type which points at an assembly that visible both in the current domain and the remote domain and then instantiates a type from it. This is the code in question:Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); The last line of code is what blows up with the Unable to cast transparent proxy to type <type> error. Without the cast the code actually returns a TransparentProxy instance, but the cast is what blows up. In other words I AM in fact getting a TypeParser instance back but it can't be cast to the TypeParser type that is loaded in the current AppDomain. Finding the Problem To see what's going on I tried using the .NET 4.0 dynamic type on the result and lo and behold it worked with dynamic - the value returned is actually a TypeParser instance: Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; object objparser = this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); // dynamic works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // casting fails parser = (TypeParser)objparser; So clearly a TypeParser type is coming back, but nevertheless it's not the right one. Hmmm… mysterious.Another couple of tries reveal the problem however:// works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // c:\wwapps\wwhelp\wwReflection20.dll (Current Execution Folder) string info3 = typeof(TypeParser).Assembly.CodeBase; // c:\program files\vfp9\wwReflection20.dll (my COM client EXE's folder) string info4 = dynParser.GetType().Assembly.CodeBase; // fails parser = (TypeParser)objparser; As you can see the second value is coming from a totally different assembly. Note that this is even though I EXPLICITLY SPECIFIED an assembly path to load the assembly from! Instead .NET decided to load the assembly from the original ApplicationBase folder. Ouch! How I actually tracked this down was a little more tedious: I added a method like this to both the factory and the instance types and then compared notes:public string GetVersionInfo() { return ".NET Version: " + Environment.Version.ToString() + "\r\n" + "wwReflection Assembly: " + typeof(TypeParserFactory).Assembly.CodeBase.Replace("file:///", "").Replace("/", "\\") + "\r\n" + "Assembly Cur Dir: " + Directory.GetCurrentDirectory() + "\r\n" + "ApplicationBase: " + AppDomain.CurrentDomain.SetupInformation.ApplicationBase + "\r\n" + "App Domain: " + AppDomain.CurrentDomain.FriendlyName + "\r\n"; } For the factory I got: .NET Version: 4.0.30319.239wwReflection Assembly: c:\wwapps\wwhelp\bin\wwreflection20.dllAssembly Cur Dir: c:\wwapps\wwhelpApplicationBase: C:\Programs\vfp9\App Domain: wwReflection534cfa1f For the instance type I got: .NET Version: 4.0.30319.239wwReflection Assembly: C:\\Programs\\vfp9\wwreflection20.dllAssembly Cur Dir: c:\\wwapps\\wwhelpApplicationBase: C:\\Programs\\vfp9\App Domain: wwDotNetBridge_56006605 which clearly shows the problem. You can see that both are loading from different appDomains but the each is loading the assembly from a different location. Probably a better solution yet (for ANY kind of assembly loading problem) is to use the .NET Fusion Log Viewer to trace assembly loads.The Fusion viewer will show a load trace for each assembly loaded and where it's looking to find it. Here's what the viewer looks like: The last trace above that I found for the second wwReflection20 load (the one that is wonky) looks like this:*** Assembly Binder Log Entry (1/13/2012 @ 3:06:49 AM) *** The operation was successful. Bind result: hr = 0x0. The operation completed successfully. Assembly manager loaded from: C:\Windows\Microsoft.NET\Framework\V4.0.30319\clr.dll Running under executable c:\programs\vfp9\vfp9.exe --- A detailed error log follows. === Pre-bind state information === LOG: User = Ras\ricks LOG: DisplayName = wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null (Fully-specified) LOG: Appbase = file:///C:/Programs/vfp9/ LOG: Initial PrivatePath = NULL LOG: Dynamic Base = NULL LOG: Cache Base = NULL LOG: AppName = vfp9.exe Calling assembly : (Unknown). === LOG: This bind starts in default load context. LOG: Using application configuration file: C:\Programs\vfp9\vfp9.exe.Config LOG: Using host configuration file: LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework\V4.0.30319\config\machine.config. LOG: Policy not being applied to reference at this time (private, custom, partial, or location-based assembly bind). LOG: Attempting download of new URL file:///C:/Programs/vfp9/wwReflection20.DLL. LOG: Assembly download was successful. Attempting setup of file: C:\Programs\vfp9\wwReflection20.dll LOG: Entering run-from-source setup phase. LOG: Assembly Name is: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null LOG: Binding succeeds. Returns assembly from C:\Programs\vfp9\wwReflection20.dll. LOG: Assembly is loaded in default load context. WRN: The same assembly was loaded into multiple contexts of an application domain: WRN: Context: Default | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: Context: LoadFrom | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: This might lead to runtime failures. WRN: It is recommended to inspect your application on whether this is intentional or not. WRN: See whitepaper http://go.microsoft.com/fwlink/?LinkId=109270 for more information and common solutions to this issue. Notice that the fusion log clearly shows that the .NET loader makes no attempt to even load the assembly from the path I explicitly specified. Remember your Assembly Locations As mentioned earlier all failures I've seen like this ultimately resulted from different versions of the same type being available in the two AppDomains. At first sight that seems ridiculous - how could the types be different and why would you have multiple assemblies - but there are actually a number of scenarios where it's quite possible to have multiple copies of the same assembly floating around in multiple places. If you're hosting different environments (like hosting the Razor Engine, or ASP.NET Runtime for example) it's common to create a private BIN folder and it's important to make sure that there's no overlap of assemblies. In my case of Html Help Builder the problem started because I'm using COM interop to access the .NET assembly and the above code. COM Interop has very specific requirements on where assemblies can be found and because I was mucking around with the loader code today, I ended up moving assemblies around to a new location for explicit loading. The explicit load works in the main AppDomain, but failed in the remote domain as I showed. The solution here was simple enough: Delete the extraneous assembly which was left around by accident. Not a common problem, but one that when it bites is pretty nasty to figure out because it seems so unlikely that types wouldn't match. I know I've run into this a few times and writing this down hopefully will make me remember in the future rather than poking around again for an hour trying to debug the issue as I did today. Hopefully it'll save some of you some time as well in the future.© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • Entity Framework 4.0: Creating objects of correct type when using lazy loading

    - by DigiMortal
    In my posting about Entity Framework 4.0 and POCOs I introduced lazy loading in EF applications. EF uses proxy classes for lazy loading and this means we have new types in that come and go dynamically in runtime. We don’t have these types available when we write code but we cannot forget that EF may expect us to use dynamically generated types. In this posting I will give you simple hint how to use correct types in your code. The background of lazy loading and proxy classes As a first thing I will explain you in short what is proxy class. Business classes when designed correctly have no knowledge about their birth and death – they don’t know how they are created and they don’t know how their data is persisted. This is the responsibility of object runtime. When we use lazy loading we need a little bit different classes that know how to load data for properties when code accesses the property first time. As we cannot add this functionality to our business classes (they may be stored through more than one data access technology or by more than one Data Access Layer (DAL)) we create proxy classes that extend our business classes. If we have class called Product and product has lazy loaded property called Customer then we need proxy class, let’s say ProductProxy, that has same public signature as Product so we can use it INSTEAD OF product in our code. ProductProxy overrides Customer property. If customer is not asked then customer is null. But if we ask for Customer property then overridden property of ProductProxy loads it from database. This is how lazy loading works. Problem – two types for same thing As lazy loading may introduce dynamically generated proxy types we don’t know in our application code which type is returned. We cannot be sure that we have Product not ProductProxy returned. This leads us to the following question: how can we create Product of correct type if we don’t know the correct type? In EF solution is simple. Solution – use factory methods If you are using repositories and you are not using factories (imho it is pretty pointless with mapper) you can add factory methods to your EF based repositories. Take a look at this class. public class Event {     public int ID { get; set; }     public string Title { get; set; }     public string Location { get; set; }     public virtual Party Organizer { get; set; }     public DateTime Date { get; set; } } We have virtual member called Organizer. This property is virtual because we want to use lazy loading on this class so Organizer is loaded only when we ask it. EF provides us with method called CreateObject<T>(). CreateObject<T>() is member of ObjectContext class and it creates the object based on given type. In runtime proxy type for Event is created for us automatically and when we call CreateObject<T>() for Event it returns as object of Event proxy type. The factory method for events repository is as follows. public Event CreateEvent() {     var evt = _context.CreateObject<Event>();     return evt; } And we are done. Instead of creating factory classes we created factory methods that guarantee that created objects are of correct type. Conclusion Although lazy loading introduces some new objects we cannot use at design time because they live only in runtime we can write code without worrying about exact implementation type of object. This holds true until we have clean code and we don’t make any decisions based on object type. EF4.0 provides us with very simple factory method that create and return objects of correct type. All we had to do was adding factory methods to our repositories.

    Read the article

  • Problem to match font size to the screen resolution in libgdx

    - by Iñaki Bedoya
    I'm having problems to show text on my game at same size on different screens, and I did a simple test. This test consists to show a text fitting at the screen, I want the text has the same size independently from the screen and from DPI. I've found this and this answer that I think should solve my problem but don't. In desktop the size is ok, but in my phone is too big. This is the result on my Nexus 4: (768x1280, 2.0 density) And this is the result on my MacBook: (480x800, 0.6875 density) I'm using the Open Sans Condensed (link to google fonts) As you can see on desktop looks good, but on the phone is so big. Here the code of my test: public class TextTest extends ApplicationAdapter { private static final String TAG = TextTest.class.getName(); private static final String TEXT = "Tap the screen to start"; private OrthographicCamera camera; private Viewport viewport; private SpriteBatch batch; private BitmapFont font; @Override public void create () { Gdx.app.log(TAG, "Screen size: "+Gdx.graphics.getWidth()+"x"+Gdx.graphics.getHeight()); Gdx.app.log(TAG, "Density: "+Gdx.graphics.getDensity()); camera = new OrthographicCamera(); viewport = new ExtendViewport(Gdx.graphics.getWidth(), Gdx.graphics.getWidth(), camera); batch = new SpriteBatch(); FreeTypeFontGenerator generator = new FreeTypeFontGenerator(Gdx.files.internal("fonts/OpenSans-CondLight.ttf")); font = createFont(generator, 64); generator.dispose(); } private BitmapFont createFont(FreeTypeFontGenerator generator, float dp) { FreeTypeFontGenerator.FreeTypeFontParameter parameter = new FreeTypeFontGenerator.FreeTypeFontParameter(); int fontSize = (int)(dp * Gdx.graphics.getDensity()); parameter.size = fontSize; Gdx.app.log(TAG, "Font size: "+fontSize+"px"); return generator.generateFont(parameter); } @Override public void render () { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); int w = -(int)(font.getBounds(TEXT).width / 2); batch.setProjectionMatrix(camera.combined); batch.begin(); font.setColor(Color.BLACK); font.draw(batch, TEXT, w, 0); batch.end(); } @Override public void resize(int width, int height) { viewport.update(width, height); } @Override public void dispose() { font.dispose(); batch.dispose(); } } I'm trying to find a neat way to fix this. What I'm doing wrong? is the camera? the viewport? UPDATE: What I want is to keep the same margins in proportion, independently of the screen size or resolution. This image illustrates what I mean.

    Read the article

  • How can I change the size of the Dash font?

    - by Marcos Roriz
    I've just installed and configured Ubuntu 12.04 on my machine. I've changed all font sizes, with the myunity tool, and they're now all set to the Ubuntu font size 9. However, I can't find anywhere in Ubuntu a way to change the HUGE dash search/UI font. Any idea on where I can change it? Any dconf/gconf setting option? Here are some screenshots, compare the size of the dash fonts to desktops apps. Dash font: Desktop font:

    Read the article

  • Edit form not being instantiated

    - by 47
    I have two models like this: class OptionsAndFeatures(models.Model): options = models.TextField(blank=True, null=True) entertainment = models.TextField(blank=True, null=True) seats_trim = models.TextField(blank=True, null=True) convenience = models.TextField(blank=True, null=True) body_exterior = models.TextField(blank=True, null=True) lighting = models.TextField(blank=True, null=True) safety = models.TextField(blank=True, null=True) powertrain = models.TextField(blank=True, null=True) suspension_handling = models.TextField(blank=True, null=True) specs_dimensions = models.TextField(blank=True, null=True) offroad_capability = models.TextField(blank=True, null=True) class Vehicle(models.Model): ... options_and_features = models.ForeignKey(OptionsAndFeatures, blank=True, null=True) I have a model form for the OptionsAndFeaturesclass that I'm using in both the add and edit views. In the add view it works just fine. But the edit view renders the OptionsAndFeatures as blank. The code for the edit view is as follows: def edit_vehicle(request, stock_number=None): vehicle = get_object_or_404(Vehicle, stock_number=stock_number) if request.method == 'POST': # save info else: vehicle_form = VehicleForm(instance=vehicle) photos = PhotosFormSet(instance=vehicle) options = OptionsForm(instance=vehicle) #render_to_reponse What could be the problem here?

    Read the article

  • Can't load vector font in Nuclex Framework

    - by ProgrammerAtWork
    I've been trying to get this to work for the last 2 hours and I'm not getting what I'm doing wrong... I've added Nuclex.TrueTypeImporter to my references in my content and I've added Nuclex.Fonts & Nuclex.Graphics in my main project. I've put Arial-24-Vector.spritefont & Lindsey.spritefont in the root of my content directory. _spriteFont = Content.Load<SpriteFont>("Lindsey"); // works _testFont = Content.Load<VectorFont>("Arial-24-Vector"); // crashes I get this error on the _testFont line: File contains Microsoft.Xna.Framework.Graphics.SpriteFont but trying to load as Nuclex.Fonts.VectorFont. So I've searched around and by the looks of it it has something to do with the content importer & the content processor. For the content importer I have no new choices, so I leave it as it is, Sprite Font Description - XNA Framework for content processor and I select Vector Font - Nuclex Framework And then I try to run it. _testFont = Content.Load<VectorFont>("Arial-24-Vector"); // crashes again I get the following error Error loading "Arial-24-Vector". It does work if I load a sprite, so it's not a pathing problem. I've checked the samples, they do work, but I think they also use a different version of the XNA framework because in my version the "Content" class starts with a capital letter. I'm at a loss, so I ask here. Edit: Something super weird is going on. I've just added the following two lines to a method inside FreeTypeFontProcessor::FreeTypeFontProcessor( Microsoft::Xna::Framework::Content::Pipeline::Graphics::FontDescription ^fontDescription, FontHinter hinter, just to check if code would even get there: System::Console::WriteLine("I AM HEEREEE"); System::Console::ReadLine(); So, I compile it, put it in my project, I run it and... it works! What the hell?? This is weird because I've downloaded the binaries, they didn't work, I've compiled the binaries myself. didn't work either, but now I make a small change to the code and it works? _. So, now I remove the two lines, compile it again and it works again. Someone care to elaborate what is going on? Probably some weird caching problem!

    Read the article

  • How to make safe cast using generics in C#?

    - by TN
    I want to implement a generic method on a generic class which would allow to cast safely, see example: public class Foo<T> : IEnumerable<T> { ... public IEnumerable<R> SafeCast<R>() where T : R { return this.Select(item => (R)item); } } However, the compiler tells me that Foo<T>.SafeCast<R>() does not define parameter 'T'. I understand this message that I cannot specify a constraint on T in the method since it is not defined in the method. But how can I specify an inverse constraint?

    Read the article

  • Preferred way to render text in OpenGL

    - by dukeofgaming
    Hi, I'm about tu pick up computer graphics once again for an university project. For a previous project I used a library called ftgl that didn't leave me quite satisfied as it felt kind of heavy (I tried all rendering techniques, text rendering didn't scale very well). My question is, is there a good and efficient library for this?, if not, what would be the way to implement fast but nice looking text?. Some intended uses are: Floating object/character labels Dialogues Menus HUD Regards and thanks in advance. EDIT: Preferrably that it can load fonts

    Read the article

  • How views are changing in future versions of SQL

    - by Rob Farley
    April is here, and this weekend, SQL v11.0 (previous known as Denali, now known as SQL Server 2012) reaches general availability. And so I thought I’d share some news about what’s coming next. I didn’t hear this at the MVP Summit earlier this year (where there was lots of NDA information given, but I didn’t go), so I think I’m free to share it. I’ve written before about CTEs being query-scoped views. Well, the actual story goes a bit further, and will continue to develop in future versions. A CTE is a like a “temporary temporary view”, scoped to a single query. Due to globally-scoped temporary objects using a two-hashes naming style, and session-scoped (or ‘local’) temporary objects a one-hash naming style, this query-scoped temporary object uses a cunning zero-hash naming style. We see this implied in Books Online in the CREATE TABLE page, but as we know, temporary views are not yet supported in the SQL Server. However, in a breakaway from ANSI-SQL, Microsoft is moving towards consistency with their naming. We know that a CTE is a “common table expression” – this is proving to be a more strategic than you may have appreciated. Within the Microsoft product group, the term “Table Expression” is far more widely used than just CTEs. Anything that can be used in a FROM clause is referred to as a Table Expression, so long as it doesn’t actually store data (which would make it a Table, rather than a Table Expression). You can see this is not just restricted to the product group by doing an internet search for how the term is used without ‘common’. In the past, Books Online has referred to a view as a “virtual table” (but notice that there is no SQL 2012 version of this page). However, it was generally decided that “virtual table” was a poor name because it wasn’t completely accurate, and it’s typically accepted that virtualisation and SQL is frowned upon. That page I linked to says “or stored query”, which is slightly better, but when the SQL 2012 version of that page is actually published, the line will be changed to read: “A view is a stored table expression (STE)”. This change will be the first of many. During the SQL 2012 R2 release, the keyword VIEW will become deprecated (this will be SQL v11 SP1.5). Three versions later, in SQL 14.5, you will need to be in compatibility mode 140 to allow “CREATE VIEW” to work. Also consistent with Microsoft’s deprecation policy, the execution of any query that refers to an object created as a view (rather than the new “CREATE STE”), will cause a Deprecation Event to fire. This will all be in preparation for the introduction of Single-Column Table Expressions (to be introduced in SQL 17.3 SP6) which will finally shut up those people waiting for a decent implementation of Inline Scalar Functions. And of course, CTEs are “Common” because the Table Expression definition needs to be repeated over and over throughout a stored procedure. ...or so I think I heard at some point. Oh, and congratulations to all the new MVPs on this April 1st. @rob_farley

    Read the article

  • How to convert a gi-normous integer (in string format) to hex format? (C#)

    - by eviljack
    Given a potentially huge integer value (in c# string format), I want to be able to generate it's hex equivalent. Normal methods don't apply here as we are talking arbitrarily large numbers, 50 digits or more. The techniques I've seen which use a technique like this: // Store integer 182 int decValue = 182; // Convert integer 182 as a hex in a string variable string hexValue = decValue.ToString("X"); // Convert the hex string back to the number int decAgain = int.Parse(hexValue, System.Globalization.NumberStyles.HexNumber); won't work because the integer to convert is too large. For example I need to be able to convert a string like this: 843370923007003347112437570992242323 to it's hex equivalent. these don't work: http://stackoverflow.com/questions/1139957/c-convert-int-to-hex-and-back-again http://stackoverflow.com/questions/74148/how-to-convert-numbers-between-hex-and-decimal-in-c

    Read the article

  • What would another Ubuntu user's default font be?

    - by Gonzoza
    If I send an email from, say, Thunderbird, and have "Helvetica/Arial" set as my default outgoing font, then my assumption is that most of the world will read that email in Helvetica (Apple) or Arial (Windows). But what if I send that email to another Ubuntu user who does not have the MS core fonts installed? What will the email's font default to? Would Ubuntu override it with something like sans-serif, perhaps?

    Read the article

  • Download office document without the web server trying to render it

    - by Dan Revell
    I'm trying to download an InfoPath template that's hosted on SharePoint. If I hit the url in internet explorer it asks me where to save it and I get the correct file on my disk. If I try to do this programmatically with WebClient or HttpWebRequest then I get HTML back instead. How can I make my request so that the web server returns the actual xsn file and doesn't try to render it in html. If internet explorer can do this then it's logical to think that I can too. I've tried setting the Accept property of the request to application/x-microsoft-InfoPathFormTemplate but that hasn't helped. It was a shot in the dark.

    Read the article

  • Why am I getting an error when return TRUE/FALSE to type Boolean?

    - by phill
    I wrote the following code: import java.lang.*; import DB.*; private Boolean validateInvoice(String i) { int count = 0; try { //check how many rowsets ResultSet c = connection.DBquery("select count(*) from Invce i,cust c where tranid like '"+i+"' and i.key = c.key "); while (c.next()) { System.out.println("rowcount : " + c.getInt(1)); count = c.getInt(1); } if (count > 0 ) { return TRUE; } else { return FALSE; } //end if } catch(Exception e){e.printStackTrace();return FALSE;} } The errors I'm getting are: i.java:195: cannot find symbol symbol : variable TRUE location: class changei.iTable return TRUE; i.java:197: cannot find symbol symbol : variable TRUE location: class changei.iTable return FALSE; i.java:201:: cannot find symbol symbol : variable FALSE location: class changei.iTable catch(Exception e){e.printStackTrace();return FALSE;} The Connection class comes from the DB package i created. Is the return TRUE/FALSE correct since the function is a Boolean return type?

    Read the article

  • Will there ever be a version of Java which does not perform Type Erasure

    - by user63904
    Type erasure enables Java applications that use generics to maintain binary compatibility with Java libraries and applications that were created before generics Generics were introduced in Java 1.5, so presumably the statement "applications that were created before generics" is referring to Java 1.4? Given that Java 1.4 entered its End Of Life around 2006 and was officially End Of Life'd around 2008. Why is type erasure still being performed in Java 7, etc... Has the statement now become self referential i.e. Type erasure enables Java applications that use generics to maintain binary compatibility with Java libraries and applications that were created with Java versions that perform Type Erasure. Meaning therefore that there will never be a version of Java that doesn't perform Type Erasure.

    Read the article

  • Cannot pass null to server using jQuery AJAX. Value received at the server is the string "null".

    - by Tom
    I am converting a javascript/php/ajax application to use jQuery to ensure compatibility with browsers other than Firefox. I am having trouble passing true, false, and null values using jQuery's ajax function. Javascript code: $.ajax ( { url : <server_url>, dataType: 'json', type : 'POST', success : receiveAjaxMessage, data: { valueTrue : true, valueFalse : false, valueNull : null } } ); PHP code: var_dump($_POST); Server output: array(3) { ["valueTrue"]=> string(4) "true" ["valueFalse"]=> string(5) "false" ["valueNull"]=> string(4) "null" } The problem is that the null, true, and false values are being converted to strings. The Javascript AJAX code currently in use passes null, true, and false correctly but only works in Firefox. Does anyone know how to solve this problem using jQuery? Here is some working code (not using jQuery) to compare with the code not-working code given above. Javascript Code: ajaxPort.send ( <server_url>, { valueTrue : true, valueFalse : false, valueNull : null } ); PHP code: var_dump(json_decode(file_get_contents('php://input'), true)); Server output: array(3) { ["valueTrue"]=> bool(true) ["valueFalse"]=> bool(false) ["valueNull"]=> NULL } Note that the null, true, and false values are correctly received. Note also that in the second method the $_POST array is not used in the PHP code. I think this is the key to the problem, but I cannot find a way to replicate this behavior using jQuery.

    Read the article

  • Edit form not being instanciated

    - by 47
    I have two models like this: class OptionsAndFeatures(models.Model): options = models.TextField(blank=True, null=True) entertainment = models.TextField(blank=True, null=True) seats_trim = models.TextField(blank=True, null=True) convenience = models.TextField(blank=True, null=True) body_exterior = models.TextField(blank=True, null=True) lighting = models.TextField(blank=True, null=True) safety = models.TextField(blank=True, null=True) powertrain = models.TextField(blank=True, null=True) suspension_handling = models.TextField(blank=True, null=True) specs_dimensions = models.TextField(blank=True, null=True) offroad_capability = models.TextField(blank=True, null=True) class Vehicle(models.Model): ... options_and_features = models.ForeignKey(OptionsAndFeatures, blank=True, null=True) I have a model form for the OptionsAndFeaturesclass that I'm using in both the add and edit views. In the add view it works just fine. But the edit view renders the OptionsAndFeatures as blank. The code for the edit view is as follows: def edit_vehicle(request, stock_number=None): vehicle = get_object_or_404(Vehicle, stock_number=stock_number) if request.method == 'POST': # save info else: vehicle_form = VehicleForm(instance=vehicle) photos = PhotosFormSet(instance=vehicle) options = OptionsForm(instance=vehicle) #render_to_reponse What could be the problem here?

    Read the article

  • Why subtract a value from itself (x - x) in Python?

    - by endolith
    In NumPy functions, there are often initial lines that do checking of variable types, forcing them to be certain types, etc. Can someone explain the point of these lines? What does subtracting a value from itself do? t,w = asarray(t), asarray(duty) w = asarray(w + (t-t)) t = asarray(t + (w-w))

    Read the article

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • “Cloud Integration in Minutes” – True or False?

    - by Bruce Tierney
    The short answer is “yes”. Connecting on-premise and cloud applications “in minutes” is true…provided you only consider the connectivity subset of integration and have a small number of cloud integration touch points. At the recent Gartner AADI conference, 230 attendees filled up the Oracle session to get a more comprehensive answer to this question. During the session, titled “Simplifying Integration – The Cloud & Mobile Pre-requisite”, Oracle’s Tim Hall described cloud connectivity and then, equally importantly, the other essential and sometimes overlooked aspects of integration required to ensure a long term application and service integration strategy. To understand the challenges and opportunities faced by cloud integration, the session started off with a slide that describes how connectivity can quickly transition from simplicity to complexity as the number of applications and service vendor instances grows: Increased complexity puts increased demand on the integration platform As companies expand from on-premise applications into a hybrid on-premise/cloud infrastructure with support for mobile, cloud, and social, there is a new sense of urgency to implement a unified and comprehensive service integration platform. Without getting this unified platform in place, companies face increased complexity and cost managing a growing patchwork of niche integration toolsets as well as the disparate standards mandated by each SaaS vendor as shown in the image below: dddddddddddddddddddd Incomplete and overlapping offerings from a patchwork of niche vendors Also at Gartner AADI, Oracle SOA Suite customer Geeta Pyne, Director of Middleware at BMC presented their successful strategy on how BMC efficiently manages their cloud integration despite disparate requirements from each vendor. From one of Geeta’s slide: Interfaces are dictated by SaaS vendors; wide variety (SOAP, REST, Socket, HTTP/POX, SFTP); Flexibility of Oracle Service Bus/SOA Suite helps to support Every vendor has their way to handle Security; WS-Security, Custom Header; Support in Oracle Service Bus helps to adhere to disparate requirements At BMC, the flexibility of Oracle Service Bus and Oracle SOA Suite allowed them to support the wide variation in the functional requirements as mandated by their SaaS vendors. In contrast to the patchwork platform approach of escalating complexity from overlapping SaaS toolkits, Oracle’s strategy is to provide a unified platform to support disparate requirements from your SaaS vendors, on-premise apps, legacy apps, and more. Furthermore, Oracle SOA Suite includes the many aspects of comprehensive integration beyond basic connectivity including orchestration, analytics (BAM, events…), service virtualization and more in a single unified interface. Oracle SOA Suite – Unified and comprehensive To summarize, yes you can achieve “cloud integration in minutes” when considering the connectivity subset of integration but be sure to look for ways to simplify as you consider a more comprehensive view of integration beyond basic connectivity such as service virtualization, management, event processing and more. And finally, be sure your integration platform has the deep flexibility to handle the requirements of all your future SaaS applications…many of which are unknown to you now.

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >