Search Results

Search found 6519 results on 261 pages for 'nested attributes'.

Page 235/261 | < Previous Page | 231 232 233 234 235 236 237 238 239 240 241 242  | Next Page >

  • Amanda Todd&ndash;What Parents Can Learn From Her Story

    - by D'Arcy Lussier
    Amanda Todd was a bullied teenager who committed suicide this week. Her story has become headline news due in part to her You Tube video she posted telling her story:   The story is heartbreaking for so many reasons, but I wanted to talk about what we as parents can learn from this. Being the dad to two girls, one that’s 10, I’m very aware of the dangers that the internet holds. When I saw her story, one thing jumped out at me – unmonitored internet access at an early age. My daughter (then 9) came home from a friends place once and asked if she could be in a YouTube video with her friend. Apparently this friend was allowed to do whatever she wanted on the internet, including posting goofy videos. This set off warning bells and we ensured our daughter realized the dangers and that she was not to ever post videos of herself. In looking at Amanda’s story, the access to unmonitored internet time along with just being a young girl and being flattered by an online predator were the key events that ultimately led to her suicide. Yes, the reaction of her classmates and “friends” was horrible as well, I’m not diluting that. But our youth don’t fully understand yet that what they do on the internet today will follow them potentially forever. And the people they meet online aren’t necessarily who they claim to be. So what can we as parents learn from Amanda’s story? Parents Shouldn’t Feel Bad About Being Internet Police Our job as parents is in part to protect our kids and keep them safe, even if they don’t like our measures. This includes monitoring, supervising, and restricting their internet activities. In our house we have a family computer in the living room that the kids can watch videos and surf the web. It’s in plain view of everyone, so you can’t hide what you’re looking at. If our daughter goes to a friend’s place, we ask about what they did and what they played. If the computer comes up, we ask about what they did on it. Luckily our daughter is very up front and honest in telling us things, so we have very open discussions. Parents Need to Be Honest About the Dangers of the Internet I’m sure every generation says that “kids grow up so fast these days”, but in our case the internet really does push our kids to be exposed to things they otherwise wouldn’t experience. One wrong word in a Google search, a click of a link in a spam email, or just general curiosity can expose a child to things they aren’t ready for or should never be exposed to (and I’m not just talking about adult material – have you seen some of the graphic pictures from war zones posted on news sites recently?). Our stance as parents has been to be open about discussing the dangers with our kids before they encounter any content – be proactive instead of reactionary. Part of this is alerting them to the monsters that lurk on the internet as well. As kids explore the world wide web, they’re eventually going to encounter some chat room or some Facebook friend invite or other personal connection with someone. More than ever kids need to be educated on the dangers of engaging with people online and sharing personal information. You can think of it as an evolved discussion that our parents had with us about using the phone: “Don’t say ‘I’m home alone’, don’t say when mom or dad get home, don’t tell them any information, etc.” Parents Need to Talk Self Worth at Home Katie makes the point better than I ever could (one bad word towards the end): Our children need to understand their value beyond what the latest issue of TigerBeat says, or the media who continues flaunting physical attributes over intelligence and character, or a society that puts focus on status and wealth. They also have to realize that just because someone pays you a compliment, that doesn’t mean you should ignore personal boundaries and limits. What does this have to do with the internet? Well, in days past if you wanted to be social you had to go out somewhere. Now you can video chat with any number of people from the comfort of wherever your laptop happens to be – and not just text but full HD video with sound! While innocent children head online in the hopes of meeting cool people, predators with bad intentions are heading online too. As much as we try to monitor their online activity and be honest about the dangers of the internet, the human side of our kids isn’t something we can control. But we can try to influence them to see themselves as not needing to search out the acceptance of complete strangers online. Way easier said than done, but ensuring self-worth is something discussed, encouraged, and celebrated is a step in the right direction. Parental Wake Up Call This post is not a critique of Amanda’s parents. The reality is that cyber bullying/abuse is happening every day, and there are millions of parents that have no clue its happening to their children. Amanda’s story is a wake up call that our children’s online activities may be putting them in danger. My heart goes out to the parents of this girl. As a father of daughters, I can’t imagine what I would do if I found my daughter having to hide in a ditch to avoid a mob or call 911 to report my daughter had attempted suicide by drinking bleach or deal with a child turning to drugs/alcohol/cutting to cope. It would be horrendous if we as parents didn’t re-evaluate our family internet policies in light of this event. And in the end, Amanda’s video was meant to bring attention to her plight and encourage others going through the same thing. We may not be kids, but we can still honour her memory by helping safeguard our children.

    Read the article

  • PowerShell Script to Enumerate SharePoint 2010 or 2013 Permissions and Active Directory Group Membership

    - by Brian T. Jackett
    Originally posted on: http://geekswithblogs.net/bjackett/archive/2013/07/01/powershell-script-to-enumerate-sharepoint-2010-or-2013-permissions-and.aspx   In this post I will present a script to enumerate SharePoint 2010 or 2013 permissions across the entire farm down to the site (SPWeb) level.  As a bonus this script also recursively expands the membership of any Active Directory (AD) group including nested groups which you wouldn’t be able to find through the SharePoint UI.   History     Back in 2009 (over 4 years ago now) I published one my most read blog posts about enumerating SharePoint 2007 permissions.  I finally got around to updating that script to remove deprecated APIs, supporting the SharePoint 2010 commandlets, and fixing a few bugs.  There are 2 things that script did that I had to remove due to major architectural or procedural changes in the script. Indenting the XML output Ability to search for a specific user    I plan to add back the ability to search for a specific user but wanted to get this version published first.  As for indenting the XML that could be added but would take some effort.  If there is user demand for it (let me know in the comments or email me using the contact button at top of blog) I’ll move it up in priorities.    As a side note you may also notice that I’m not using the Active Directory commandlets.  This was a conscious decision since not all environments have them available.  Instead I’m relying on the older [ADSI] type accelerator and APIs.  It does add a significant amount of code to the script but it is necessary for compatibility.  Hopefully in a few years if I need to update again I can remove that legacy code.   Solution    Below is the script to enumerate SharePoint 2010 and 2013 permissions down to site level.  You can also download it from my SkyDrive account or my posting on the TechNet Script Center Repository. SkyDrive TechNet Script Center Repository http://gallery.technet.microsoft.com/scriptcenter/Enumerate-SharePoint-2010-35976bdb   001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 ########################################################### #DisplaySPWebApp8.ps1 # #Author: Brian T. Jackett #Last Modified Date: 2013-07-01 # #Traverse the entire web app site by site to display # hierarchy and users with permissions to site. ########################################################### function Expand-ADGroupMembership {     Param     (         [Parameter(Mandatory=$true,                    Position=0)]         [string]         $ADGroupName,         [Parameter(Position=1)]         [string]         $RoleBinding     )     Process     {         $roleBindingText = ""         if(-not [string]::IsNullOrEmpty($RoleBinding))         {             $roleBindingText = " RoleBindings=`"$roleBindings`""         }         Write-Output "<ADGroup Name=`"$($ADGroupName)`"$roleBindingText>"         $domain = $ADGroupName.substring(0, $ADGroupName.IndexOf("\") + 1)         $groupName = $ADGroupName.Remove(0, $ADGroupName.IndexOf("\") + 1)                                     #BEGIN - CODE ADAPTED FROM SCRIPT CENTER SAMPLE CODE REPOSITORY         #http://www.microsoft.com/technet/scriptcenter/scripts/powershell/search/users/srch106.mspx         #GET AD GROUP FROM DIRECTORY SERVICES SEARCH         $strFilter = "(&(objectCategory=Group)(name="+($groupName)+"))"         $objDomain = New-Object System.DirectoryServices.DirectoryEntry         $objSearcher = New-Object System.DirectoryServices.DirectorySearcher         $objSearcher.SearchRoot = $objDomain         $objSearcher.Filter = $strFilter         # specify properties to be returned         $colProplist = ("name","member","objectclass")         foreach ($i in $colPropList)         {             $catcher = $objSearcher.PropertiesToLoad.Add($i)         }         $colResults = $objSearcher.FindAll()         #END - CODE ADAPTED FROM SCRIPT CENTER SAMPLE CODE REPOSITORY         foreach ($objResult in $colResults)         {             if($objResult.Properties["Member"] -ne $null)             {                 foreach ($member in $objResult.Properties["Member"])                 {                     $indMember = [adsi] "LDAP://$member"                     $fullMemberName = $domain + ($indMember.Name)                                         #if($indMember["objectclass"]                         # if child AD group continue down chain                         if(($indMember | Select-Object -ExpandProperty objectclass) -contains "group")                         {                             Expand-ADGroupMembership -ADGroupName $fullMemberName                         }                         elseif(($indMember | Select-Object -ExpandProperty objectclass) -contains "user")                         {                             Write-Output "<ADUser>$fullMemberName</ADUser>"                         }                 }             }         }                 Write-Output "</ADGroup>"     } } #end Expand-ADGroupMembership # main portion of script if((Get-PSSnapin -Name microsoft.sharepoint.powershell) -eq $null) {     Add-PSSnapin Microsoft.SharePoint.PowerShell } $farm = Get-SPFarm Write-Output "<Farm Guid=`"$($farm.Id)`">" $webApps = Get-SPWebApplication foreach($webApp in $webApps) {     Write-Output "<WebApplication URL=`"$($webApp.URL)`" Name=`"$($webApp.Name)`">"     foreach($site in $webApp.Sites)     {         Write-Output "<SiteCollection URL=`"$($site.URL)`">"                 foreach($web in $site.AllWebs)         {             Write-Output "<Site URL=`"$($web.URL)`">"             # if site inherits permissions from parent then stop processing             if($web.HasUniqueRoleAssignments -eq $false)             {                 Write-Output "<!-- Inherits role assignments from parent -->"             }             # else site has unique permissions             else             {                 foreach($assignment in $web.RoleAssignments)                 {                     if(-not [string]::IsNullOrEmpty($assignment.Member.Xml))                     {                         $roleBindings = ($assignment.RoleDefinitionBindings | Select-Object -ExpandProperty name) -join ","                         # check if assignment is SharePoint Group                         if($assignment.Member.XML.StartsWith('<Group') -eq "True")                         {                             Write-Output "<SPGroup Name=`"$($assignment.Member.Name)`" RoleBindings=`"$roleBindings`">"                             foreach($SPGroupMember in $assignment.Member.Users)                             {                                 # if SharePoint group member is an AD Group                                 if($SPGroupMember.IsDomainGroup)                                 {                                     Expand-ADGroupMembership -ADGroupName $SPGroupMember.Name                                 }                                 # else SharePoint group member is an AD User                                 else                                 {                                     # remove claim portion of user login                                     #Write-Output "<ADUser>$($SPGroupMember.UserLogin.Remove(0,$SPGroupMember.UserLogin.IndexOf("|") + 1))</ADUser>"                                     Write-Output "<ADUser>$($SPGroupMember.UserLogin)</ADUser>"                                 }                             }                             Write-Output "</SPGroup>"                         }                         # else an indivdually listed AD group or user                         else                         {                             if($assignment.Member.IsDomainGroup)                             {                                 Expand-ADGroupMembership -ADGroupName $assignment.Member.Name -RoleBinding $roleBindings                             }                             else                             {                                 # remove claim portion of user login                                 #Write-Output "<ADUser>$($assignment.Member.UserLogin.Remove(0,$assignment.Member.UserLogin.IndexOf("|") + 1))</ADUser>"                                                                 Write-Output "<ADUser RoleBindings=`"$roleBindings`">$($assignment.Member.UserLogin)</ADUser>"                             }                         }                     }                 }             }             Write-Output "</Site>"             $web.Dispose()         }         Write-Output "</SiteCollection>"         $site.Dispose()     }     Write-Output "</WebApplication>" } Write-Output "</Farm>"      The output from the script can be sent to an XML which you can then explore using the [XML] type accelerator.  This lets you explore the XML structure however you see fit.  See the screenshot below for an example.      If you do view the XML output through a text editor (Notepad++ for me) notice the format.  Below we see a SharePoint site that has a SharePoint group Demo Members with Edit permissions assigned.  Demo Members has an AD group corp\developers as a member.  corp\developers has a child AD group called corp\DevelopersSub with 1 AD user in that sub group.  As you can see the script recursively expands the AD hierarchy.   Conclusion    It took me 4 years to finally update this script but I‘m happy to get this published.  I was able to fix a number of errors and smooth out some rough edges.  I plan to develop this into a more full fledged tool over the next year with more features and flexibility (copy permissions, search for individual user or group, optional enumerate lists / items, etc.).  If you have any feedback, feature requests, or issues running it please let me know.  Enjoy the script!         -Frog Out

    Read the article

  • 7 Reasons for Abandonment in eCommerce and the need for Contextual Support by JP Saunders

    - by Tuula Fai
    Shopper confidence, or more accurately the lack thereof, is the bane of the online retailer. There are a number of questions that influence whether a shopper completes a transaction, and all of those attributes revolve around knowledge. What products are available? What products are on offer? What would be the cost of the transaction? What are my options for delivery? In general, most online businesses do a good job of answering basic questions around the products as the shopper engages in the online journey, navigating the product catalog and working through the checkout process. The needs that are harder to address for the shopper are those that are less concerned with product specifics and more concerned with deciding whether the transaction met their needs and delivered value. A recent study by the Baymard Institute [1] finds that more than 60% of ecommerce site visitors will abandon their shopping cart. The study also identifies seven reasons for abandonment out of the commerce process [2]. Most of those reasons come down to poor usability within the commerce experience. Distractions. External distractions within the shopper’s external environment (TV, Children, Pets, etc.) or distractions on the eCommerce page can drive shopper abandonment. Ideally, the selection and check-out process should be straightforward. One common distraction is to drive the shopper away from the task at hand through pop-ups or re-directs. The shopper engaging with support information in the checkout process should not be directed away from the page to consume support. Though confidence may improve, the distraction also means abandonment may increase. Poor Usability. When the experience gets more complicated, buyer’s remorse can set in. While knowledge drives confidence, a lack of understanding erodes it. Therefore it is important that the commerce process is streamlined. In some cases, the number of clicks to complete a purchase is lengthy and unavoidable. In these situations, it is vital to ensure that the complexity of your experience can be explained with contextual support to avoid abandonment. If you can illustrate the solution to a complex action while the user is engaged in that action and address customer frustrations with your checkout process before they arise, you can decrease abandonment. Fraud. The perception of potential fraud can be enough to deter a buyer. Does your site look credible? Can shoppers trust your brand? Providing answers on the security of your experience and the levels of protection applied to profile information may play as big a role in ensuring the sale, as does the support you provide on the product offerings and purchasing process. Does it fit? If it is a clothing item or oversized furniture item, another common form of abandonment is for the shopper to question whether the item can be worn by the intended user. Providing information on the sizing applied to clothing, physical dimensions, and limitations on delivery/returns of oversized items will also assist the sale. A photo alone of the item will help, as it answers some of those questions, but won’t assuage all customer concerns about sizing and fit. Sometimes the customer doesn’t want to buy. Prospective buyers might be browsing through your catalog to kill time, or just might not have the money to purchase the item! You are unlikely to provide any information in contextual support to increase the likelihood to buy if the shopper already has no intentions of doing so. The customer will still likely abandon. Ensuring that any questions are proactively answered as they browse through your site can only increase their likelihood to return and buy at a future date. Can’t Buy. Errors or complexity at checkout can be another major cause of abandonment. Good contextual support is unlikely to help with severe errors caused by technical issues on your site, but it will have a big impact on customers struggling with complexity in the checkout process and needing a question answered prior to completing the sale. Embedded support within the checkout process to patiently explain how to complete a task will help increase conversion rates. Additional Costs. Tax, shipping and other costs or duties can dramatically increase the cost of the purchase and when unexpected, can increase abandonment, particularly if they can’t be adequately explained. Again, a lack of knowledge erodes confidence in the purchase, and cost concerns in particular, erode the perception of your brand’s trustworthiness. Again, providing information on what costs are additive and why they are being levied can decrease the likelihood that the customer will abandon out of the experience. Knowledge drives confidence and confidence drives conversion. If you’d like to understand best practices in providing contextual customer support in eCommerce to provide your shoppers with confidence, download the Oracle Cloud Service and Oracle Commerce - Contextual Support in Commerce White Paper. This white paper discusses the process of adding customer support, including a suggested process for finding where knowledge has the most influence on your shoppers and practical step-by-step illustrations on how contextual self-service can be added to your online commerce experience. Resources: [1] http://baymard.com/checkout-usability [2] http://baymard.com/blog/cart-abandonment

    Read the article

  • Kendo UI Mobile with Knockout for Master-Detail Views

    - by Steve Michelotti
    Lately I’ve been playing with Kendo UI Mobile to build iPhone apps. It’s similar to jQuery Mobile in that they are both HTML5/JavaScript based frameworks for buildings mobile apps. The primary thing that drew me to investigate Kendo UI was its innate ability to adaptively render a native looking app based on detecting the device it’s currently running on. In other words, it will render to look like a native iPhone app if it’s running on an iPhone and it will render to look like a native Droid app if it’s running on a Droid. This is in contrast to jQuery Mobile which looks the same on all devices and, therefore, it can never quite look native for whatever device it’s running on. My first impressions of Kendo UI were great. Using HTML5 data-* attributes to define “roles” for UI elements is easy, the rendering looked great, and the basic navigation was simple and intuitive. However, I ran into major confusion when trying to figure out how to “correctly” build master-detail views. Since I was already very family with KnockoutJS, I set out to use that framework in conjunction with Kendo UI Mobile to build the following simple scenario: I wanted to have a simple “Task Manager” application where my first screen just showed a list of tasks like this:   Then clicking on a specific task would navigate to a detail screen that would show all details of the specific task that was selected:   Basic navigation between views in Kendo UI is simple. The href of an <a> tag just needs to specify a hash tag followed by the ID of the view to navigate to as shown in this jsFiddle (notice the href of the <a> tag matches the id of the second view):   Direct link to jsFiddle: here. That is all well and good but the problem I encountered was: how to pass data between the views? Specifically, I need the detail view to display all the details of whichever task was selected. If I was doing this with my typical technique with KnockoutJS, I know exactly what I would do. First I would create a view model that had my collection of tasks and a property for the currently selected task like this: 1: function ViewModel() { 2: var self = this; 3: self.tasks = ko.observableArray(data); 4: self.selectedTask = ko.observable(null); 5: } Then I would bind my list of tasks to the unordered list - I would attach a “click” handler to each item (each <li> in the unordered list) so that it would select the “selectedTask” for the view model. The problem I found is this approach simply wouldn’t work for Kendo UI Mobile. It completely ignored the click handlers that I was trying to attach to the <a> tags – it just wanted to look at the href (at least that’s what I observed). But if I can’t intercept this, then *how* can I pass data or any context to the next view? The only thing I was able to find in the Kendo documentation is that you can pass query string arguments on the view name you’re specifying in the href. This enabled me to do the following: Specify the task ID in each href – something like this: <a href=”#taskDetail?id=3></a> Attach an “init method” (via the “data-show” attribute on the details view) that runs whenever the view is activated Inside this “init method”, grab the task ID passed from the query string to look up the item from my view model’s list of tasks in order to set the selected task I was able to get all that working with about 20 lines of JavaScript as shown in this jsFiddle. If you click on the Results tab, you can navigate between views and see the the detail screen is correctly binding to the selected item:   Direct link to jsFiddle: here.   With all that being done, I was very happy to get it working with the behavior I wanted. However, I have no idea if that is the “correct” way to do it or if there is a “better” way to do it. I know that Kendo UI comes with its own data binding framework but my preference is to be able to use (the well-documented) KnockoutJS since I’m already familiar with that framework rather than having to learn yet another new framework. While I think my solution above is probably “acceptable”, there are still a couple of things that bug me about it. First, it seems odd that I have to loop through my items to *find* my selected item based on the ID that was passed on the query string - normally, with Knockout I can just refer directly to my selected item from where it was used. Second, it didn’t feel exactly right that I had to rely on the “data-show” method of the details view to set my context – normally with Knockout, I could just attach a click handler to the <a> tag that was actually clicked by the user in order to set the “selected item.” I’m not sure if I’m being too picky. I know there are many people that have *way* more expertise in Kendo UI compared to me – I’d be curious to know if there are better ways to achieve the same results.

    Read the article

  • The SSIS tuning tip that everyone misses

    - by Rob Farley
    I know that everyone misses this, because I’m yet to find someone who doesn’t have a bit of an epiphany when I describe this. When tuning Data Flows in SQL Server Integration Services, people see the Data Flow as moving from the Source to the Destination, passing through a number of transformations. What people don’t consider is the Source, getting the data out of a database. Remember, the source of data for your Data Flow is not your Source Component. It’s wherever the data is, within your database, probably on a disk somewhere. You need to tune your query to optimise it for SSIS, and this is what most people fail to do. I’m not suggesting that people don’t tune their queries – there’s plenty of information out there about making sure that your queries run as fast as possible. But for SSIS, it’s not about how fast your query runs. Let me say that again, but in bolder text: The speed of an SSIS Source is not about how fast your query runs. If your query is used in a Source component for SSIS, the thing that matters is how fast it starts returning data. In particular, those first 10,000 rows to populate that first buffer, ready to pass down the rest of the transformations on its way to the Destination. Let’s look at a very simple query as an example, using the AdventureWorks database: We’re picking the different Weight values out of the Product table, and it’s doing this by scanning the table and doing a Sort. It’s a Distinct Sort, which means that the duplicates are discarded. It'll be no surprise to see that the data produced is sorted. Obvious, I know, but I'm making a comparison to what I'll do later. Before I explain the problem here, let me jump back into the SSIS world... If you’ve investigated how to tune an SSIS flow, then you’ll know that some SSIS Data Flow Transformations are known to be Blocking, some are Partially Blocking, and some are simply Row transformations. Take the SSIS Sort transformation, for example. I’m using a larger data set for this, because my small list of Weights won’t demonstrate it well enough. Seven buffers of data came out of the source, but none of them could be pushed past the Sort operator, just in case the last buffer contained the data that would be sorted into the first buffer. This is a blocking operation. Back in the land of T-SQL, we consider our Distinct Sort operator. It’s also blocking. It won’t let data through until it’s seen all of it. If you weren’t okay with blocking operations in SSIS, why would you be happy with them in an execution plan? The source of your data is not your OLE DB Source. Remember this. The source of your data is the NCIX/CIX/Heap from which it’s being pulled. Picture it like this... the data flowing from the Clustered Index, through the Distinct Sort operator, into the SELECT operator, where a series of SSIS Buffers are populated, flowing (as they get full) down through the SSIS transformations. Alright, I know that I’m taking some liberties here, because the two queries aren’t the same, but consider the visual. The data is flowing from your disk and through your execution plan before it reaches SSIS, so you could easily find that a blocking operation in your plan is just as painful as a blocking operation in your SSIS Data Flow. Luckily, T-SQL gives us a brilliant query hint to help avoid this. OPTION (FAST 10000) This hint means that it will choose a query which will optimise for the first 10,000 rows – the default SSIS buffer size. And the effect can be quite significant. First let’s consider a simple example, then we’ll look at a larger one. Consider our weights. We don’t have 10,000, so I’m going to use OPTION (FAST 1) instead. You’ll notice that the query is more expensive, using a Flow Distinct operator instead of the Distinct Sort. This operator is consuming 84% of the query, instead of the 59% we saw from the Distinct Sort. But the first row could be returned quicker – a Flow Distinct operator is non-blocking. The data here isn’t sorted, of course. It’s in the same order that it came out of the index, just with duplicates removed. As soon as a Flow Distinct sees a value that it hasn’t come across before, it pushes it out to the operator on its left. It still has to maintain the list of what it’s seen so far, but by handling it one row at a time, it can push rows through quicker. Overall, it’s a lot more work than the Distinct Sort, but if the priority is the first few rows, then perhaps that’s exactly what we want. The Query Optimizer seems to do this by optimising the query as if there were only one row coming through: This 1 row estimation is caused by the Query Optimizer imagining the SELECT operation saying “Give me one row” first, and this message being passed all the way along. The request might not make it all the way back to the source, but in my simple example, it does. I hope this simple example has helped you understand the significance of the blocking operator. Now I’m going to show you an example on a much larger data set. This data was fetching about 780,000 rows, and these are the Estimated Plans. The data needed to be Sorted, to support further SSIS operations that needed that. First, without the hint. ...and now with OPTION (FAST 10000): A very different plan, I’m sure you’ll agree. In case you’re curious, those arrows in the top one are 780,000 rows in size. In the second, they’re estimated to be 10,000, although the Actual figures end up being 780,000. The top one definitely runs faster. It finished several times faster than the second one. With the amount of data being considered, these numbers were in minutes. Look at the second one – it’s doing Nested Loops, across 780,000 rows! That’s not generally recommended at all. That’s “Go and make yourself a coffee” time. In this case, it was about six or seven minutes. The faster one finished in about a minute. But in SSIS-land, things are different. The particular data flow that was consuming this data was significant. It was being pumped into a Script Component to process each row based on previous rows, creating about a dozen different flows. The data flow would take roughly ten minutes to run – ten minutes from when the data first appeared. The query that completes faster – chosen by the Query Optimizer with no hints, based on accurate statistics (rather than pretending the numbers are smaller) – would take a minute to start getting the data into SSIS, at which point the ten-minute flow would start, taking eleven minutes to complete. The query that took longer – chosen by the Query Optimizer pretending it only wanted the first 10,000 rows – would take only ten seconds to fill the first buffer. Despite the fact that it might have taken the database another six or seven minutes to get the data out, SSIS didn’t care. Every time it wanted the next buffer of data, it was already available, and the whole process finished in about ten minutes and ten seconds. When debugging SSIS, you run the package, and sit there waiting to see the Debug information start appearing. You look for the numbers on the data flow, and seeing operators going Yellow and Green. Without the hint, I’d sit there for a minute. With the hint, just ten seconds. You can imagine which one I preferred. By adding this hint, it felt like a magic wand had been waved across the query, to make it run several times faster. It wasn’t the case at all – but it felt like it to SSIS.

    Read the article

  • Introducing jLight &ndash; Talking to the DOM using Silverlight and jQuery.

    - by Timmy Kokke
    Introduction With the recent news about Silverlight on the Windows Phone and all the great Out-Of-Browser features in the upcoming Silverlight 4 you almost forget Silverlight is a browser plugin. It most often runs in a web browser and often as a control. In many cases you need to communicate with the browser to get information about textboxes, events or details about the browser itself. To do this you can use JavaScript from Silverlight. Although Silverlight works the same on every browser, JavaScript does not and it won’t be long before problems arise. To overcome differences in browser I like to use jQuery. The only downside of doing this is that there’s a lot more code needed that you would normally use when you write jQuery in JavaScript. Lately, I had to catch changes is the browser scrollbar and act to the new position. I also had to move the scrollbar when the user dragged around in the Silverlight application. With jQuery it was peanuts to get and set the right attributes, but I found that I had to write a lot of code on Silverlight side.  With a few refactoring I had a separated out the plumbing into a new class and could call only a few methods on that to get the same thing done. The idea for jLight was born. jLight vs. jQuery The main purpose of jLight is to take the ease of use of jQuery and bring it into Silverlight for handling DOM interaction. For example, to change the text color of a DIV to red, in jQuery you would write: jQuery("div").css("color","red"); In jLight the same thing looks like so: jQuery.Select("div").Css("color","red");   Another example. To change the offset in of the last SPAN you could write this in jQuery : jQuery("span:last").offset({left : 10, top : 100});   In jLight this would do the same: jQuery.Select("span:last").Offset(new {left = 10, top = 100 });   Callbacks Nothing too special so far. To get the same thing done using the “normal” HtmlPage.Window.Eval, it wouldn’t require too much effort. But to wire up a handler for events from the browser it’s a whole different story. Normally you need to register ScriptMembers, ScriptableTypes or write some code in JavaScript. jLight takes care of the plumbing and provide you with an simple interface in the same way jQuery would. If you would like to handle the scroll event of the BODY of your html page, you’ll have to bind the event using jQuery and have a function call back to a registered function in Silverlight. In the example below I assume there’s a method “SomeMethod” and it is registered as a ScriptableObject as “RegisteredFromSilverlight” from Silverlight.   jQuery("body:first").scroll(function() { var sl = document.getElementbyId("SilverlightControl"); sl.content.RegisteredFromSilverlight.SomeMethod($(this)); });       Using jLight  in Silverlight the code would be even simpler. The registration of RegisteredFromSilverlight  as ScriptableObject can be omitted.  Besides that, you don’t have to write any JavaScript or evaluate strings with JavaScript.   jQuery.Select("body:first").scroll(SomeMethod);   Lambdas Using a lambda in Silverlight can make it even simpler.  Each is the jQuery equivalent of foreach in C#. It calls a function for every element found by jQuery. In this example all INPUT elements of the text type are selected. The FromObject method is used to create a jQueryObject from an object containing a ScriptObject. The Val method from jQuery is used to get the value of the INPUT elements.   jQuery.Select("input:text").Each((element, index) => { textBox1.Text += jQueryObject.FromObject(element).Val(); return null; });   Ajax One thing jQuery is often used for is making Ajax calls. Making calls to services to external services can be done from Silverlight, but as easy as using jQuery. As an example I would like to show how jLight does this. Below is the entire code behind. It searches my name on twitter and shows the result. This example can be found in the source of the project. The GetJson method passes a Silverlight JsonValue to a callback. This callback instantiates Twit objects and adds them to a ListBox called TwitList.   public partial class DemoPage2 : UserControl { public DemoPage2() { InitializeComponent(); jQuery.Load(); }   private void CallButton_Click(object sender, RoutedEventArgs e) { jQuery.GetJson("http://search.twitter.com/search.json?lang=en&q=sorskoot", Done); }   private void Done(JsonValue arg) { var tweets = new List<Twit>(); foreach (JsonObject result in arg["results"]) { tweets.Add(new Twit() { Text = (string)result["text"], Image = (string)result["profile_image_url"], User = (string)result["from_user"] } ); } TwitList.ItemsSource = tweets; } }   public class Twit { public string User { get; set; } public string Image { get; set; } public string Text { get; set; } }   Conclusion Although jLight is still in development it can be used already.There isn’t much documentation yet, but if you know jQuery jLight isn’t very hard to use.  If you would like to try it, please let me know what you think and report any problems you run in to. jLight can be found at:   http://jlight.codeplex.com

    Read the article

  • Master Data Management Implementation Styles

    - by david.butler(at)oracle.com
    In any Master Data Management solution deployment, one of the key decisions to be made is the choice of the MDM architecture. Gartner and other analysts describe some different Hub deployment styles, which must be supported by a best of breed MDM solution in order to guarantee the success of the deployment project.   Registry Style: In a Registry Style MDM Hub, the various source systems publish their data and a subscribing Hub stores only the source system IDs, the Foreign Keys (record IDs on source systems) and the key data values needed for matching. The Hub runs the cleansing and matching algorithms and assigns unique global identifiers to the matched records, but does not send any data back to the source systems. The Registry Style MDM Hub uses data federation capabilities to build the "virtual" golden view of the master entity from the connected systems.   Consolidation Style: The Consolidation Style MDM Hub has a physically instantiated, "golden" record stored in the central Hub. The authoring of the data remains distributed across the spoke systems and the master data can be updated based on events, but is not guaranteed to be up to date. The master data in this case is usually not used for transactions, but rather supports reporting; however, it can also be used for reference operationally.   Coexistence Style: The Coexistence Style MDM Hub involves master data that's authored and stored in numerous spoke systems, but includes a physically instantiated golden record in the central Hub and harmonized master data across the application portfolio. The golden record is constructed in the same manner as in the consolidation style, and, in the operational world, Consolidation Style MDM Hubs often evolve into the Coexistence Style. The key difference is that in this architectural style the master data stored in the central MDM system is selectively published out to the subscribing spoke systems.   Transaction Style: In this architecture, the Hub stores, enhances and maintains all the relevant (master) data attributes. It becomes the authoritative source of truth and publishes this valuable information back to the respective source systems. The Hub publishes and writes back the various data elements to the source systems after the linking, cleansing, matching and enriching algorithms have done their work. Upstream, transactional applications can read master data from the MDM Hub, and, potentially, all spoke systems subscribe to updates published from the central system in a form of harmonization. The Hub needs to support merging of master records. Security and visibility policies at the data attribute level need to be supported by the Transaction Style hub, as well.   Adaptive Transaction Style: This is similar to the Transaction Style, but additionally provides the capability to respond to diverse information and process requests across the enterprise. This style emerged most recently to address the limitations of the above approaches. With the Adaptive Transaction Style, the Hub is built as a platform for consolidating data from disparate third party and internal sources and for serving unified master entity views to operational applications, analytical systems or both. This approach delivers a real-time Hub that has a reliable, persistent foundation of master reference and relationship data, along with all the history and lineage of data changes needed for audit and compliance tracking. On top of this persistent master data foundation, the Hub can dynamically aggregate transaction data on demand from different source systems to deliver the unified golden view to downstream systems. Data can also be accessed through batch interfaces, published to a message bus or served through a real-time services layer. New data sources can be readily added in this approach by extending the data model and by configuring the new source mappings and the survivorship rules, meaning that all legacy data hubs can be leveraged to contribute their records/rules into the new transaction hub. Finally, through rich user interfaces for data stewardship, it allows exception handling by business analysts to keep it current with business rules/practices while maintaining the reliability of best-of-breed master records.   Confederation Style: In this architectural style, several Hubs are maintained at departmental and/or agency and/or territorial level, and each of them are connected to the other Hubs either directly or via a central Super-Hub. Each Domain level Hub can be implemented using any of the previously described styles, but normally the Central Super-Hub is a Registry Style one. This is particularly important for Public Sector organizations, where most of the time it is practically or legally impossible to store in a single central hub all the relevant constituent information from all departments.   Oracle MDM Solutions can be deployed according to any of the above MDM architectural styles, and have been specifically designed to fully support the Transaction and Adaptive Transaction styles. Oracle MDM Solutions provide strong data federation and integration capabilities which are key to enabling the use of the Confederated Hub as a possible architectural style approach. Don't lock yourself into a solution that cannot evolve with your needs. With Oracle's support for any type of deployment architecture, its ability to leverage the outstanding capabilities of the Oracle technology stack, and its open interfaces for non-Oracle technology stacks, Oracle MDM Solutions provide a low TCO and a quick ROI by enabling a phased implementation strategy.

    Read the article

  • How-to delete a tree node using the context menu

    - by frank.nimphius
    Hierarchical trees in Oracle ADF make use of View Accessors, which means that only the top level node needs to be exposed as a View Object instance on the ADF Business Components Data Model. This also means that only the top level node has a representation in the PageDef file as a tree binding and iterator binding reference. Detail nodes are accessed through tree rule definitions that use the accessor mentioned above (or nested collections in the case of POJO or EJB business services). The tree component is configured for single node selection, which however can be declaratively changed for users to press the ctrl key and selecting multiple nodes. In the following, I explain how to create a context menu on the tree for users to delete the selected tree nodes. For this, the context menu item will access a managed bean, which then determines the selected node(s), the internal ADF node bindings and the rows they represent. As mentioned, the ADF Business Components Data Model only needs to expose the top level node data sources, which in this example is an instance of the Locations View Object. For the tree to work, you need to have associations defined between entities, which usually is done for you by Oracle JDeveloper if the database tables have foreign keys defined Note: As a general hint of best practices and to simplify your life: Make sure your database schema is well defined and designed before starting your development project. Don't treat the database as something organic that grows and changes with the requirements as you proceed in your project. Business service refactoring in response to database changes is possible, but should be treated as an exception, not the rule. Good database design is a necessity – even for application developers – and nothing evil. To create the tree component, expand the Data Controls panel and drag the View Object collection to the view. From the context menu, select the tree component entry and continue with defining the tree rules that make up the hierarchical structure. As you see, when pressing the green plus icon  in the Edit Tree Binding  dialog, the data structure, Locations -  Departments – Employees in my sample, shows without you having created a View Object instance for each of the nodes in the ADF Business Components Data Model. After you configured the tree structure in the Edit Tree Binding dialog, you press OK and the tree is created. Select the tree in the page editor and open the Structure Window (ctrl+shift+S). In the Structure window, expand the tree node to access the conextMenu facet. Use the right mouse button to insert a Popup  into the facet. Repeat the same steps to insert a Menu and a Menu Item into the Popup you created. The Menu item text should be changed to something meaningful like "Delete". Note that the custom menu item later is added to the context menu together with the default context menu options like expand and expand all. To define the action that is executed when the menu item is clicked on, you select the Action Listener property in the Property Inspector and click the arrow icon followed by the Edit menu option. Create or select a managed bean and define a method name for the action handler. Next, select the tree component and browse to its binding property in the Property Inspector. Again, use the arrow icon | Edit option to create a component binding in the same managed bean that has the action listener defined. The tree handle is used in the action listener code, which is shown below: public void onTreeNodeDelete(ActionEvent actionEvent) {   //access the tree from the JSF component reference created   //using the af:tree "binding" property. The "binding" property   //creates a pair of set/get methods to access the RichTree instance   RichTree tree = this.getTreeHandler();   //get the list of selected row keys   RowKeySet rks = tree.getSelectedRowKeys();   //access the iterator to loop over selected nodes   Iterator rksIterator = rks.iterator();          //The CollectionModel represents the tree model and is   //accessed from the tree "value" property   CollectionModel model = (CollectionModel) tree.getValue();   //The CollectionModel is a wrapper for the ADF tree binding   //class, which is JUCtrlHierBinding   JUCtrlHierBinding treeBinding =                  (JUCtrlHierBinding) model.getWrappedData();          //loop over the selected nodes and delete the rows they   //represent   while(rksIterator.hasNext()){     List nodeKey = (List) rksIterator.next();     //find the ADF node binding using the node key     JUCtrlHierNodeBinding node =                       treeBinding.findNodeByKeyPath(nodeKey);     //delete the row.     Row rw = node.getRow();       rw.remove();   }          //only refresh the tree if tree nodes have been selected   if(rks.size() > 0){     AdfFacesContext adfFacesContext =                          AdfFacesContext.getCurrentInstance();     adfFacesContext.addPartialTarget(tree);   } } Note: To enable multi node selection for a tree, select the tree and change the row selection setting from "single" to "multiple". Note: a fully pictured version of this post will become available at the end of the month in a PDF summary on ADF Code Corner : http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html 

    Read the article

  • Xml failing to deserialise

    - by Carnotaurus
    I call a method to get my pages [see GetPages(String xmlFullFilePath)]. The FromXElement method is supposed to deserialise the LitePropertyData elements to strongly type LitePropertyData objects. Instead it fails on the following line: return (T)xmlSerializer.Deserialize(memoryStream); and gives the following error: <LitePropertyData xmlns=''> was not expected. What am I doing wrong? I have included the methods that I call and the xml data: public static T FromXElement<T>(this XElement xElement) { using (var memoryStream = new MemoryStream(Encoding.ASCII.GetBytes(xElement.ToString()))) { var xmlSerializer = new XmlSerializer(typeof(T)); return (T)xmlSerializer.Deserialize(memoryStream); } } public static List<LitePageData> GetPages(String xmlFullFilePath) { XDocument document = XDocument.Load(xmlFullFilePath); List<LitePageData> results = (from record in document.Descendants("row") select new LitePageData { Guid = IsValid(record, "Guid") ? record.Element("Guid").Value : null, ParentID = IsValid(record, "ParentID") ? Convert.ToInt32(record.Element("ParentID").Value) : (Int32?)null, Created = Convert.ToDateTime(record.Element("Created").Value), Changed = Convert.ToDateTime(record.Element("Changed").Value), Name = record.Element("Name").Value, ID = Convert.ToInt32(record.Element("ID").Value), LitePageTypeID = IsValid(record, "ParentID") ? Convert.ToInt32(record.Element("ParentID").Value) : (Int32?)null, Html = record.Element("Html").Value, FriendlyName = record.Element("FriendlyName").Value, Properties = record.Element("Properties") != null ? record.Element("Properties").Element("LitePropertyData").FromXElement<List<LitePropertyData>>() : new List<LitePropertyData>() }).ToList(); return results; } Here is the xml: <?xml version="1.0" encoding="utf-8"?> <root> <rows> <row> <ID>1</ID> <ImageUrl></ImageUrl> <Html>Home page</Html> <Created>01-01-2012</Created> <Changed>01-01-2012</Changed> <Name>Home page</Name> <FriendlyName>home-page</FriendlyName> </row> <row xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Guid>edeaf468-f490-4271-bf4d-be145bc6a1fd</Guid> <ID>8</ID> <Name>Unused</Name> <ParentID>1</ParentID> <Created>2006-03-25T10:57:17</Created> <Changed>2012-07-17T12:24:30.0984747+01:00</Changed> <ChangedBy /> <LitePageTypeID xsi:nil="true" /> <Html> What is the purpose of this option? This option checks the current document for accessibility issues. It uses Bobby to provide details of whether the current web page conforms to W3C's WCAG criteria for web content accessibility. Issues with Bobby and Cynthia Bobby and Cynthia are free services that supposedly allow a user to expose web page accessibility barriers. It is something of a guide but perhaps a blunt instrument. I tested a few of the webpages that I have designed. Sure enough, my pages fall short and for good reason. I am not about to claim that Bobby and Cynthia are useless. Although it is useful and commendable tool, it project appears to be overly ambitious. Nevertheless, let me explain my issues with Bobby and Cynthia: First, certain W3C standards for designing web documents are often too strict and unworkable. For instance, in some versions W3C standards for HTML, certain tags should not include a particular attribute, whereas in others they are requisite if the document is to be ???well-formed???. The standard that a designer chooses is determined usually by the requirements specification document. This specifies which browsers and versions of those browsers that the web page is expected to correctly display. Forcing a hypertext document to conform strictly to a specific W3C standard for HTML is often no simple task. In the worst case, it cannot conform without losing some aesthetics or accessibility functionality. Second, the case of HTML documents is not an isolated case. Standards for XML, XSL, JavaScript, VBScript, are analogous. Therefore, you might imagine the problems when you begin to combine these languages and formats in an HTML document. Third, there is always more than one way to skin a cat. For example, Bobby and Cynthia may flag those IMG tags that do not contain a TITLE attribute. There might be good reason that a web developer chooses not to include the title attribute. The title attribute has a limited numbers of characters and does not support carriage returns. This is a major defect in the design of this tag. In fact, before the TITLE attribute was supported, there was the ALT attribute. Most browsers support both, yet they both perform a similar function. However, both attributes share the same deficiencies. In practice, there are instances where neither attribute would be used. Instead, for example, the developer would write some JavaScript or VBScript to circumvent these deficiencies. The concern is that Bobby and Cynthia would not notice this because it does not ???understand??? what the JavaScript does. </Html> <FriendlyName>unused</FriendlyName> <IsDeleted>false</IsDeleted> <Properties> <LitePropertyData> <Description>Image for the page</Description> <DisplayEditUI>true</DisplayEditUI> <OwnerTab>1</OwnerTab> <DisplayName>Image Url</DisplayName> <FieldOrder>1</FieldOrder> <IsRequired>false</IsRequired> <Name>ImageUrl</Name> <IsModified>false</IsModified> <ParentPageID>3</ParentPageID> <Type>String</Type> <Value xsi:type="xsd:string">smarter.jpg</Value> </LitePropertyData> <LitePropertyData> <Description>WebItemApplicationEnum</Description> <DisplayEditUI>true</DisplayEditUI> <OwnerTab>1</OwnerTab> <DisplayName>WebItemApplicationEnum</DisplayName> <FieldOrder>1</FieldOrder> <IsRequired>false</IsRequired> <Name>WebItemApplicationEnum</Name> <IsModified>false</IsModified> <ParentPageID>3</ParentPageID> <Type>Number</Type> <Value xsi:type="xsd:string">1</Value> </LitePropertyData> </Properties> <Seo> <Author>Phil Carney</Author> <Classification /> <Copyright>Carnotaurus</Copyright> <Description> What is the purpose of this option? This option checks the current document for accessibility issues. It uses Bobby to provide details of whether the current web page conforms to W3C's WCAG criteria for web content accessibility. Issues with Bobby and Cynthia Bobby and Cynthia are free services that supposedly allow a user to expose web page accessibility barriers. It is something of a guide but perhaps a blunt instrument. I tested a few of the webpages that I have designed. Sure enough, my pages fall short and for good reason. I am not about to claim that Bobby and Cynthia are useless. Although it is useful and commendable tool, it project appears to be overly ambitious. Nevertheless, let me explain my issues with Bobby and Cynthia: First, certain W3C standards for designing web documents are often too strict and unworkable. For instance, in some versions W3C standards for HTML, certain tags should not include a particular attribute, whereas in others they are requisite if the document is to be ???well-formed???. The standard that a designer chooses is determined usually by the requirements specification document. This specifies which browsers and versions of those browsers that the web page is expected to correctly display. Forcing a hypertext document to conform strictly to a specific W3C standard for HTML is often no simple task. In the worst case, it cannot conform without losing some aesthetics or accessibility functionality. Second, the case of HTML documents is not an isolated case. Standards for XML, XSL, JavaScript, VBScript, are analogous. Therefore, you might imagine the problems when you begin to combine these languages and formats in an HTML document. Third, there is always more than one way to skin a cat. For example, Bobby and Cynthia may flag those IMG tags that do not contain a TITLE attribute. There might be good reason that a web developer chooses not to include the title attribute. The title attribute has a limited numbers of characters and does not support carriage returns. This is a major defect in the design of this tag. In fact, before the TITLE attribute was supported, there was the ALT attribute. Most browsers support both, yet they both perform a similar function. However, both attributes share the same deficiencies. In practice, there are instances where neither attribute would be used. Instead, for example, the developer would write some JavaScript or VBScript to circumvent these deficiencies. The concern is that Bobby and Cynthia would not notice this because it does not ???understand??? what the JavaScript does. </Description> <Keywords>unused</Keywords> <Title>unused</Title> </Seo> </row> </rows> </root> EDIT Here are my entities: public class LitePropertyData { public virtual string Description { get; set; } public virtual bool DisplayEditUI { get; set; } public int OwnerTab { get; set; } public virtual string DisplayName { get; set; } public int FieldOrder { get; set; } public bool IsRequired { get; set; } public string Name { get; set; } public virtual bool IsModified { get; set; } public virtual int ParentPageID { get; set; } public LiteDataType Type { get; set; } public object Value { get; set; } } [Serializable] public class LitePageData { public String Guid { get; set; } public Int32 ID { get; set; } public String Name { get; set; } public Int32? ParentID { get; set; } public DateTime Created { get; set; } public String CreatedBy { get; set; } public DateTime Changed { get; set; } public String ChangedBy { get; set; } public Int32? LitePageTypeID { get; set; } public String Html { get; set; } public String FriendlyName { get; set; } public Boolean IsDeleted { get; set; } public List<LitePropertyData> Properties { get; set; } public LiteSeoPageData Seo { get; set; } /// <summary> /// Saves the specified XML full file path. /// </summary> /// <param name="xmlFullFilePath">The XML full file path.</param> public void Save(String xmlFullFilePath) { XDocument doc = XDocument.Load(xmlFullFilePath); XElement demoNode = this.ToXElement<LitePageData>(); demoNode.Name = "row"; doc.Descendants("rows").Single().Add(demoNode); doc.Save(xmlFullFilePath); } }

    Read the article

  • Retrieving a list of eBay categories using the .NET SDK and GetCategoriesCall

    - by Bill Osuch
    eBay offers a .Net SDK for its Trading API - this post will show you the basics of making an API call and retrieving a list of current categories. You'll need the category ID(s) for any apps that post or search eBay. To start, download the latest SDK from https://www.x.com/developers/ebay/documentation-tools/sdks/dotnet and create a new console app project. Add a reference to the eBay.Service DLL, and a few using statements: using eBay.Service.Call; using eBay.Service.Core.Sdk; using eBay.Service.Core.Soap; I'm assuming at this point you've already joined the eBay Developer Network and gotten your app IDs and user tokens. If not: Join the developer program Generate tokens Next, add an app.config file that looks like this: <?xml version="1.0"?> <configuration>   <appSettings>     <add key="Environment.ApiServerUrl" value="https://api.ebay.com/wsapi"/>     <add key="UserAccount.ApiToken" value="YourBigLongToken"/>   </appSettings> </configuration> And then add the code to get the xml list of categories: ApiContext apiContext = GetApiContext(); GetCategoriesCall apiCall = new GetCategoriesCall(apiContext); apiCall.CategorySiteID = "0"; //Leave this commented out to retrieve all category levels (all the way down): //apiCall.LevelLimit = 4; //Uncomment this to begin at a specific parent category: //StringCollection parentCategories = new StringCollection(); //parentCategories.Add("63"); //apiCall.CategoryParent = parentCategories; apiCall.DetailLevelList.Add(DetailLevelCodeType.ReturnAll); CategoryTypeCollection cats = apiCall.GetCategories(); using (StreamWriter outfile = new StreamWriter(@"C:\Temp\EbayCategories.xml")) {    outfile.Write(apiCall.SoapResponse); } GetApiContext() (provided in the sample apps in the SDK) is required for any call:         static ApiContext GetApiContext()         {             //apiContext is a singleton,             //to avoid duplicate configuration reading             if (apiContext != null)             {                 return apiContext;             }             else             {                 apiContext = new ApiContext();                 //set Api Server Url                 apiContext.SoapApiServerUrl = ConfigurationManager.AppSettings["Environment.ApiServerUrl"];                 //set Api Token to access eBay Api Server                 ApiCredential apiCredential = new ApiCredential();                 apiCredential.eBayToken = ConfigurationManager.AppSettings["UserAccount.ApiToken"];                 apiContext.ApiCredential = apiCredential;                 //set eBay Site target to US                 apiContext.Site = SiteCodeType.US;                 return apiContext;             }         } Running this will give you a large (4 or 5 megs) XML file that looks something like this: <soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">    <soapenv:Body>       <GetCategoriesResponse >          <Timestamp>2012-06-06T16:03:46.158Z</Timestamp>          <Ack>Success</Ack>          <CorrelationID>d02dd9e3-295a-4268-9ea5-554eeb2e0e18</CorrelationID>          <Version>775</Version>          <Build>E775_CORE_BUNDLED_14891042_R1</Build> -          <CategoryArray>             <Category>                <BestOfferEnabled>true</BestOfferEnabled>                <AutoPayEnabled>true</AutoPayEnabled>                <CategoryID>20081</CategoryID>                <CategoryLevel>1</CategoryLevel>                <CategoryName>Antiques</CategoryName>                <CategoryParentID>20081</CategoryParentID>             </Category>             <Category>                <BestOfferEnabled>true</BestOfferEnabled>                <AutoPayEnabled>true</AutoPayEnabled>                <CategoryID>37903</CategoryID>                <CategoryLevel>2</CategoryLevel>                <CategoryName>Antiquities</CategoryName>                <CategoryParentID>20081</CategoryParentID>             </Category> (etc.) You could work with this, but I wanted a nicely nested view, like this: <CategoryArray>    <Category Name='Antiques' ID='20081' Level='1'>       <Category Name='Antiquities' ID='37903' Level='2'/> </CategoryArray> ...so I transformed the xml: private void TransformXML(CategoryTypeCollection cats)         {             XmlElement topLevelElement = null;             XmlElement childLevelElement = null;             XmlNode parentNode = null;             string categoryString = "";             XmlDocument returnDoc = new XmlDocument();             XmlElement root = returnDoc.CreateElement("CategoryArray");             returnDoc.AppendChild(root);             XmlNode rootNode = returnDoc.SelectSingleNode("/CategoryArray");             //Loop through CategoryTypeCollection             foreach (CategoryType category in cats)             {                 if (category.CategoryLevel == 1)                 {                     //Top-level category, so we know we can just add it                     topLevelElement = returnDoc.CreateElement("Category");                     topLevelElement.SetAttribute("Name", category.CategoryName);                     topLevelElement.SetAttribute("ID", category.CategoryID);                     rootNode.AppendChild(topLevelElement);                 }                 else                 {                     // Level number will determine how many Category nodes we are deep                     categoryString = "";                     for (int x = 1; x < category.CategoryLevel; x++)                     {                         categoryString += "/Category";                     }                     parentNode = returnDoc.SelectSingleNode("/CategoryArray" + categoryString + "[@ID='" + category.CategoryParentID[0] + "']");                     childLevelElement = returnDoc.CreateElement("Category");                     childLevelElement.SetAttribute("Name", category.CategoryName);                     childLevelElement.SetAttribute("ID", category.CategoryID);                     parentNode.AppendChild(childLevelElement);                 }             }             returnDoc.Save(@"C:\Temp\EbayCategories-Modified.xml");         } Yes, there are probably much cleaner ways of dealing with it, but I'm not an xml expert… Keep in mind, eBay categories do not change on a regular basis, so you should be able to cache this data (either in a file or database) for some time. The xml returns a CategoryVersion node that you can use to determine if the category list has changed. Technorati Tags: Csharp, eBay

    Read the article

  • RIF PRD: Presentation syntax issues

    - by Charles Young
    Over Christmas I got to play a bit with the W3C RIF PRD and came across a few issues which I thought I would record for posterity. Specifically, I was working on a grammar for the presentation syntax using a GLR grammar parser tool (I was using the current CTP of ‘M’ (MGrammer) and Intellipad – I do so hope the MS guys don’t kill off M and Intellipad now they have dropped the other parts of SQL Server Modelling). I realise that the presentation syntax is non-normative and that any issues with it do not therefore compromise the standard. However, presentation syntax is useful in its own right, and it would be great to iron out any issues in a future revision of the standard. The main issues are actually not to do with the grammar at all, but rather with the ‘running example’ in the RIF PRD recommendation. I started with the code provided in Example 9.1. There are several discrepancies when compared with the EBNF rules documented in the standard. Broadly the problems can be categorised as follows: ·      Parenthesis mismatch – the wrong number of parentheses are used in various places. For example, in GoldRule, the RHS of the rule (the ‘Then’) is nested in the LHS (‘the If’). In NewCustomerAndWidgetRule, the RHS is orphaned from the LHS. Together with additional incorrect parenthesis, this leads to orphanage of UnknownStatusRule from the entire Document. ·      Invalid use of parenthesis in ‘Forall’ constructs. Parenthesis should not be used to enclose formulae. Removal of the invalid parenthesis gave me a feeling of inconsistency when comparing formulae in Forall to formulae in If. The use of parenthesis is not actually inconsistent in these two context, but in an If construct it ‘feels’ as if you are enclosing formulae in parenthesis in a LISP-like fashion. In reality, the parenthesis is simply being used to group subordinate syntax elements. The fact that an If construct can contain only a single formula as an immediate child adds to this feeling of inconsistency. ·      Invalid representation of compact URIs (CURIEs) in the context of Frame productions. In several places the URIs are not qualified with a namespace prefix (‘ex1:’). This conflicts with the definition of CURIEs in the RIF Datatypes and Built-Ins 1.0 document. Here are the productions: CURIE          ::= PNAME_LN                  | PNAME_NS PNAME_LN       ::= PNAME_NS PN_LOCAL PNAME_NS       ::= PN_PREFIX? ':' PN_LOCAL       ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* PN_CHARS)? PN_CHARS       ::= PN_CHARS_U                  | '-' | [0-9] | #x00B7                  | [#x0300-#x036F] | [#x203F-#x2040] PN_CHARS_U     ::= PN_CHARS_BASE                  | '_' PN_CHARS_BASE ::= [A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]                  | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF]                  | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]                  | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]                  | [#x10000-#xEFFFF] PN_PREFIX      ::= PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)? The more I look at CURIEs, the more my head hurts! The RIF specification allows prefixes and colons without local names, which surprised me. However, the CURIE Syntax 1.0 working group note specifically states that this form is supported…and then promptly provides a syntactic definition that seems to preclude it! However, on (much) deeper inspection, it appears that ‘ex1:’ (for example) is allowed, but would really represent a ‘fragment’ of the ‘reference’, rather than a prefix! Ouch! This is so completely ambiguous that it surely calls into question the whole CURIE specification.   In any case, RIF does not allow local names without a prefix. ·      Missing ‘External’ specifiers for built-in functions and predicates.  The EBNF specification enforces this for terms within frames, but does not appear to enforce (what I believe is) the correct use of External on built-in predicates. In any case, the running example only specifies ‘External’ once on the predicate in UnknownStatusRule. External() is required in several other places. ·      The List used on the LHS of UnknownStatusRule is comma-delimited. This is not supported by the EBNF definition. Similarly, the argument list of pred:list-contains is illegally comma-delimited. ·      Unnecessary use of conjunction around a single formula in DiscountRule. This is strictly legal in the EBNF, but redundant.   All the above issues concern the presentation syntax used in the running example. There are a few minor issues with the grammar itself. Note that Michael Kiefer stated in his paper “Rule Interchange Format: The Framework” that: “The presentation syntax of RIF … is an abstract syntax and, as such, it omits certain details that might be important for unambiguous parsing.” ·      The grammar cannot differentiate unambiguously between strategies and priorities on groups. A processor is forced to resolve this by detecting the use of IRIs and integers. This could easily be fixed in the grammar.   ·      The grammar cannot unambiguously parse the ‘->’ operator in frames. Specifically, ‘-’ characters are allowed in PN_LOCAL names and hence a parser cannot determine if ‘status->’ is (‘status’ ‘->’) or (‘status-’ ‘>’).   One way to fix this is to amend the PN_LOCAL production as follows: PN_LOCAL ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* ((PN_CHARS)-('-')))? However, unilaterally changing the definition of this production, which is defined in the SPARQL Query Language for RDF specification, makes me uncomfortable. ·      I assume that the presentation syntax is case-sensitive. I couldn’t find this stated anywhere in the documentation, but function/predicate names do appear to be documented as being case-sensitive. ·      The EBNF does not specify whitespace handling. A couple of productions (RULE and ACTION_BLOCK) are crafted to enforce the use of whitespace. This is not necessary. It seems inconsistent with the rest of the specification and can cause parsing issues. In addition, the Const production exhibits whitespaces issues. The intention may have been to disallow the use of whitespace around ‘^^’, but any direct implementation of the EBNF will probably allow whitespace between ‘^^’ and the SYMSPACE. Of course, I am being a little nit-picking about all this. On the whole, the EBNF translated very smoothly and directly to ‘M’ (MGrammar) and proved to be fairly complete. I have encountered far worse issues when translating other EBNF specifications into usable grammars.   I can’t imagine there would be any difficulty in implementing the same grammar in Antlr, COCO/R, gppg, XText, Bison, etc. A general observation, which repeats a point made above, is that the use of parenthesis in the presentation syntax can feel inconsistent and un-intuitive.   It isn’t actually inconsistent, but I think the presentation syntax could be improved by adopting braces, rather than parenthesis, to delimit subordinate syntax elements in a similar way to so many programming languages. The familiarity of braces would communicate the structure of the syntax more clearly to people like me.  If braces were adopted, parentheses could be retained around ‘var (frame | ‘new()’) constructs in action blocks. This use of parenthesis feels very LISP-like, and I think that this is my issue. It’s as if the presentation syntax represents the deformed love-child of LISP and C. In some places (specifically, action blocks), parenthesis is used in a LISP-like fashion. In other places it is used like braces in C. I find this quite confusing. Here is a corrected version of the running example (Example 9.1) in compliant presentation syntax: Document(    Prefix( ex1 <http://example.com/2009/prd2> )    (* ex1:CheckoutRuleset *)  Group rif:forwardChaining (     (* ex1:GoldRule *)    Group 10 (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"Silver"])        (Forall ?shoppingCart such that ?customer[ex1:shoppingCart->?shoppingCart]           (If Exists ?value (And(?shoppingCart[ex1:value->?value]                                  External(pred:numeric-greater-than-or-equal(?value 2000))))            Then Do(Modify(?customer[ex1:status->"Gold"])))))      (* ex1:DiscountRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Or( ?customer[ex1:status->"Silver"]                ?customer[ex1:status->"Gold"])         Then Do ((?s ?customer[ex1:shoppingCart-> ?s])                  (?v ?s[ex1:value->?v])                  Modify(?s [ex1:value->External(func:numeric-multiply (?v 0.95))]))))      (* ex1:NewCustomerAndWidgetRule *)    Group (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"New"] )        (If Exists ?shoppingCart ?item                   (And(?customer[ex1:shoppingCart->?shoppingCart]                        ?shoppingCart[ex1:containsItem->?item]                        ?item # ex1:Widget ) )         Then Do( (?s ?customer[ex1:shoppingCart->?s])                  (?val ?s[ex1:value->?val])                  (?voucher ?customer[ex1:voucher->?voucher])                  Retract(?customer[ex1:voucher->?voucher])                  Retract(?voucher)                  Modify(?s[ex1:value->External(func:numeric-multiply(?val 0.90))]))))      (* ex1:UnknownStatusRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Not(Exists ?status                       (And(?customer[ex1:status->?status]                            External(pred:list-contains(List("New" "Bronze" "Silver" "Gold") ?status)) )))         Then Do( Execute(act:print(External(func:concat("New customer: " ?customer))))                  Assert(?customer[ex1:status->"New"]))))  ) )   I hope that helps someone out there :-)

    Read the article

  • RiverTrail - JavaScript GPPGU Data Parallelism

    - by JoshReuben
    Where is WebCL ? The Khronos WebCL working group is working on a JavaScript binding to the OpenCL standard so that HTML 5 compliant browsers can host GPGPU web apps – e.g. for image processing or physics for WebGL games - http://www.khronos.org/webcl/ . While Nokia & Samsung have some protype WebCL APIs, Intel has one-upped them with a higher level of abstraction: RiverTrail. Intro to RiverTrail Intel Labs JavaScript RiverTrail provides GPU accelerated SIMD data-parallelism in web applications via a familiar JavaScript programming paradigm. It extends JavaScript with simple deterministic data-parallel constructs that are translated at runtime into a low-level hardware abstraction layer. With its high-level JS API, programmers do not have to learn a new language or explicitly manage threads, orchestrate shared data synchronization or scheduling. It has been proposed as a draft specification to ECMA a (known as ECMA strawman). RiverTrail runs in all popular browsers (except I.E. of course). To get started, download a prebuilt version https://github.com/downloads/RiverTrail/RiverTrail/rivertrail-0.17.xpi , install Intel's OpenCL SDK http://www.intel.com/go/opencl and try out the interactive River Trail shell http://rivertrail.github.com/interactive For a video overview, see  http://www.youtube.com/watch?v=jueg6zB5XaM . ParallelArray the ParallelArray type is the central component of this API & is a JS object that contains ordered collections of scalars – i.e. multidimensional uniform arrays. A shape property describes the dimensionality and size– e.g. a 2D RGBA image will have shape [height, width, 4]. ParallelArrays are immutable & fluent – they are manipulated by invoking methods on them which produce new ParallelArray objects. ParallelArray supports several constructors over arrays, functions & even the canvas. // Create an empty Parallel Array var pa = new ParallelArray(); // pa0 = <>   // Create a ParallelArray out of a nested JS array. // Note that the inner arrays are also ParallelArrays var pa = new ParallelArray([ [0,1], [2,3], [4,5] ]); // pa1 = <<0,1>, <2,3>, <4.5>>   // Create a two-dimensional ParallelArray with shape [3, 2] using the comprehension constructor var pa = new ParallelArray([3, 2], function(iv){return iv[0] * iv[1];}); // pa7 = <<0,0>, <0,1>, <0,2>>   // Create a ParallelArray from canvas.  This creates a PA with shape [w, h, 4], var pa = new ParallelArray(canvas); // pa8 = CanvasPixelArray   ParallelArray exposes fluent API functions that take an elemental JS function for data manipulation: map, combine, scan, filter, and scatter that return a new ParallelArray. Other functions are scalar - reduce  returns a scalar value & get returns the value located at a given index. The onus is on the developer to ensure that the elemental function does not defeat data parallelization optimization (avoid global var manipulation, recursion). For reduce & scan, order is not guaranteed - the onus is on the dev to provide an elemental function that is commutative and associative so that scan will be deterministic – E.g. Sum is associative, but Avg is not. map Applies a provided elemental function to each element of the source array and stores the result in the corresponding position in the result array. The map method is shape preserving & index free - can not inspect neighboring values. // Adding one to each element. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.map(function inc(v) {     return v+1; }); //<2,3,4,5,6> combine Combine is similar to map, except an index is provided. This allows elemental functions to access elements from the source array relative to the one at the current index position. While the map method operates on the outermost dimension only, combine, can choose how deep to traverse - it provides a depth argument to specify the number of dimensions it iterates over. The elemental function of combine accesses the source array & the current index within it - element is computed by calling the get method of the source ParallelArray object with index i as argument. It requires more code but is more expressive. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.combine(function inc(i) { return this.get(i)+1; }); reduce reduces the elements from an array to a single scalar result – e.g. Sum. // Calculate the sum of the elements var source = new ParallelArray([1,2,3,4,5]); var sum = source.reduce(function plus(a,b) { return a+b; }); scan Like reduce, but stores the intermediate results – return a ParallelArray whose ith elements is the results of using the elemental function to reduce the elements between 0 and I in the original ParallelArray. // do a partial sum var source = new ParallelArray([1,2,3,4,5]); var psum = source.scan(function plus(a,b) { return a+b; }); //<1, 3, 6, 10, 15> scatter a reordering function - specify for a certain source index where it should be stored in the result array. An optional conflict function can prevent an exception if two source values are assigned the same position of the result: var source = new ParallelArray([1,2,3,4,5]); var reorder = source.scatter([4,0,3,1,2]); // <2, 4, 5, 3, 1> // if there is a conflict use the max. use 33 as a default value. var reorder = source.scatter([4,0,3,4,2], 33, function max(a, b) {return a>b?a:b; }); //<2, 33, 5, 3, 4> filter // filter out values that are not even var source = new ParallelArray([1,2,3,4,5]); var even = source.filter(function even(iv) { return (this.get(iv) % 2) == 0; }); // <2,4> Flatten used to collapse the outer dimensions of an array into a single dimension. pa = new ParallelArray([ [1,2], [3,4] ]); // <<1,2>,<3,4>> pa.flatten(); // <1,2,3,4> Partition used to restore the original shape of the array. var pa = new ParallelArray([1,2,3,4]); // <1,2,3,4> pa.partition(2); // <<1,2>,<3,4>> Get return value found at the indices or undefined if no such value exists. var pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]) pa.get([1,1]); // 11 pa.get([1]); // <10,11,12,13,14>

    Read the article

  • Drawing on a webpage – HTML5 - IE9

    - by nmarun
    So I upgraded to IE9 and continued exploring HTML5. Now there’s this ‘thing’ called Canvas in HTML5 with which you can do some cool stuff. Alright what IS this Canvas thing anyways? The Web Hypertext Application Technology Working Group says this: “The canvas element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering graphs, game graphics, or other visual images on the fly.” The Canvas element has two only attributes – width and height and when not specified they take up the default values of 300 and 150 respectively. Below is what my HTML file looks like: 1: <!DOCTYPE html> 2: <html lang="en-US"> 3: <head> 4: <script type="text/javascript" src="CustomScript.js"></script> 5: <script src="jquery-1.4.4.js" type="text/javascript"></script 6:  7: <title>Draw on a webpage</title> 8: </head> 9: <body> 10: <canvas id="canvas" width="500" height="500"></canvas> 11: <br /> 12: <input type="submit" id="submit" value="Clear" /> 13: <h4 id="currentPosition"> 14: 0, 0 15: </h4> 16: <div id="mousedownCoords"></div> 17: </body> 18: </html> In case you’re wondering, this is not a MVC or any kind of web application. This is plain ol’ HTML even though I’m writing all this in VS 2010. You see this is a very simple, ‘gimmicks-free’ html page. I have declared a Canvas element on line 10 and a button on line 11 to clear the drawing board. I’m using jQuery / JavaScript show the current position of the mouse on the screen. This will get updated in the ‘currentPosition’ <h4> tag and I’m using the ‘mousedownCoords’ to write all the places where the mouse was clicked. This is what my page renders as: The rectangle with a background is our canvas. The coloring is due to some javascript (which we’ll see in a moment). Now let’s get to our CustomScript.js file. 1: jQuery(document).ready(function () { 2: var isFirstClick = true; 3: var canvas = document.getElementById("canvas"); 4: // getContext: Returns an object that exposes an API for drawing on the canvas 5: var canvasContext = canvas.getContext("2d"); 6: fillBackground(); 7:  8: $("#submit").click(function () { 9: clearCanvas(); 10: fillBackground(); 11: }); 12:  13: $(document).mousemove(function (e) { 14: $('#currentPosition').html(e.pageX + ', ' + e.pageY); 15: }); 16: $(document).mouseup(function (e) { 17: // on the first click 18: // set the moveTo 19: if (isFirstClick == true) { 20: canvasContext.beginPath(); 21: canvasContext.moveTo(e.pageX - 7, e.pageY - 7); 22: isFirstClick = false; 23: } 24: else { 25: // on subsequent clicks, draw a line 26: canvasContext.lineTo(e.pageX - 7, e.pageY - 7); 27: canvasContext.stroke(); 28: } 29:  30: $('#mousedownCoords').text($('#mousedownCoords').text() + '(' + e.pageX + ',' + e.pageY + ')'); 31: }); 32:  33: function fillBackground() { 34: canvasContext.fillStyle = '#a1b1c3'; 35: canvasContext.fillRect(0, 0, 500, 500); 36: canvasContext.fill(); 37: } 38:  39: function clearCanvas() { 40: // wipe-out the canvas 41: canvas.width = canvas.width; 42: // set the isFirstClick to true 43: // so the next shape can begin 44: isFirstClick = true; 45: // clear the text 46: $('#mousedownCoords').text(''); 47: } 48: })   The script only looks long and complicated, but is not. I’ll go over the main steps. Get a ‘hold’ of your canvas object and retrieve the ‘2d’ context out of it. On mousemove event, write the current x and y coordinates to the ‘currentPosition’ element. On mouseup event, check if this is the first time the user has clicked on the canvas. The coloring of the canvas is done in the fillBackground() function. We first need to start a new path. This is done by calling the beginPath() function on our context. The moveTo() function sets the starting point of our path. The lineTo() function sets the end point of the line to be drawn. The stroke() function is the one that actually draws the line on our canvas. So if you want to play with the demo, here’s how you do it. First click on the canvas (nothing visible happens on the canvas). The second click draws a line from the first click to the current coordinates and so on and so forth. Click on the ‘Clear’ button, to reset the canvas and to give your creativity a clean slate. Here’s a sample output: Happy drawing! Verdict: HTML5 and IE9 – I think we’re on to something big and great here!

    Read the article

  • Using Windows Previous Versions to access ZFS Snapshots (July 14, 2009)

    - by user12612012
    The Previous Versions tab on the Windows desktop provides a straightforward, intuitive way for users to view or recover files from ZFS snapshots.  ZFS snapshots are read-only, point-in-time instances of a ZFS dataset, based on the same copy-on-write transactional model used throughout ZFS.  ZFS snapshots can be used to recover deleted files or previous versions of files and they are space efficient because unchanged data is shared between the file system and its snapshots.  Snapshots are available locally via the .zfs/snapshot directory and remotely via Previous Versions on the Windows desktop. Shadow Copies for Shared Folders was introduced with Windows Server 2003 but subsequently renamed to Previous Versions with the release of Windows Vista and Windows Server 2008.  Windows shadow copies, or snapshots, are based on the Volume Snapshot Service (VSS) and, as the [Shared Folders part of the] name implies, are accessible to clients via SMB shares, which is good news when using the Solaris CIFS Service.  And the nice thing is that no additional configuration is required - it "just works". On Windows clients, snapshots are accessible via the Previous Versions tab in Windows Explorer using the Shadow Copy client, which is available by default on Windows XP SP2 and later.  For Windows 2000 and pre-SP2 Windows XP, the client software is available for download from Microsoft: Shadow Copies for Shared Folders Client. Assuming that we already have a shared ZFS dataset, we can create ZFS snapshots and view them from a Windows client. zfs snapshot tank/home/administrator@snap101zfs snapshot tank/home/administrator@snap102 To view the snapshots on Windows, map the dataset on the client then right click on a folder or file and select Previous Versions.  Note that Windows will only display previous versions of objects that differ from the originals.  So you may have to modify files after creating a snapshot in order to see previous versions of those files. The screenshot above shows various snapshots in the Previous Versions window, created at different times.  On the left panel, the .zfs folder is visible, illustrating that this is a ZFS share.  The .zfs setting can be toggled as desired, it makes no difference when using previous versions.  To make the .zfs folder visible: zfs set snapdir=visible tank/home/administrator To hide the .zfs folder: zfs set snapdir=hidden tank/home/administrator The following screenshot shows the Previous Versions panel when a file has been selected.  In this case the user is prompted to view, copy or restore the file from one of the available snapshots. As can be seen from the screenshots above, the Previous Versions window doesn't display snapshot names: snapshots are listed by snapshot creation time, sorted in time order from most recent to oldest.  There's nothing we can do about this, it's the way that the interface works.  Perhaps one point of note, to avoid confusion, is that the ZFS snapshot creation time isnot the same as the root directory creation timestamp. In ZFS, all object attributes in the original dataset are preserved when a snapshot is taken, including the creation time of the root directory.  Thus the root directory creation timestamp is the time that the directory was created in the original dataset. # ls -d% all /home/administrator         timestamp: atime         Mar 19 15:40:23 2009         timestamp: ctime         Mar 19 15:40:58 2009         timestamp: mtime         Mar 19 15:40:58 2009         timestamp: crtime         Mar 19 15:18:34 2009 # ls -d% all /home/administrator/.zfs/snapshot/snap101         timestamp: atime         Mar 19 15:40:23 2009         timestamp: ctime         Mar 19 15:40:58 2009         timestamp: mtime         Mar 19 15:40:58 2009         timestamp: crtime         Mar 19 15:18:34 2009 The snapshot creation time can be obtained using the zfs command as shown below. # zfs get all tank/home/administrator@snap101NAME                             PROPERTY  VALUEtank/home/administrator@snap101  type      snapshottank/home/administrator@snap101  creation  Mon Mar 23 18:21 2009 In this example, the dataset was created on March 19th and the snapshot was created on March 23rd. In conclusion, Shadow Copies for Shared Folders provides a straightforward way for users to view or recover files from ZFS snapshots.  The Windows desktop provides an easy to use, intuitive GUI and no configuration is required to use or access previous versions of files or folders. REFERENCES FOR MORE INFORMATION ZFS ZFS Learning Center Introduction to Shadow Copies of Shared Folders Shadow Copies for Shared Folders Client

    Read the article

  • ODI 12c - Aggregating Data

    - by David Allan
    This posting will look at the aggregation component that was introduced in ODI 12c. For many ETL tool users this shouldn't be a big surprise, its a little different than ODI 11g but for good reason. You can use this component for composing data with relational like operations such as sum, average and so forth. Also, Oracle SQL supports special functions called Analytic SQL functions, you can use a specially configured aggregation component or the expression component for these now in ODI 12c. In database systems an aggregate transformation is a transformation where the values of multiple rows are grouped together as input on certain criteria to form a single value of more significant meaning - that's exactly the purpose of the aggregate component. In the image below you can see the aggregate component in action within a mapping, for how this and a few other examples are built look at the ODI 12c Aggregation Viewlet here - the viewlet illustrates a simple aggregation being built and then some Oracle analytic SQL such as AVG(EMP.SAL) OVER (PARTITION BY EMP.DEPTNO) built using both the aggregate component and the expression component. In 11g you used to just write the aggregate expression directly on the target, this made life easy for some cases, but it wan't a very obvious gesture plus had other drawbacks with ordering of transformations (agg before join/lookup. after set and so forth) and supporting analytic SQL for example - there are a lot of postings from creative folks working around this in 11g - anything from customizing KMs, to bypassing aggregation analysis in the ODI code generator. The aggregate component has a few interesting aspects. 1. Firstly and foremost it defines the attributes projected from it - ODI automatically will perform the grouping all you do is define the aggregation expressions for those columns aggregated. In 12c you can control this automatic grouping behavior so that you get the code you desire, so you can indicate that an attribute should not be included in the group by, that's what I did in the analytic SQL example using the aggregate component. 2. The component has a few other properties of interest; it has a HAVING clause and a manual group by clause. The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY clause. Because it acts on the results of the GROUP BY clause, aggregation functions can be used in the HAVING clause predicate, in 11g the filter was overloaded and used for both having clause and filter clause, this is no longer the case. If a filter is after an aggregate, it is after the aggregate (not sometimes after, sometimes having).  3. The manual group by clause let's you use special database grouping grammar if you need to. For example Oracle has a wealth of highly specialized grouping capabilities for data warehousing such as the CUBE function. If you want to use specialized functions like that you can manually define the code here. The example below shows the use of a manual group from an example in the Oracle database data warehousing guide where the SUM aggregate function is used along with the CUBE function in the group by clause. The SQL I am trying to generate looks like the following from the data warehousing guide; SELECT channel_desc, calendar_month_desc, countries.country_iso_code,       TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels, countries WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND   sales.channel_id= channels.channel_id  AND customers.country_id = countries.country_id  AND channels.channel_desc IN   ('Direct Sales', 'Internet') AND times.calendar_month_desc IN   ('2000-09', '2000-10') AND countries.country_iso_code IN ('GB', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, countries.country_iso_code); I can capture the source datastores, the filters and joins using ODI's dataset (or as a traditional flow) which enables us to incrementally design the mapping and the aggregate component for the sum and group by as follows; In the above mapping you can see the joins and filters declared in ODI's dataset, allowing you to capture the relationships of the datastores required in an entity-relationship style just like ODI 11g. The mix of ODI's declarative design and the common flow design provides for a familiar design experience. The example below illustrates flow design (basic arbitrary ordering) - a table load where only the employees who have maximum commission are loaded into a target. The maximum commission is retrieved from the bonus datastore and there is a look using employees as the driving table and only those with maximum commission projected. Hopefully this has given you a taster for some of the new capabilities provided by the aggregate component in ODI 12c. In summary, the actions should be much more consistent in behavior and more easily discoverable for users, the use of the components in a flow graph also supports arbitrary designs and the tool (rather than the interface designer) takes care of the realization using ODI's knowledge modules. Interested to know if a deep dive into each component is interesting for folks. Any thoughts? 

    Read the article

  • FAQ: Highlight GridView Row on Click and Retain Selected Row on Postback

    - by Vincent Maverick Durano
    A couple of months ago I’ve written a simple demo about “Highlighting GridView Row on MouseOver”. I’ve noticed many members in the forums (http://forums.asp.net) are asking how to highlight row in GridView and retain the selected row across postbacks. So I’ve decided to write this post to demonstrate how to implement it as reference to others who might need it. In this demo I going to use a combination of plain JavaScript and jQuery to do the client-side manipulation. I presumed that you already know how to bind the grid with data because I will not include the codes for populating the GridView here. For binding the gridview you can refer this post: Binding GridView with Data the ADO.Net way or this one: GridView Custom Paging with LINQ. To get started let’s implement the highlighting of GridView row on row click and retain the selected row on postback.  For simplicity I set up the page like this: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <h2>You have selected Row: (<asp:Label ID="Label1" runat="server" />)</h2> <asp:HiddenField ID="hfCurrentRowIndex" runat="server"></asp:HiddenField> <asp:HiddenField ID="hfParentContainer" runat="server"></asp:HiddenField> <asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Trigger Postback" /> <asp:GridView ID="grdCustomer" runat="server" AutoGenerateColumns="false" onrowdatabound="grdCustomer_RowDataBound"> <Columns> <asp:BoundField DataField="Company" HeaderText="Company" /> <asp:BoundField DataField="Name" HeaderText="Name" /> <asp:BoundField DataField="Title" HeaderText="Title" /> <asp:BoundField DataField="Address" HeaderText="Address" /> </Columns> </asp:GridView> </asp:Content>   Note: Since the action is done at the client-side, when we do a postback like (clicking on a button) the page will be re-created and you will lose the highlighted row. This is normal because the the server doesn't know anything about the client/browser not unless if you do something to notify the server that something has changed. To persist the settings we will use some HiddenFields control to store the data so that when it postback we can reference the value from there. Now here’s the JavaScript functions below: <asp:content id="Content1" runat="server" contentplaceholderid="HeadContent"> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js" type="text/javascript"></script> <script type="text/javascript">       var prevRowIndex;       function ChangeRowColor(row, rowIndex) {           var parent = document.getElementById(row);           var currentRowIndex = parseInt(rowIndex) + 1;                 if (prevRowIndex == currentRowIndex) {               return;           }           else if (prevRowIndex != null) {               parent.rows[prevRowIndex].style.backgroundColor = "#FFFFFF";           }                 parent.rows[currentRowIndex].style.backgroundColor = "#FFFFD6";                 prevRowIndex = currentRowIndex;                 $('#<%= Label1.ClientID %>').text(currentRowIndex);                 $('#<%= hfParentContainer.ClientID %>').val(row);           $('#<%= hfCurrentRowIndex.ClientID %>').val(rowIndex);       }             $(function () {           RetainSelectedRow();       });             function RetainSelectedRow() {           var parent = $('#<%= hfParentContainer.ClientID %>').val();           var currentIndex = $('#<%= hfCurrentRowIndex.ClientID %>').val();           if (parent != null) {               ChangeRowColor(parent, currentIndex);           }       }          </script> </asp:content>   The ChangeRowColor() is the function that sets the background color of the selected row. It is also where we set the previous row and rowIndex values in HiddenFields.  The $(function(){}); is a short-hand for the jQuery document.ready event. This event will be fired once the page is posted back to the server that’s why we call the function RetainSelectedRow(). The RetainSelectedRow() function is where we referenced the current selected values stored from the HiddenFields and pass these values to the ChangeRowColor() function to retain the highlighted row. Finally, here’s the code behind part: protected void grdCustomer_RowDataBound(object sender, GridViewRowEventArgs e) { if (e.Row.RowType == DataControlRowType.DataRow) { e.Row.Attributes.Add("onclick", string.Format("ChangeRowColor('{0}','{1}');", e.Row.ClientID, e.Row.RowIndex)); } } The code above is responsible for attaching the javascript onclick event for each row and call the ChangeRowColor() function and passing the e.Row.ClientID and e.Row.RowIndex to the function. Here’s the sample output below:   That’s it! I hope someone find this post useful! Technorati Tags: jQuery,GridView,JavaScript,TipTricks

    Read the article

  • Implement Tree/Details With Taskflow Regions Using EJB

    - by Deepak Siddappa
    This article describes on Display Tree/Details using taskflow regions.Use Case DescriptionLet us take scenario where we need to display Tree/Details, left region contains category hierarchy with items listed in a tree structure (ex:- Region-Countries-Locations-Departments in tree format) and right region contains the Employees list.In detail, Here User may drills down through categories using a tree until Employees are listed. Clicking the tree node name displays Employee list in the adjacent pane related to particular tree node. Implementation StepsThe script for creating the tables and inserting the data required for this application CreateSchema.sql Lets create a Java EE Web Application with Entities based on Regions, Countries, Locations, Departments and Employees table. Create a Stateless Session Bean and data control for the Stateless Session Bean. Add the below code to the session bean and expose the method in local/remote interface and generate a data control for that.Note:- Here in the below code "em" is a EntityManager. public List<Employees> empFilteredByTreeNode(String treeNodeType, String paramValue) { String queryString = null; try { if (treeNodeType == "null") { queryString = "select * from Employees emp ORDER BY emp.employee_id ASC"; } else if (Pattern.matches("[a-zA-Z]+[_]+[a-zA-Z]+[_]+[[0-9]+]+", treeNodeType)) { queryString = "select * from employees emp INNER JOIN departments dept\n" + "ON emp.department_id = dept.department_id JOIN locations loc\n" + "ON dept.location_id = loc.location_id JOIN countries cont\n" + "ON loc.country_id = cont.country_id JOIN regions reg\n" + "ON cont.region_id = reg.region_id and reg.region_name = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.contains("regionsFindAll_bc_countriesList_1")) { queryString = "select * from employees emp INNER JOIN departments dept \n" + "ON emp.department_id = dept.department_id JOIN locations loc \n" + "ON dept.location_id = loc.location_id JOIN countries cont \n" + "ON loc.country_id = cont.country_id and cont.country_name = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.contains("regionsFindAll_bc_locationsList_1")) { queryString = "select * from employees emp INNER JOIN departments dept ON emp.department_id = dept.department_id JOIN locations loc ON dept.location_id = loc.location_id and loc.city = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.trim().contains("regionsFindAll_bc_departmentsList_1")) { queryString = "select * from Employees emp INNER JOIN Departments dept ON emp.DEPARTMENT_ID = dept.DEPARTMENT_ID and dept.DEPARTMENT_NAME = '" + paramValue + "'"; } } catch (NullPointerException e) { System.out.println(e.getMessage()); } return em.createNativeQuery(queryString, Employees.class).getResultList(); } In the ViewController project, create two ADF taskflow with page Fragments and name them as FirstTaskflow and SecondTaskflow respectively. Open FirstTaskflow,from component palette drop view(Page Fragment) name it as TreeList.jsff. Open SeconfTaskflow, from component palette drop view(Page Fragment) name it as EmpList.jsff and create two paramters in its overview parameters tab as shown in below image. Open TreeList.jsff , from data control palette drop regionsFindAll->Tree as ADF Tree. In Edit Tree Binding dialog, for Tree Level Rules select the display attributes as follows:-model.Regions - regionNamemodel.Countries - countryNamemodel.Locations - citymodel.Departments - departmentName In structure panel, click on af:Tree - t1 and select selectionListener with edit property. Create a "TreeBean" managed bean with scope as "session" as shown in below Image. Create new method as getTreeNodeSelectedValue and click ok. Open TreeBean managed bean and add the below code: private String treeNodeType; private String paramValue; public void getTreeNodeSelectedValue(SelectionEvent selectionEvent) { RichTree tree = (RichTree)selectionEvent.getSource(); RowKeySet addedSet = selectionEvent.getAddedSet(); Iterator i = addedSet.iterator(); TreeModel model = (TreeModel)tree.getValue(); model.setRowKey(i.next()); JUCtrlHierNodeBinding node = (JUCtrlHierNodeBinding)tree.getRowData(); //oracle.jbo.Row Row rw = node.getRow(); Object selectedTreeNode = node.getAttribute(0); Object treeListType = node.getBindings(); String treeNodeType = treeListType.toString(); this.setParamValue(selectedTreeNode.toString()); this.setTreeNodeType(treeNodeType); } public void setTreeNodeType(String treeNodeType) { this.treeNodeType = treeNodeType; } public String getTreeNodeType() { return treeNodeType; } public void setParamValue(String paramValue) { this.paramValue = paramValue; } public String getParamValue() { return paramValue; }<br /> Open EmpList.jsff , from data control palette drop empFilteredByTreeNode->Employees->Table as ADF Read-only Table. After selecting the  Employees result set, in Edit Action Binding dialog window pass the pageFlowScope parameters as shown in below Image. In empList.jsff page, click Binding tab and click on Create Executable binding and select Invoke action and follow as shown in below image. Edit executeEmpFiltered invoke action properties and set the Refresh to ifNeeded, So when ever the page needs the method will be executed. Create Main.jspx page with page template as Oracle Three Column Layout. Drop FirstTaskflow as Region in start facet and drop SecondTaskflow as Region in center facet, Edit task Flow Binding dialog window pass the Input Paramters as shown in below Image. Run the Main.jspx, tree will be displayed in left region and emp details will displyaed on the right region. Click on the Americas in tree node, all emp related to the Americas related will be displayed. Click on Americas->United States of America->South San Francisco->Accounting, only employee belongs to the Accounting department will be displayed.

    Read the article

  • Installing Ubuntu 12.04.1 x64 with Fake RAID 1 [SOLVED]

    - by Arkadius
    I had: Software: Dual boot with Windows XP Ubuntu 10.04 LTS x32 Hardware Fake RAID 1 (mirroring) with 2x1 TB: Partition 1 - Windows Partition 2 - SWAP Partition 3 - / (root) Partition 4 - Extended Partition 5 - /home Partition 6 - /data arek@domek:/var/log/installer$ sudo fdisk -l Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000de1b9 Device Boot Start End Blocks Id System /dev/sda1 * 63 524297339 262148638+ 7 HPFS/NTFS/exFAT /dev/sda2 524297340 528506369 2104515 82 Linux swap / Solaris /dev/sda3 528506370 570468149 20980890 83 Linux /dev/sda4 570468150 1953118439 691325145 5 Extended /dev/sda5 570468213 675340469 52436128+ 83 Linux /dev/sda6 675340533 1953118439 638888953+ 83 Linux Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000de1b9 Device Boot Start End Blocks Id System /dev/sdb1 * 63 524297339 262148638+ 7 HPFS/NTFS/exFAT /dev/sdb2 524297340 528506369 2104515 82 Linux swap / Solaris /dev/sdb3 528506370 570468149 20980890 83 Linux /dev/sdb4 570468150 1953118439 691325145 5 Extended /dev/sdb5 570468213 675340469 52436128+ 83 Linux /dev/sdb6 675340533 1953118439 638888953+ 83 Linux arek@domek:/var/log/installer$ ls -l /dev/mapper/ total 0 crw------- 1 root root 10, 236 Oct 7 20:17 control lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha -> ../dm-0 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha1 -> ../dm-1 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha2 -> ../dm-2 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha3 -> ../dm-3 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha4 -> ../dm-4 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha5 -> ../dm-5 lrwxrwxrwx 1 root root 7 Oct 7 20:17 pdc_jhjbcaha6 -> ../dm-6 I wanted to upgrade from 10.04 x32 to 12.04 x64 using FRESH installation. So, run installation of Ubuntu 12.04.1 x64 LTS using alternate CD. During the installation I selected manual partitioning and to: - Use and Format / (root) - Use and Format SWAP - Use and Keep data on /home - Use and Keep data on /data After I clicked "Continue" I get error creating and formatting SWAP partition. I go to terminal with Alt + F2 (?) and hit enter. I discovered that there was visible RAID as only disk with NO partitions. Something like this: arek@domek:/var/log/installer$ ls -l /dev/mapper/ lrwxrwxrwx 1 root root 7 Oct 7 20:17 /dev/mapper/pdc_jhjbcaha -> ../dm-0 arek@domek:/var/log/installer$ ls -l /dev/dm* brw-rw---- 1 root disk 252, 0 Oct 7 20:17 /dev/dm-0 So I switched to log console Alt+F3 (?) and saw errors like below: Oct 7 14:02:45 check-missing-firmware: /dev/.udev/firmware-missing does not exist, skipping Oct 7 14:02:45 check-missing-firmware: /run/udev/firmware-missing does not exist, skipping Oct 7 14:02:45 check-missing-firmware: no missing firmware in /dev/.udev/firmware-missing /run/udev/firmware-missing Oct 7 14:02:45 anna-install: Installing dmraid-udeb Oct 7 14:02:45 anna[12599]: DEBUG: retrieving dmraid-udeb 1.0.0.rc16-4.1ubuntu8 Oct 7 14:02:49 anna[12599]: DEBUG: retrieving libdmraid1.0.0.rc16-udeb 1.0.0.rc16-4.1ubuntu8 Oct 7 14:02:49 anna[12599]: DEBUG: retrieving kpartx-udeb 0.4.9-3ubuntu5 Oct 7 14:02:49 disk-detect: Serial ATA RAID disk(s) detected. Oct 7 14:02:55 disk-detect: Enabling dmraid support. Oct 7 14:02:55 disk-detect: RAID set "pdc_jhjbcaha" was activated Oct 7 14:02:55 HERE --> dmraid-activate: ERROR: Cannot retrieve RAID set information for pdc_jhjbcaha Oct 7 14:02:56 check-missing-firmware: /dev/.udev/firmware-missing does not exist, skipping Oct 7 14:02:56 check-missing-firmware: /run/udev/firmware-missing does not exist, skipping Oct 7 14:02:56 check-missing-firmware: no missing firmware in /dev/.udev/firmware-missing /run/udev/firmware-missing Oct 7 14:02:57 main-menu[428]: DEBUG: resolver (libnewt0.52): package doesn't exist (ignored) Oct 7 14:02:57 main-menu[428]: DEBUG: resolver (ext2-modules): package doesn't exist (ignored) Oct 7 14:02:57 main-menu[428]: INFO: Menu item 'partman-base' selected Oct 7 14:02:57 kernel: [ 316.512999] NTFS driver 2.1.30 [Flags: R/O MODULE]. Oct 7 14:02:57 kernel: [ 316.523221] Btrfs loaded Oct 7 14:02:57 kernel: [ 316.534781] JFS: nTxBlock = 8192, nTxLock = 65536 Oct 7 14:02:57 kernel: [ 316.554749] SGI XFS with ACLs, security attributes, realtime, large block/inode numbers, no debug enabled Oct 7 14:02:57 kernel: [ 316.555336] SGI XFS Quota Management subsystem Oct 7 14:02:58 md-devices: mdadm: No arrays found in config file or automatically Oct 7 14:02:58 partman: No matching physical volumes found Oct 7 14:02:58 partman: No volume groups found Oct 7 14:02:58 partman: Reading all physical volumes. This may take a while... Oct 7 14:02:58 partman-lvm: No volume groups found Oct 7 14:02:58 partman: Error running 'tune2fs -l /dev/mapper/pdc_jhjbcaha' Oct 7 14:02:58 partman: Error running 'tune2fs -l /dev/mapper/pdc_jhjbcaha' Oct 7 14:02:58 partman: Error running 'tune2fs -l /dev/mapper/pdc_jhjbcaha' Oct 7 14:06:11 HERE --> partman: mkswap: can't open '/dev/mapper/pdc_jhjbcaha2': No such file or directory Oct 7 14:07:28 init: starting pid 401, tty '/dev/tty2': '-/bin/sh' Oct 7 14:15:00 net/hw-detect.hotplug: Detected hotpluggable network interface eth0 Oct 7 14:15:00 net/hw-detect.hotplug: Detected hotpluggable network interface lo As You can see there are 2 errors Oct 7 14:02:55 dmraid-activate: ERROR: Cannot retrieve RAID set information for pdc_jhjbcaha and Oct 7 14:06:11 partman: mkswap: can't open '/dev/mapper/pdc_jhjbcaha2': No such file or directory I looked in the internet and try to run command "dmraid -ay" and get something like that: dmraid -ay /dev/mapper/pdc_jhjbcaha -> Already activated /dev/mapper/pdc_jhjbcaha1 -> Successfully activated /dev/mapper/pdc_jhjbcaha2 -> Successfully activated /dev/mapper/pdc_jhjbcaha3 -> Successfully activated /dev/mapper/pdc_jhjbcaha4 -> Successfully activated /dev/mapper/pdc_jhjbcaha5 -> Successfully activated /dev/mapper/pdc_jhjbcaha6 -> Successfully activated Then I returned to installer with Alt+F1 (?) and click "Return" to return to partitioning menu. I did NOT change anything just selected again "Continue" and everything goes smoothly. I hope this will help someone. arkadius

    Read the article

  • Possible SWITCH Optimization in DAX – #powerpivot #dax #tabular

    - by Marco Russo (SQLBI)
    In one of the Advanced DAX Workshop I taught this year, I had an interesting discussion about how to optimize a SWITCH statement (which could be frequently used checking a slicer, like in the Parameter Table pattern). Let’s start with the problem. What happen when you have such a statement? Sales :=     SWITCH (         VALUES ( Period[Period] ),         "Current", [Internet Total Sales],         "MTD", [MTD Sales],         "QTD", [QTD Sales],         "YTD", [YTD Sales],          BLANK ()     ) The SWITCH statement is in reality just syntax sugar for a nested IF statement. When you place such a measure in a pivot table, for every cell of the pivot table the IF options are evaluated. In order to optimize performance, the DAX engine usually does not compute cell-by-cell, but tries to compute the values in bulk-mode. However, if a measure contains an IF statement, every cell might have a different execution path, so the current implementation might evaluate all the possible IF branches in bulk-mode, so that for every cell the result from one of the branches will be already available in a pre-calculated dataset. The price for that could be high. If you consider the previous Sales measure, the YTD Sales measure could be evaluated for all the cells where it’s not required, and also when YTD is not selected at all in a Pivot Table. The actual optimization made by the DAX engine could be different in every build, and I expect newer builds of Tabular and Power Pivot to be better than older ones. However, we still don’t live in an ideal world, so it could be better trying to help the engine finding a better execution plan. One student (Niek de Wit) proposed this approach: Selection := IF (     HASONEVALUE ( Period[Period] ),     VALUES ( Period[Period] ) ) Sales := CALCULATE (     [Internet Total Sales],     FILTER (         VALUES ( 'Internet Sales'[Order Quantity] ),         'Internet Sales'[Order Quantity]             = IF (                 [Selection] = "Current",                 'Internet Sales'[Order Quantity],                 -1             )     ) )     + CALCULATE (         [MTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "MTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     )     + CALCULATE (         [QTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "QTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     )     + CALCULATE (         [YTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "YTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     ) At first sight, you might think it’s impossible that this approach could be faster. However, if you examine with the profiler what happens, there is a different story. Every original IF’s execution branch is now a separate CALCULATE statement, which applies a filter that does not execute the required measure calculation if the result of the FILTER is empty. I used the ‘Internet Sales’[Order Quantity] column in this example just because in Adventure Works it has only one value (every row has 1): in the real world, you should use a column that has a very low number of distinct values, or use a column that has always the same value for every row (so it will be compressed very well!). Because the value –1 is never used in this column, the IF comparison in the filter discharge all the values iterated in the filter if the selection does not match with the desired value. I hope to have time in the future to write a longer article about this optimization technique, but in the meantime I’ve seen this optimization has been useful in many other implementations. Please write your feedback if you find scenarios (in both Power Pivot and Tabular) where you obtain performance improvements using this technique!

    Read the article

  • .NET Security Part 4

    - by Simon Cooper
    Finally, in this series, I am going to cover some of the security issues that can trip you up when using sandboxed appdomains. DISCLAIMER: I am not a security expert, and this is by no means an exhaustive list. If you actually are writing security-critical code, then get a proper security audit of your code by a professional. The examples below are just illustrations of the sort of things that can go wrong. 1. AppDomainSetup.ApplicationBase The most obvious one is the issue covered in the MSDN documentation on creating a sandbox, in step 3 – the sandboxed appdomain has the same ApplicationBase as the controlling appdomain. So let’s explore what happens when they are the same, and an exception is thrown. In the sandboxed assembly, Sandboxed.dll (IPlugin is an interface in a partially-trusted assembly, with a single MethodToDoThings on it): public class UntrustedPlugin : MarshalByRefObject, IPlugin { // implements IPlugin.MethodToDoThings() public void MethodToDoThings() { throw new EvilException(); } } [Serializable] internal class EvilException : Exception { public override string ToString() { // show we have read access to C:\Windows // read the first 5 directories Console.WriteLine("Pwned! Mwuahahah!"); foreach (var d in Directory.EnumerateDirectories(@"C:\Windows").Take(5)) { Console.WriteLine(d.FullName); } return base.ToString(); } } And in the controlling assembly: // what can possibly go wrong? AppDomainSetup appDomainSetup = new AppDomainSetup { ApplicationBase = AppDomain.CurrentDomain.SetupInformation.ApplicationBase } // only grant permissions to execute // and to read the application base, nothing else PermissionSet restrictedPerms = new PermissionSet(PermissionState.None); restrictedPerms.AddPermission( new SecurityPermission(SecurityPermissionFlag.Execution)); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.Read, appDomainSetup.ApplicationBase); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.pathDiscovery, appDomainSetup.ApplicationBase); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain("Sandbox", null, appDomainSetup, restrictedPerms); // execute UntrustedPlugin in the sandbox // don't crash the application if the sandbox throws an exception IPlugin o = (IPlugin)sandbox.CreateInstanceFromAndUnwrap("Sandboxed.dll", "UntrustedPlugin"); try { o.MethodToDoThings() } catch (Exception e) { Console.WriteLine(e.ToString()); } And the result? Oops. We’ve allowed a class that should be sandboxed to execute code with fully-trusted permissions! How did this happen? Well, the key is the exact meaning of the ApplicationBase property: The application base directory is where the assembly manager begins probing for assemblies. When EvilException is thrown, it propagates from the sandboxed appdomain into the controlling assembly’s appdomain (as it’s marked as Serializable). When the exception is deserialized, the CLR finds and loads the sandboxed dll into the fully-trusted appdomain. Since the controlling appdomain’s ApplicationBase directory contains the sandboxed assembly, the CLR finds and loads the assembly into a full-trust appdomain, and the evil code is executed. So the problem isn’t exactly that the sandboxed appdomain’s ApplicationBase is the same as the controlling appdomain’s, it’s that the sandboxed dll was in such a place that the controlling appdomain could find it as part of the standard assembly resolution mechanism. The sandbox then forced the assembly to load in the controlling appdomain by throwing a serializable exception that propagated outside the sandbox. The easiest fix for this is to keep the sandbox ApplicationBase well away from the ApplicationBase of the controlling appdomain, and don’t allow the sandbox permissions to access the controlling appdomain’s ApplicationBase directory. If you do this, then the sandboxed assembly can’t be accidentally loaded into the fully-trusted appdomain, and the code can’t be executed. If the plugin does try to induce the controlling appdomain to load an assembly it shouldn’t, a SerializationException will be thrown when it tries to load the assembly to deserialize the exception, and no damage will be done. 2. Loading the sandboxed dll into the application appdomain As an extension of the previous point, you shouldn’t directly reference types or methods in the sandboxed dll from your application code. That loads the assembly into the fully-trusted appdomain, and from there code in the assembly could be executed. Instead, pull out methods you want the sandboxed dll to have into an interface or class in a partially-trusted assembly you control, and execute methods via that instead (similar to the example above with the IPlugin interface). If you need to have a look at the assembly before executing it in the sandbox, either examine the assembly using reflection from within the sandbox, or load the assembly into the Reflection-only context in the application’s appdomain. The code in assemblies in the reflection-only context can’t be executed, it can only be reflected upon, thus protecting your appdomain from malicious code. 3. Incorrectly asserting permissions You should only assert permissions when you are absolutely sure they’re safe. For example, this method allows a caller read-access to any file they call this method with, including your documents, any network shares, the C:\Windows directory, etc: [SecuritySafeCritical] public static string GetFileText(string filePath) { new FileIOPermission(FileIOPermissionAccess.Read, filePath).Assert(); return File.ReadAllText(filePath); } Be careful when asserting permissions, and ensure you’re not providing a loophole sandboxed dlls can use to gain access to things they shouldn’t be able to. Conclusion Hopefully, that’s given you an idea of some of the ways it’s possible to get past the .NET security system. As I said before, this post is not exhaustive, and you certainly shouldn’t base any security-critical applications on the contents of this blog post. What this series should help with is understanding the possibilities of the security system, and what all the security attributes and classes mean and what they are used for, if you were to use the security system in the future.

    Read the article

  • Mscorlib mocking minus the attribute

    - by mehfuzh
    Mocking .net framework members (a.k.a. mscorlib) is always a daunting task. It’s the breed of static and final methods and full of surprises. Technically intercepting mscorlib members is completely different from other class libraries. This is the reason it is dealt differently. Generally, I prefer writing a wrapper around an mscorlib member (Ex. File.Delete(“abc.txt”)) and expose it via interface but that is not always an easy task if you already have years old codebase. While mocking mscorlib members first thing that comes to people’s mind is DateTime.Now. If you Google through, you will find tons of example dealing with just that. May be it’s the most important class that we can’t ignore and I will create an example using JustMock Q2 with the same. In Q2 2012, we just get rid of the MockClassAtrribute for mocking mscorlib members. JustMock is already attribute free for mocking class libraries. We radically think that vendor specific attributes only makes your code smelly and therefore decided the same for mscorlib. Now, I want to fake DateTime.Now for the following class: public class NestedDateTime { public DateTime GetDateTime() { return DateTime.Now; } } It is the simplest one that can be. The first thing here is that I tell JustMock “hey we have a DateTime.Now in NestedDateTime class that we want to mock”. To do so, during the test initialization I write this: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Mock.Replace(() => DateTime.Now).In<NestedDateTime>(x => x.GetDateTime());.csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I can also define it for all the members in the class, but that’s just a waste of extra watts. Mock.Replace(() => DateTime.Now).In<NestedDateTime>(); Now question, why should I bother doing it? The answer is that I am not using attribute and with this approach, I can mock any framework members not just File, FileInfo or DateTime. Here to note that we already mock beyond the three but when nested around a complex class, JustMock was not intercepting it correctly. Therefore, we decided to get rid of the attribute altogether fixing the issue. Finally, I write my test as usual. [TestMethod] public void ShouldAssertMockingDateTimeFromNestedClass() { var expected = new DateTime(2000, 1, 1); Mock.Arrange(() => DateTime.Now).Returns(expected); Assert.Equal(new NestedDateTime().GetDateTime(), expected); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s it, we are good. Now let me do the same for a random one, let’s say I want mock a member from DriveInfo: Mock.Replace<DriveInfo[]>(() => DriveInfo.GetDrives()).In<MsCorlibFixture>(x => x.ShouldReturnExpectedDriveWhenMocked()); Moving forward, I write my test: [TestMethod] public void ShouldReturnExpectedDriveWhenMocked() { Mock.Arrange(() => DriveInfo.GetDrives()).MustBeCalled(); DriveInfo.GetDrives(); Mock.Assert(()=> DriveInfo.GetDrives()); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here is one convention; you have to replace the mscorlib member before executing the target method that contains it. Here the call to DriveInfo is within the MsCorlibFixture therefore it should be defined during test initialization or before executing the test method. Hope this gives you the idea.

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • FAQ&ndash;Highlight GridView Row on Click and Retain Selected Row on Postback

    - by Vincent Maverick Durano
    A couple of months ago I’ve written a simple demo about “Highlighting GridView Row on MouseOver”. I’ve noticed many members in the forums (http://forums.asp.net) are asking how to highlight row in GridView and retain the selected row across postbacks. So I’ve decided to write this post to demonstrate how to implement it as reference to others who might need it. In this demo I going to use a combination of plain JavaScript and jQuery to do the client-side manipulation. I presumed that you already know how to bind the grid with data because I will not include the codes for populating the GridView here. For binding the gridview you can refer this post: Binding GridView with Data the ADO.Net way or this one: GridView Custom Paging with LINQ. To get started let’s implement the highlighting of GridView row on row click and retain the selected row on postback.  For simplicity I set up the page like this: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <h2>You have selected Row: (<asp:Label ID="Label1" runat="server" />)</h2> <asp:HiddenField ID="hfCurrentRowIndex" runat="server"></asp:HiddenField> <asp:HiddenField ID="hfParentContainer" runat="server"></asp:HiddenField> <asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Trigger Postback" /> <asp:GridView ID="grdCustomer" runat="server" AutoGenerateColumns="false" onrowdatabound="grdCustomer_RowDataBound"> <Columns> <asp:BoundField DataField="Company" HeaderText="Company" /> <asp:BoundField DataField="Name" HeaderText="Name" /> <asp:BoundField DataField="Title" HeaderText="Title" /> <asp:BoundField DataField="Address" HeaderText="Address" /> </Columns> </asp:GridView> </asp:Content>   Note: Since the action is done at the client-side, when we do a postback like (clicking on a button) the page will be re-created and you will lose the highlighted row. This is normal because the the server doesn't know anything about the client/browser not unless if you do something to notify the server that something has changed. To persist the settings we will use some HiddenFields control to store the data so that when it postback we can reference the value from there. Now here’s the JavaScript functions below: <asp:content id="Content1" runat="server" contentplaceholderid="HeadContent"> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js" type="text/javascript"></script> <script type="text/javascript">       var prevRowIndex;       function ChangeRowColor(row, rowIndex) {           var parent = document.getElementById(row);           var currentRowIndex = parseInt(rowIndex) + 1;                 if (prevRowIndex == currentRowIndex) {               return;           }           else if (prevRowIndex != null) {               parent.rows[prevRowIndex].style.backgroundColor = "#FFFFFF";           }                 parent.rows[currentRowIndex].style.backgroundColor = "#FFFFD6";                 prevRowIndex = currentRowIndex;                 $('#<%= Label1.ClientID %>').text(currentRowIndex);                 $('#<%= hfParentContainer.ClientID %>').val(row);           $('#<%= hfCurrentRowIndex.ClientID %>').val(rowIndex);       }             $(function () {           RetainSelectedRow();       });             function RetainSelectedRow() {           var parent = $('#<%= hfParentContainer.ClientID %>').val();           var currentIndex = $('#<%= hfCurrentRowIndex.ClientID %>').val();           if (parent != null) {               ChangeRowColor(parent, currentIndex);           }       }          </script> </asp:content>   The ChangeRowColor() is the function that sets the background color of the selected row. It is also where we set the previous row and rowIndex values in HiddenFields.  The $(function(){}); is a short-hand for the jQuery document.ready function. This function will be fired once the page is posted back to the server that’s why we call the function RetainSelectedRow(). The RetainSelectedRow() function is where we referenced the current selected values stored from the HiddenFields and pass these values to the ChangeRowColor) function to retain the highlighted row. Finally, here’s the code behind part: protected void grdCustomer_RowDataBound(object sender, GridViewRowEventArgs e) { if (e.Row.RowType == DataControlRowType.DataRow) { e.Row.Attributes.Add("onclick", string.Format("ChangeRowColor('{0}','{1}');", e.Row.ClientID, e.Row.RowIndex)); } } The code above is responsible for attaching the javascript onclick event for each row and call the ChangeRowColor() function and passing the e.Row.ClientID and e.Row.RowIndex to the function. Here’s the sample output below:   That’s it! I hope someone find this post useful! Technorati Tags: jQuery,GridView,JavaScript,TipTricks

    Read the article

  • How-to populate different select list content per table row

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A frequent requirement posted on the OTN forum is to render cells of a table column using instances of af:selectOneChoices with each af:selectOneChoice instance showing different list values. To implement this use case, the select list of the table column is populated dynamically from a managed bean for each row. The table's current rendered row object is accessible in the managed bean using the #{row} expression, where "row" is the value added to the table's var property. <af:table var="row">   ...   <af:column ...>     <af:selectOneChoice ...>         <f:selectItems value="#{browseBean.items}"/>     </af:selectOneChoice>   </af:column </af:table> The browseBean managed bean referenced in the code snippet above has a setItems and getItems method defined that is accessible from EL using the #{browseBean.items} expression. When the table renders, then the var property variable - the #{row} reference - is filled with the data object displayed in the current rendered table row. The managed bean getItems method returns a List<SelectItem>, which is the model format expected by the f:selectItems tag to populate the af:selectOneChoice list. public void setItems(ArrayList<SelectItem> items) {} //this method is executed for each table row public ArrayList<SelectItem> getItems() {   FacesContext fctx = FacesContext.getCurrentInstance();   ELContext elctx = fctx.getELContext();   ExpressionFactory efactory =          fctx.getApplication().getExpressionFactory();          ValueExpression ve =          efactory.createValueExpression(elctx, "#{row}", Object.class);      Row rw = (Row) ve.getValue(elctx);         //use one of the row attributes to determine which list to query and   //show in the current af:selectOneChoice list  // ...  ArrayList<SelectItem> alsi = new ArrayList<SelectItem>();  for( ... ){      SelectItem item = new SelectItem();        item.setLabel(...);        item.setValue(...);        alsi.add(item);   }   return alsi;} For better performance, the ADF Faces table stamps it data rows. Stamping means that the cell renderer component - af:selectOneChoice in this example - is instantiated once for the column and then repeatedly used to display the cell data for individual table rows. This however means that you cannot refresh a single select one choice component in a table to change its list values. Instead the whole table needs to be refreshed, rerunning the managed bean list query. Be aware that having individual list values per table row is an expensive operation that should be used only on small tables for Business Services with low latency data fetching (e.g. ADF Business Components and EJB) and with server side caching strategies for the queried data (e.g. storing queried list data in a managed bean in session scope).

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

< Previous Page | 231 232 233 234 235 236 237 238 239 240 241 242  | Next Page >