Search Results

Search found 11979 results on 480 pages for 'game'.

Page 237/480 | < Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >

  • Developing a long pannable, sprite-animated Windows Store app

    - by Groo
    I am creating my first Windows Store app in XAML, and I cannot seem to find a proper example for the requirements I have (I have spent a couple of days fiddling around, so I apologize if I missed something obvious). Basic idea of the app is to have a large scrollable canvas which would lazily start animating visible parts of the view as soon as user stops panning over a certain content (with some audio played also): My original idea was to use a StackPanel to add a bunch of custom controls, each of which would then animate itself once visible (with a short delay), but I have a couple of concerns: If the entire canvas is ~50 screen widths wide, is it feasible to load all content at the beginning, or do I need to plan doing some lazy loading during scrolling? For example, when I select a certain region in the Bing Travel app, it seems to lazily load tiles as I scroll it towards the end. Since content is stretched 100% vertically, and these animations are vectorized to be resolution independent, I am not sure if XAML (CompositionTarget) will be able to handle this, or I have to go for DirectX (MonoGame or C++) to get rid of flicker. Even better, is there an example for Windows 8 which uses a 100% vertically sized GridView with custom animated controls inside?

    Read the article

  • E_INVALIDARG: An invalid parameter was passed to the returning function (-2147024809) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = ImageLoadInformation.FromDefaults(); loadInfo.OptionFlags = ResourceOptionFlags.TextureCube; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); }

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • Sprite and Physics components or sub-components?

    - by ashes999
    I'm taking my first dive into creating a very simple entity framework. The key concepts (classes) are: Entity (has 0+ components, can return components by type) SpriteEntity (everything you need to draw on screen, including lighting info) PhysicsEntity (velocity, acceleration, collision detection) I started out with physics notions in my sprite component, and then later removed them to a sub-component. The separation of concerns makes sense; a sprite is enough information to draw anything (X, Y, width, height, lighting, etc.) and physics piggybacks (uses the parent sprite to get X/Y/W/H) while adding physics notions of velocity and collisions. The problem is that I would like collisions to be on an entity level -- meaning "no matter what your representation is (be it sprites, text, or something else), collide against this entity." So I refactored and redirected collision handling from entities to sprite.physics, while mapping and returning the right entity on physics collisions. The problem is that writing code like this.GetComponent<SpriteComponent>().physics is a violation of abstraction. Which made me think (this is the TLDR): should I keep physics as a separate component from sprites, or a sub-component, or something else? How should I share data and separate concerns?

    Read the article

  • Graph Isomorphism > What kind of Graph is this?

    - by oodavid
    Essentially, this is a variation of Comparing Two Tree Structures, however I do not have "trees", but rather another type of graph. I need to know what kind of Graph I have in order to figure out if there's a Graph Isomorphism Special Case... As you can see, they are: Not Directed Not A Tree Cyclic Max 4 connections But I still don't know the correct terminology, nor the which Isomorphism algorithm to pursue, guidance appreciated.

    Read the article

  • AABB Sweeping, algorithm to solve "stacking box" problem

    - by Ivo Wetzel
    I'm currently working on a simple AABB collision system and after some fiddling the sweeping of a single box vs. another and the calculation of the response velocity needed to push them apart works flawlessly. Now on to the new problem, imagine I'm having a stack of boxes which are falling towards a ground box which isn't moving: Each of these boxes has a vertical velocity for the "gravity" value, let's say this velocity is 5. Now, the result is that they all fall into each other: The reason is obvious, since all the boxes have a downward velocity of 5, this results in no collisions when calculating the relative velocity between the boxes during sweeping. Note: The red ground box here is static (always 0 velocity, can utilize spatial partitioning ), and all dynamic static collisions are resolved first, thus the fact that the boxes stop correctly at this ground box. So, this seems to be simply an issue with the order the boxes are sweept against each other. I imagine that sorting the boxes based on their x and y velocities and then sweeping these groups correctly against each other may resolve this issues. So, I'm looking for algorithms / examples on how to implement such a system. The code can be found here: https://github.com/BonsaiDen/aabb The two files which are of interest are [box/Dynamic.lua][3] and [box/Manager.lua][4]. The project is using Love2D in case you want to run it.

    Read the article

  • Algorithm to find all tiles within a given radius on staggered isometric map

    - by kasztelan
    Given staggered isometric map and a start tile what would be the best way to get all surrounding tiles within given radius(middle to middle)? I can get all neighbours of a given tile and distance between each of them without any problems but I'm not sure what path to take after that. This feature will be used quite often (along with A*) so I'd like to avoid unecessary calculations. If it makes any difference I'm using XNA and each tile is 64x32 pixels.

    Read the article

  • How can I make an object's hitbox rotate with its texture?

    - by Matthew Optional Meehan
    In XNA, when you have a rectangular sprite that doesnt rotate, it's easy to get its four corners to make a hitbox. However, when you do a rotation, the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collision examples, but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want.

    Read the article

  • texture mapping with lib3ds and SOIL help

    - by Adam West
    I'm having trouble with my project for loading a texture map onto a model. Any insight into what is going wrong with my code is fantastic. Right now the code only renders a teapot which I have assinged after creating it in 3DS Max. 3dsloader.cpp #include "3dsloader.h" Object::Object(std:: string filename) { m_TotalFaces = 0; m_model = lib3ds_file_load(filename.c_str()); // If loading the model failed, we throw an exception if(!m_model) { throw strcat("Unable to load ", filename.c_str()); } // set properties of texture coordinate generation for both x and y coordinates glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); // if not already enabled, enable texture generation if(! glIsEnabled(GL_TEXTURE_GEN_S)) glEnable(GL_TEXTURE_GEN_S); if(! glIsEnabled(GL_TEXTURE_GEN_T)) glEnable(GL_TEXTURE_GEN_T); } Object::~Object() { if(m_model) // if the file isn't freed yet lib3ds_file_free(m_model); //free up memory glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); } void Object::GetFaces() { m_TotalFaces = 0; Lib3dsMesh * mesh; // Loop through every mesh. for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { // Add the number of faces this mesh has to the total number of faces. m_TotalFaces += mesh->faces; } } void Object::CreateVBO() { assert(m_model != NULL); // Calculate the number of faces we have in total GetFaces(); // Allocate memory for our vertices and normals Lib3dsVector * vertices = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsVector * normals = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsTexel* texCoords = new Lib3dsTexel[m_TotalFaces * 3]; Lib3dsMesh * mesh; unsigned int FinishedFaces = 0; // Loop through all the meshes for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { lib3ds_mesh_calculate_normals(mesh, &normals[FinishedFaces*3]); // Loop through every face for(unsigned int cur_face = 0; cur_face < mesh->faces;cur_face++) { Lib3dsFace * face = &mesh->faceL[cur_face]; for(unsigned int i = 0;i < 3;i++) { memcpy(&texCoords[FinishedFaces*3 + i], mesh->texelL[face->points[ i ]], sizeof(Lib3dsTexel)); memcpy(&vertices[FinishedFaces*3 + i], mesh->pointL[face->points[ i ]].pos, sizeof(Lib3dsVector)); } FinishedFaces++; } } // Generate a Vertex Buffer Object and store it with our vertices glGenBuffers(1, &m_VertexVBO); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, vertices, GL_STATIC_DRAW); // Generate another Vertex Buffer Object and store the normals in it glGenBuffers(1, &m_NormalVBO); glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, normals, GL_STATIC_DRAW); // Generate a third VBO and store the texture coordinates in it. glGenBuffers(1, &m_TexCoordVBO); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsTexel) * 3 * m_TotalFaces, texCoords, GL_STATIC_DRAW); // Clean up our allocated memory delete vertices; delete normals; delete texCoords; // We no longer need lib3ds lib3ds_file_free(m_model); m_model = NULL; } void Object::applyTexture(const char*texfilename) { float imageWidth; float imageHeight; glGenTextures(1, & textureObject); // allocate memory for one texture textureObject = SOIL_load_OGL_texture(texfilename,SOIL_LOAD_AUTO,SOIL_CREATE_NEW_ID,SOIL_FLAG_MIPMAPS); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glBindTexture(GL_TEXTURE_2D, textureObject); // use our newest texture glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_WIDTH,&imageWidth); glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_HEIGHT,&imageHeight); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // give the best result for texture magnification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //give the best result for texture minification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); // don't repeat texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat textureglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat texture glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_MODULATE); glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,imageWidth,imageHeight,0,GL_RGB,GL_UNSIGNED_BYTE,& textureObject); } void Object::Draw() const { // Enable vertex, normal and texture-coordinate arrays. glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Bind the VBO with the normals. glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); // The pointer for the normals is NULL which means that OpenGL will use the currently bound VBO. glNormalPointer(GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glTexCoordPointer(2, GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glVertexPointer(3, GL_FLOAT, 0, NULL); // Render the triangles. glDrawArrays(GL_TRIANGLES, 0, m_TotalFaces * 3); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } 3dsloader.h #include "main.h" #include "lib3ds/file.h" #include "lib3ds/mesh.h" #include "lib3ds/material.h" class Object { public: Object(std:: string filename); virtual ~Object(); virtual void Draw() const; virtual void CreateVBO(); void applyTexture(const char*texfilename); protected: void GetFaces(); unsigned int m_TotalFaces; Lib3dsFile * m_model; Lib3dsMesh* Mesh; GLuint textureObject; GLuint m_VertexVBO, m_NormalVBO, m_TexCoordVBO; }; Called in the main cpp file with: VBO,apply texture and draw (pretty simple, how ironic) and thats it, please help me forum :)

    Read the article

  • Skewed: a rotating camera in a simple CPU-based voxel raycaster/raytracer

    - by voxelizr
    TL;DR -- in my first simple software voxel raycaster, I cannot get camera rotations to work, seemingly correct matrices notwithstanding. The result is skewed: like a flat rendering, correctly rotated, however distorted and without depth. (While axis-aligned ie. unrotated, depth and parallax are as expected.) I'm trying to write a simple voxel raycaster as a learning exercise. This is purely CPU based for now until I figure out how things work exactly -- fow now, OpenGL is just (ab)used to blit the generated bitmap to the screen as often as possible. Now I have gotten to the point where a perspective-projection camera can move through the world and I can render (mostly, minus some artifacts that need investigation) perspective-correct 3-dimensional views of the "world", which is basically empty but contains a voxel cube of the Stanford Bunny. So I have a camera that I can move up and down, strafe left and right and "walk forward/backward" -- all axis-aligned so far, no camera rotations. Herein lies my problem. Screenshot #1: correct depth when the camera is still strictly axis-aligned, ie. un-rotated. Now I have for a few days been trying to get rotation to work. The basic logic and theory behind matrices and 3D rotations, in theory, is very clear to me. Yet I have only ever achieved a "2.5 rendering" when the camera rotates... fish-eyey, bit like in Google Streetview: even though I have a volumetric world representation, it seems --no matter what I try-- like I would first create a rendering from the "front view", then rotate that flat rendering according to camera rotation. Needless to say, I'm by now aware that rotating rays is not particularly necessary and error-prone. Still, in my most recent setup, with the most simplified raycast ray-position-and-direction algorithm possible, my rotation still produces the same fish-eyey flat-render-rotated style looks: Screenshot #2: camera "rotated to the right by 39 degrees" -- note how the blue-shaded left-hand side of the cube from screen #2 is not visible in this rotation, yet by now "it really should"! Now of course I'm aware of this: in a simple axis-aligned-no-rotation-setup like I had in the beginning, the ray simply traverses in small steps the positive z-direction, diverging to the left or right and top or bottom only depending on pixel position and projection matrix. As I "rotate the camera to the right or left" -- ie I rotate it around the Y-axis -- those very steps should be simply transformed by the proper rotation matrix, right? So for forward-traversal the Z-step gets a bit smaller the more the cam rotates, offset by an "increase" in the X-step. Yet for the pixel-position-based horizontal+vertical-divergence, increasing fractions of the x-step need to be "added" to the z-step. Somehow, none of my many matrices that I experimented with, nor my experiments with matrix-less hardcoded verbose sin/cos calculations really get this part right. Here's my basic per-ray pre-traversal algorithm -- syntax in Go, but take it as pseudocode: fx and fy: pixel positions x and y rayPos: vec3 for the ray starting position in world-space (calculated as below) rayDir: vec3 for the xyz-steps to be added to rayPos in each step during ray traversal rayStep: a temporary vec3 camPos: vec3 for the camera position in world space camRad: vec3 for camera rotation in radians pmat: typical perspective projection matrix The algorithm / pseudocode: // 1: rayPos is for now "this pixel, as a vector on the view plane in 3d, at The Origin" rayPos.X, rayPos.Y, rayPos.Z = ((fx / width) - 0.5), ((fy / height) - 0.5), 0 // 2: rotate around Y axis depending on cam rotation. No prob since view plane still at Origin 0,0,0 rayPos.MultMat(num.NewDmat4RotationY(camRad.Y)) // 3: a temp vec3. planeDist is -0.15 or some such -- fov-based dist of view plane from eye and also the non-normalized, "in axis-aligned world" traversal step size "forward into the screen" rayStep.X, rayStep.Y, rayStep.Z = 0, 0, planeDist // 4: rotate this too -- 0,zstep should become some meaningful xzstep,xzstep rayStep.MultMat(num.NewDmat4RotationY(CamRad.Y)) // set up direction vector from still-origin-based-ray-position-off-rotated-view-plane plus rotated-zstep-vector rayDir.X, rayDir.Y, rayDir.Z = -rayPos.X - me.rayStep.X, -rayPos.Y, rayPos.Z + rayStep.Z // perspective projection rayDir.Normalize() rayDir.MultMat(pmat) // before traversal, the ray starting position has to be transformed from origin-relative to campos-relative rayPos.Add(camPos) I'm skipping the traversal and sampling parts -- as per screens #1 through #3, those are "basically mostly correct" (though not pretty) -- when axis-aligned / unrotated.

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • Can frequent state changes decrease rendering performance?

    - by Miro
    Can frequent texture and shader binding decrease rendering performance? "Frequent" binding example: for object for material in object render part of object using that material "Low count" binding example: for material for object in material render part of object using that material I'm planning to use an octree later and with this "low count" method of rendering it can drastically increase memory consumption. So is it good idea?

    Read the article

  • Writing the correct value in the depth buffer when using ray-casting

    - by hidayat
    I am doing a ray-casting in a 3d texture until I hit a correct value. I am doing the ray-casting in a cube and the cube corners are already in world coordinates so I don't have to multiply the vertices with the modelviewmatrix to get the correct position. Vertex shader world_coordinate_ = gl_Vertex; Fragment shader vec3 direction = (world_coordinate_.xyz - cameraPosition_); direction = normalize(direction); for (float k = 0.0; k < steps; k += 1.0) { .... pos += direction*delta_step; float thisLum = texture3D(texture3_, pos).r; if(thisLum > surface_) ... } Everything works as expected, what I now want is to sample the correct value to the depth buffer. The value that is now written to the depth buffer is the cube coordinate. But I want the value of pos in the 3d texture to be written. So lets say the cube is placed 10 away from origin in -z and the size is 10*10*10. My solution that does not work correctly is this: pos *= 10; pos.z += 10; pos.z *= -1; vec4 depth_vec = gl_ProjectionMatrix * vec4(pos.xyz, 1.0); float depth = ((depth_vec.z / depth_vec.w) + 1.0) * 0.5; gl_FragDepth = depth;

    Read the article

  • Storing and Finding Art Assets

    - by ashes999
    I've started down a line of art asset development that will allow me to (hopefully) reuse and improve assets for several games. But how do I go about storing and finding them? Let's say for example I decide to focus on RPGs for ~2 years. I would create items, monsters, etc. and store them somewhere. How would I categorize them and make them easier to search later on? Is the best solution "use directories with broad categories like landscape/items/monsters/etc.?"

    Read the article

  • C# wpf helix scale based mesh parenting using Transform3DGroup

    - by Rick2047
    I am using https://helixtoolkit.codeplex.com/ as a 3D framework. I want to move black mesh relative to the green mesh as shown in the attached image below. I want to make green mesh parent to the black mesh as the change in scale of the green mesh also will result in motion of the black mesh. It could be partial parenting or may be more. I need 3D rotation and 3D transition + transition along green mesh's length axis for the black mesh relative to the green mesh itself. Suppose a variable green_mesh_scale causing scale for the green mesh along its length axis. The black mesh will use that variable in order to move along green mesh's length axis. How to go about it. I've done as follows: GeometryModel3D GreenMesh, BlackMesh; ... double green_mesh_scale = e.NewValue; Transform3DGroup forGreen = new Transform3DGroup(); Transform3DGroup forBlack = new Transform3DGroup(); forGreen.Children.Add(new ScaleTransform3D(new Vector3D(1, green_mesh_scale , 1))); // ... transforms for rotation n transition GreenMesh.Transform = forGreen ; forBlack = forGreen; forBlack.Children.Add(new TranslateTransform3D(new Vector3D(0, green_mesh_scale, 0))); BlackMesh.Transform = forBlack; The problem with this is the scale transform will also be applied to the black mesh. I think i just need to avoid the scale part. I tried keeping all the transforms but scale, on another Transform3DGroup variable but that also not behaving as expected. Can MatrixTransform3D be used here some how? Also please suggest if this question can be posted somewhere else in stackexchange.

    Read the article

  • Questions about XNA

    - by Maik Klein
    I've read tons of different threads about XNA, but I still have some questions. First of all: I have 2 years of experience programming and C# is my main language, so XNA would fit perfectly for me, but I have some concerns. People mentioned that C# has a performance loss compared to C++. Is this true? XNA only supports DirectX 9. I found the ANX framework which is pretty similar to XNA but it is capable of DirectX 11. Would this be a good alternative ? Because I'm worried about the performance loss of C#, I searched for a C++ framework and found SFML. It's based on C++ but can be integrated into C#. I already have some experience with UDK, but I am really interested in creating more by myself ( lighting physics etc ). I didn't start yet, what would you recommend me to use / learn ? I am going to create a first person shooter (3D) and I have plenty of time for this. My aim is realtime lighting, realtime global illumination, image-based reflections etc. I want to develop for Windows. Edit: I found something interesting: OpenTK. It supports the latest version of OpenGL which is on the same level as DX11 (if my knowledge is correct). It makes use of mono.

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • How can I make a rectangle to an irregular shape?

    - by Anil gupta
    I used masking for breaking an image into the below pattern. Now that it's broken into different pieces I need to make a rectangle of each piece. I need to drag the broken pieces and adjust to the correct position so I can reconstruct the image. To drag and put at the right position I need to make the pieces rectangles but I am not getting the idea of how to make rectangles out of these irregular shapes. How can I make rectangles for manipulating these pieces? This is a follow up to my previous question.

    Read the article

  • Will I have an easier time learning OpenGL in Pygame or Pyglet? (NeHe tutorials downloaded)

    - by shadowprotocol
    I'm looking between PyGame and Pyglet, Pyglet seems to be somewhat newer and more Pythony, but it's last release according to Wikipedia is January '10. PyGame seems to have more documentation, more recent updates, and more published books/tutorials on the web for learning. I downloaded both the Pyglet and PyGame versions of the NeHe OpenGL tutorials (Lessons 1-10) which cover this material: lesson01 - Setting up the window lesson02 - Polygons lesson03 - Adding color lesson04 - Rotation lesson05 - 3D lesson06 - Textures lesson07 - Filters, Lighting, input lesson08 - Blending (transparency) lesson09 - 2D Sprites in 3D lesson10 - Moving in a 3D world What do you guys think? Is my hunch that I'll be better off working with PyGame somewhat warranted?

    Read the article

  • SSAO Distortion

    - by Robert Xu
    I'm currently (attempting) to add SSAO to my engine, except it's...not really work, to say the least. I use a deferred renderer to render my scene. I have four render targets: Albedo, Light, Normal, and Depth. Here are the parameters for all of them (Surface Format, Depth Format): Albedo: 32-bit ARGB, Depth24Stencil8 Light: 32-bit ARGB, None Normal: 32-bit ARGB, None Depth: 8-bit R (Single), Depth24Stencil8 To generate my random noise map for the SSAO, I do the following for each pixel in the noise map: Vector3 v3 = Vector3.Zero; double z = rand.NextDouble() * 2.0 - 1.0; double r = Math.Sqrt(1.0 - z * z); double angle = rand.NextDouble() * MathHelper.TwoPi; v3.X = (float)(r * Math.Cos(angle)); v3.Y = (float)(r * Math.Sin(angle)); v3.Z = (float)z; v3 += offset; v3 *= 0.5f; result[i] = new Color(v3); This is my GBuffer rendering effect: PixelInput RenderGBufferColorVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = mul(input.Position, WorldViewProjection); pi.Normal = mul(input.Normal, WorldInverseTranspose); pi.Color = input.Color; pi.TPosition = pi.Position; pi.WPosition = input.Position; return pi; } GBufferTarget RenderGBufferColorPixelShader(PixelInput input) { GBufferTarget output = ( GBufferTarget ) 0; float3 position = input.TPosition.xyz / input.TPosition.w; output.Albedo = lerp(float4(1.0f, 1.0f, 1.0f, 1.0f), input.Color, ColorFactor); output.Normal = EncodeNormal(input.Normal); output.Depth = position.z; return output; } And here is the SSAO effect: float4 EncodeNormal(float3 normal) { return float4((normal.xyz * 0.5f) + 0.5f, 0.0f); } float3 DecodeNormal(float4 encoded) { return encoded * 2.0 - 1.0f; } float Intensity; float Size; float2 NoiseOffset; float4x4 ViewProjection; float4x4 ViewProjectionInverse; texture DepthMap; texture NormalMap; texture RandomMap; const float3 samples[16] = { float3(0.01537562, 0.01389096, 0.02276565), float3(-0.0332658, -0.2151698, -0.0660736), float3(-0.06420016, -0.1919067, 0.5329634), float3(-0.05896204, -0.04509097, -0.03611697), float3(-0.1302175, 0.01034653, 0.01543675), float3(0.3168565, -0.182557, -0.01421785), float3(-0.02134448, -0.1056605, 0.00576055), float3(-0.3502164, 0.281433, -0.2245609), float3(-0.00123525, 0.00151868, 0.02614773), float3(0.1814744, 0.05798516, -0.02362876), float3(0.07945167, -0.08302628, 0.4423518), float3(0.321987, -0.05670302, -0.05418307), float3(-0.00165138, -0.00410309, 0.00537362), float3(0.01687791, 0.03189049, -0.04060405), float3(-0.04335613, -0.00530749, 0.06443053), float3(0.8474263, -0.3590308, -0.02318038), }; sampler DepthSampler = sampler_state { Texture = DepthMap; MipFilter = Point; MinFilter = Point; MagFilter = Point; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler NormalSampler = sampler_state { Texture = NormalMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler RandomSampler = sampler_state { Texture = RandomMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; struct VertexInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; struct PixelInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; PixelInput SSAOVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = input.Position; pi.TextureCoordinates = input.TextureCoordinates; return pi; } float3 GetXYZ(float2 uv) { float depth = tex2D(DepthSampler, uv); float2 xy = uv * 2.0f - 1.0f; xy.y *= -1; float4 p = float4(xy, depth, 1); float4 q = mul(p, ViewProjectionInverse); return q.xyz / q.w; } float3 GetNormal(float2 uv) { return DecodeNormal(tex2D(NormalSampler, uv)); } float4 SSAOPixelShader(PixelInput input) : COLOR0 { float depth = tex2D(DepthSampler, input.TextureCoordinates); float3 position = GetXYZ(input.TextureCoordinates); float3 normal = GetNormal(input.TextureCoordinates); float occlusion = 1.0f; float3 reflectionRay = DecodeNormal(tex2D(RandomSampler, input.TextureCoordinates + NoiseOffset)); for (int i = 0; i < 16; i++) { float3 sampleXYZ = position + reflect(samples[i], reflectionRay) * Size; float4 screenXYZW = mul(float4(sampleXYZ, 1.0f), ViewProjection); float3 screenXYZ = screenXYZW.xyz / screenXYZW.w; float2 sampleUV = float2(screenXYZ.x * 0.5f + 0.5f, 1.0f - (screenXYZ.y * 0.5f + 0.5f)); float frontMostDepthAtSample = tex2D(DepthSampler, sampleUV); if (frontMostDepthAtSample < screenXYZ.z) { occlusion -= 1.0f / 16.0f; } } return float4(occlusion * Intensity * float3(1.0, 1.0, 1.0), 1.0); } technique SSAO { pass Pass0 { VertexShader = compile vs_3_0 SSAOVertexShader(); PixelShader = compile ps_3_0 SSAOPixelShader(); } } However, when I use the effect, I get some pretty bad distortion: Here's the light map that goes with it -- is the static-like effect supposed to be like that? I've noticed that even if I'm looking at nothing, I still get the static-like effect. (you can see it in the screenshot; the top half doesn't have any geometry yet it still has the static-like effect) Also, does anyone have any advice on how to effectively debug shaders?

    Read the article

  • AS3 Stage3D Mouse click problem?

    - by Martin K
    I have a problem with Mouse interaction and Stage3D. The only way I found to register to listen to mouse clicks and interact with Stage3D, is to add a mouse eventListener directly to the .stage. However this will result in any time i click anywhere in the flash application the mouse click will fire, even if there is an overlaid 2D menu where the user intended to click. IE I have a 3D application running in the background, which listens to clicks, and I have some floating User Interface elements in the foreground, and ideally if I clicked a button in the foreground, then that would NOT fire a click event that the Stage3D would register. Any idea how to solve this problem?

    Read the article

  • Scaling and new coordinates based off screen resolution

    - by Atticus
    I'm trying to deal with different resolutions on Android devices. Say I have a sprite at X,Y and dimensions W,H. I understand how to properly scale the width and heigh dimensions depending on the screen size, but I am not sure how to properly reposition this sprite so that it exists in the same area that it should. If I simply resize the width and heigh and keep X,Y at the same coordinates, things don't scale well. How do I properly reposition? Multiply the coordinates by the scale as well?

    Read the article

  • How to Draw texture between 2 Vector3

    - by Sparky41
    My scenario: RTS combat style, 1 unit fires beam on another unit My problem is i want to draw a flat texture between 2 Vector3 points. I have looked at various Billboarding styles but that doesn't give me a proper solution. I looked at this: http://msdn.microsoft.com/en-us/library/bb464051.aspx is BasicEffect and DrawPrimitives the correct solution just stretch the texture to the distance between point of origin to target? I used the quad class they used but i found this it seemed to inflexible So my question to you is how would i go about this sort of problem? Regards

    Read the article

  • XNA matrix order problem

    - by user1990950
    I want a matrix that scales first and then rotates. I tried the code below, but it didn't work. zRotation, yRotation and xRotation are rotations that shouldn't be affected by the origin. allrot should be affected. xScale, yScale and zScale are the scaling variables. The code below works except that it rotates and then scales. Matrix worldMatrix = ( Matrix.CreateRotationZ(MathHelper.ToRadians(zRotation)) * Matrix.CreateRotationX(MathHelper.ToRadians(xRotation)) * Matrix.CreateRotationY(MathHelper.ToRadians(yRotation)) ) * ( Matrix.CreateTranslation(origin) * Matrix.CreateRotationY(MathHelper.ToRadians(allrot)) * Matrix.CreateScale(xScale, yScale, zScale) );

    Read the article

  • Does XNA 4 support 3D affine transformations for 2D images?

    - by Paul Baker Salt Shaker
    Looooong story short I'm essentially trying to code Mode 7 in XNA. Before I continue bashing my brains out in research and various failed matrix math equations; I just want to make sure that XNA supports this just out-of-the-box (so to speak). I'd prefer not to have to import other libraries, because I want to learn how it works myself that way I understand the whole thing better. However that's all for naught if it won't work at all. So no opengl, directx, etc if possible (will eventually do it just to optimize everything, but not for now). tl;dr: Can I has Mode 7 in XNA?

    Read the article

< Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >