Search Results

Search found 12087 results on 484 pages for 'game mechanics'.

Page 242/484 | < Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >

  • Huge procedurally generated 'wilderness' worlds

    - by The Communist Duck
    Hi. I'm sure you all know of games like Dwarf Fortress - massive, procedural generated wilderness and land. Something like this, taken from this very useful article. However, I was wondering how I could apply this to a much larger scale; the scale of Minecraft comes to mind (isn't that something like 8x the size of the Earth's surface?). Pseudo-infinite, I think the best term would be. The article talks about fractal perlin noise. I am no way an expert on it, but I get the general idea (it's some kind of randomly generated noise which is semi-coherent, so not just random pixel values). I could just define regions X by X in size, add some region loading type stuff, and have one bit of noise generating a region. But this would result in just huge amounts of islands. On the other extreme, I don't think I can really generate a supermassive sheet of perlin noise. And it would just be one big island, I think. I am pretty sure Perlin noise, or some noise, would be the answer in some way. I mean, the map is really nice looking. And you could replace the ascii with tiles, and get something very nice looking. Anyone have any ideas? Thanks. :D -TheCommieDuck

    Read the article

  • First time shadow mapping problems

    - by user1294203
    I have implemented basic shadow mapping for the first time in OpenGL using shaders and I'm facing some problems. Below you can see an example of my rendered scene: The process of the shadow mapping I'm following is that I render the scene to the framebuffer using a View Matrix from the light point of view and the projection and model matrices used for normal rendering. In the second pass, I send the above MVP matrix from the light point of view to the vertex shader which transforms the position to light space. The fragment shader does the perspective divide and changes the position to texture coordinates. Here is my vertex shader, #version 150 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform mat4 lightMVP; uniform float scale; in vec3 in_Position; in vec3 in_Normal; in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; smooth out vec4 lightspace_Position; void main(void){ pass_Normal = NormalMatrix * in_Normal; pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; lightspace_Position = lightMVP * vec4(scale * in_Position, 1.0); TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } And my fragment shader, #version 150 core struct Light{ vec3 direction; }; uniform Light light; uniform sampler2D inSampler; uniform sampler2D inShadowMap; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; smooth in vec4 lightspace_Position; out vec4 out_Color; float CalcShadowFactor(vec4 lightspace_Position){ vec3 ProjectionCoords = lightspace_Position.xyz / lightspace_Position.w; vec2 UVCoords; UVCoords.x = 0.5 * ProjectionCoords.x + 0.5; UVCoords.y = 0.5 * ProjectionCoords.y + 0.5; float Depth = texture(inShadowMap, UVCoords).x; if(Depth < (ProjectionCoords.z + 0.001)) return 0.5; else return 1.0; } void main(void){ vec3 Normal = normalize(pass_Normal); vec3 light_Direction = -normalize(light.direction); vec3 camera_Direction = normalize(-pass_Position); vec3 half_vector = normalize(camera_Direction + light_Direction); float diffuse = max(0.2, dot(Normal, light_Direction)); vec3 temp_Color = diffuse * vec3(1.0); float specular = max( 0.0, dot( Normal, half_vector) ); float shadowFactor = CalcShadowFactor(lightspace_Position); if(diffuse != 0 && shadowFactor > 0.5){ float fspecular = pow(specular, 128.0); temp_Color += fspecular; } out_Color = vec4(shadowFactor * texture(inSampler, TexCoord).xyz * temp_Color, 1.0); } One of the problems is self shadowing as you can see in the picture, the crate has its own shadow cast on itself. What I have tried is enabling polygon offset (i.e. glEnable(POLYGON_OFFSET_FILL), glPolygonOffset(GLfloat, GLfloat) ) but it didn't change much. As you see in the fragment shader, I have put a static offset value of 0.001 but I have to change the value depending on the distance of the light to get more desirable effects , which not very handy. I also tried using front face culling when I render to the framebuffer, that didn't change much too. The other problem is that pixels outside the Light's view frustum get shaded. The only object that is supposed to be able to cast shadows is the crate. I guess I should pick more appropriate projection and view matrices, but I'm not sure how to do that. What are some common practices, should I pick an orthographic projection? From googling around a bit, I understand that these issues are not that trivial. Does anyone have any easy to implement solutions to these problems. Could you give me some additional tips? Please ask me if you need more information on my code. Here is a comparison with and without shadow mapping of a close-up of the crate. The self-shadowing is more visible.

    Read the article

  • Calculating adjacent quads on a quad sphere

    - by Caius Eugene
    I've been experimenting with generating a quad sphere. This sphere subdivides into a quadtree structure. Eventually I'm going to be applying some simplex noise to the vertices of each face to create a terrain like surface. To solve the issue of cracks I want to be able to apply a geomitmap technique of triangle fanning on the edges of each quad, but in order to know the subdivision level of the adjacent quads I need to identify which quads are adjacent to each other. Does anyone know any approaches to computing and storing these adjacent quads for quick lookup? Also It's important that I know which direction they are in so I can easily adjust the correct edge.

    Read the article

  • Alpha blending without depth writing

    - by teodron
    A recurring problem I get is this one: given two different billboard sets with alpha textures intended to create particle special effects (such as point lights and smoke puffs), rendering them correctly is tedious. The issue arising in this scenario is that there's no way to use depth writing and make certain billboards obey depth information as they appear in front of others that are clearly closer to the camera. I've described the problem on the Ogre forums several times without any suggestions being given (since the application I'm writing uses their engine). What could be done then? sort all individual billboards from different billboard sets to avoid writing the depth and still have nice alpha blended results? If yes, please do point out some resources to start with in the frames of the aforementioned Ogre engine. Any other suggestions are welcome!

    Read the article

  • Quaternion Camera

    - by Alex_Hyzer_Kenoyer
    Can someone help me figure out how to use a Quaternion with the PerspectiveCamera in libGDX or in general? I am trying to rotate my camera around a sphere that is being drawn at (0,0,0). I am not sure how to go about setting up the quaternion correctly, manipulating it, and then applying it to the camera. Edit: Here is what I have tried to do so far. // This is how I set it up Quaternion orientation = new Quaternion(); orientation.setFromAxis(Vector3.Y, 45); // This is how I am trying to update the rotations public void rotateX(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.X, amount); orientation.mul(temp); } public void rotateY(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.Y, amount); orientation.mul(temp); } public void updateCamera() { // This is where I am unsure how to apply the rotations to the camera // I think I should update the view and projection matrices? camera.view.mul(orientation); ... }

    Read the article

  • How can I compile SM 3.0 effects in D3D11 in slimdx?

    - by jacker
    var bytecode = ShaderBytecode.CompileFromFile("shaders\\testShader.fx", "fx_5_0", ShaderFlags.None, SlimDX.D3DCompiler.EffectFlags.None, null, null, out str); var effect = new SlimDX.Direct3D11.Effect(gpu.Device, bytecode); Works fine but if I try to use another shader model like 4.0 or 3.0 it throws an error on the new effect creation: E_FAIL: An undetermined error occurred (-2147467259) How do I compile older shaders? And I've read about device context but I can't find any information on how to use them to maintain DX9 compatibility.

    Read the article

  • How do people get around the Carmack's Reverse patent?

    - by Rei Miyasaka
    Apparently, Creative has a patent on Carmack's Reverse, and they successfully forced Id to modify their techniques for the source drop, as well as to include EAX in Doom 3. But Carmack's Reverse is discussed quite often and apparently it's a good choice for deferred shading, so it's presumably used in a lot of other high-budget productions too. Even though it's unlikely that Creative would go after smaller companies, I'm wondering how the bigger studios get around this problem. Do they just cross their fingers and hope Creative doesn't troll them, or do they just not use Carmack's Reverse at all?

    Read the article

  • A* Jump Point Search - how does pruning really work?

    - by DeadMG
    I've come across Jump Point Search, and it seems pretty sweet to me. However, I'm unsure as to how their pruning rules actually work. More specifically, in Figure 1, it states that we can immediately prune all grey neighbours as these can be reached optimally from the parent of x without ever going through node x However, this seems somewhat at odds. In the second image, node 5 could be reached by first going through node 7 and skipping x entirely through a symmetrical path- that is, 6 -> x -> 5 seems to be symmetrical to 6 -> 7 -> 5. This would be the same as how node 3 can be reached without going through x in the first image. As such, I don't understand how these two images are not entirely equivalent, and not just rotated versions of each other. Secondly, I'd like to understand how this algorithm could be generalized to a three-dimensional search volume.

    Read the article

  • Bodies do not stay sticked together by joint in retina display

    - by Mike JM
    I'm rehearsing on Box2D revolute joints. Everything's going pretty well except for one thing. For some reason bodies joined together with revolute joints do not stay sticked, they start getting apart from each other from the app start when I run it on retina device or simulator. On non retina device it works just fine, as expected. Here's the screenshot of the non-retina version: And here's the behavior when I run the same app on retina device/simulator: I'm taking content scale factor into account.

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • Why does Farseer 2.x store temporaries as members and not on the stack? (.NET)

    - by Andrew Russell
    UPDATE: This question refers to Farseer 2.x. The newer 3.x doesn't seem to do this. I'm using Farseer Physics Engine quite extensively at the moment, and I've noticed that it seems to store a lot of temporary value types as members of the class, and not on the stack as one might expect. Here is an example from the Body class: private Vector2 _worldPositionTemp = Vector2.Zero; private Matrix _bodyMatrixTemp = Matrix.Identity; private Matrix _rotationMatrixTemp = Matrix.Identity; private Matrix _translationMatrixTemp = Matrix.Identity; public void GetBodyMatrix(out Matrix bodyMatrix) { Matrix.CreateTranslation(position.X, position.Y, 0, out _translationMatrixTemp); Matrix.CreateRotationZ(rotation, out _rotationMatrixTemp); Matrix.Multiply(ref _rotationMatrixTemp, ref _translationMatrixTemp, out bodyMatrix); } public Vector2 GetWorldPosition(Vector2 localPosition) { GetBodyMatrix(out _bodyMatrixTemp); Vector2.Transform(ref localPosition, ref _bodyMatrixTemp, out _worldPositionTemp); return _worldPositionTemp; } It looks like its a by-hand performance optimisation. But I don't see how this could possibly help performance? (If anything I think it would hurt by making objects much larger).

    Read the article

  • "Marching cubes" voxel terrain - triplanar texturing with depth?

    - by Dan the Man
    I am currently working on a voxel terrain that uses the marching cubes algorithm for polygonizing the scalar field of voxels. I am using a triplanar texturing shader for texturing. say I have a grass texture set to the Y axis and a dirt texture for both the X and Z axes. Now, when my player digs downwards, it still appears as grass. How would I make it to appear as dirt? I have been thinking about this for a while, and the only thing I can think of to make this effect, would be to mark vertices that have been dug with a certain vertex color. When it has that vertex color, the shader would apply that dirt texture to the vertices marked. Is there a better method?

    Read the article

  • 2D OBB collision detection, resolving collisions?

    - by Milo
    I currently use OBBs and I have a vehicle that is a rigid body and some buildings. Here is my update() private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); vehicle.update(16.6666f / 1000.0f); ArrayList<Building> buildings = city.getBuildings(); for(Building b : buildings) { if(vehicle.getRect().overlaps(b.getRect())) { vehicle.update(-17.0f / 1000.0f); break; } } } The collision detection works well. What doesn't is how they are dealt with. My goal is simple. If the vehicle hits a building, it should stop, and never go into the building. When I apply negative torque to reverse the car should not feel buggy and move away from the building. I don't want this to look buggy. This is my rigid body class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setCenter(c.x, c.y); forces = new Vector2D(0,0); //clear forces //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { Matrix mat = new Matrix(); float[] Vector2Ds = new float[2]; Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { Matrix mat = new Matrix(); float[] Vectors = new float[2]; Vectors[0] = world.x; Vectors[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vectors); return new Vector2D(Vectors[0], Vectors[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { Vector2D tangent = new Vector2D(-worldOffset.y, worldOffset.x); return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces = Vector2D.add(forces ,worldForce); //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } } Essentially, when any rigid body hits a building it should exhibit the same behavior. How is collision solving usually done? Thanks

    Read the article

  • How to get tilemap transparency color working with TiledLib's Demo implementation?

    - by Adam LaBranche
    So the problem I'm having is that when using Nick Gravelyn's tiledlib pipeline for reading and drawing tmx maps in XNA, the transparency color I set in Tiled's editor will work in the editor, but when I draw it the color that's supposed to become transparent still draws. The closest things to a solution that I've found are - 1) Change my sprite batch's BlendState to NonPremultiplied (found this in a buried Tweet). 2) Get the pixels that are supposed to be transparent at some point then Set them all to transparent. Solution 1 didn't work for me, and solution 2 seems hacky and not a very good way to approach this particular problem, especially since it looks like the custom pipeline processor reads in the transparent color and sets it to the color key for transparency according to the code, just something is going wrong somewhere. At least that's what it looks like the code is doing. TileSetContent.cs if (imageNode.Attributes["trans"] != null) { string color = imageNode.Attributes["trans"].Value; string r = color.Substring(0, 2); string g = color.Substring(2, 2); string b = color.Substring(4, 2); this.ColorKey = new Color((byte)Convert.ToInt32(r, 16), (byte)Convert.ToInt32(g, 16), (byte)Convert.ToInt32(b, 16)); } ... TiledHelpers.cs // build the asset as an external reference OpaqueDataDictionary data = new OpaqueDataDictionary(); data.Add("GenerateMipMaps", false); data.Add("ResizetoPowerOfTwo", false); data.Add("TextureFormat", TextureProcessorOutputFormat.Color); data.Add("ColorKeyEnabled", tileSet.ColorKey.HasValue); data.Add("ColorKeyColor", tileSet.ColorKey.HasValue ? tileSet.ColorKey.Value : Microsoft.Xna.Framework.Color.Magenta); tileSet.Texture = context.BuildAsset<Texture2DContent, Texture2DContent>( new ExternalReference<Texture2DContent>(path), null, data, null, asset); ... I can share more code as well if it helps to understand my problem. Thank you.

    Read the article

  • Where should I place my reaction code in Per-Pixel Collision Detection?

    - by CJ Cohorst
    I have this collision detection code: public bool PerPixelCollision(Player player, Game1 dog) { Matrix atob = player.Transform * Matrix.Invert(dog.Transform); Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, atob); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, atob); Vector2 iBPos = Vector2.Transform(Vector2.Zero, atob); for(int deltax = 0; deltax < player.playerTexture.Width; deltax++) { Vector2 bpos = iBPos; for (int deltay = 0; deltay < player.playerTexture.Height; deltay++) { int bx = (int)bpos.X; int by = (int)bpos.Y; if (bx >= 0 && bx < dog.dogTexture.Width && by >= 0 && by < dog.dogTexture.Height) { if (player.TextureData[deltax + deltay * player.playerTexture.Width].A > 150 && dog.TextureData[bx + by * dog.Texture.Width].A > 150) { return true; } } bpos += stepY; } iBPos += stepX; } return false; } What I want to know is where to put in the code where something happens. For example, I want to put in player.playerPosition.X -= 200 just as a test, but I don't know where to put it. I tried putting it under the return true and above it, but under it, it said unreachable code, and above it nothing happened. I also tried putting it by bpos += stepY; but that didn't work either. Where do I put the code?

    Read the article

  • Parabolic throw with set Height and range (libgdx)

    - by Tauboga
    Currently i'm working on a minigame for android where you have a rotating ball in the center of the display which jumps when touched in the direction of his current angle. I'm simply using a gravity vector and a velocity vector in this way: positionBall = positionBall.add(velocity); velocity = velocity.add(gravity); and velocity.x = (float) Math.cos(angle) * 12; /* 12 to amplify the velocity */ velocity.y = (float) Math.sin(angle) * 15; /* 15 to amplify the velocity */ That works fine. Here comes the problem: I want to make the jump look the same on all possible resolutions. The velocity needs to be scaled in a way that when the ball is thrown straight upwards it will touch the upper display border. When thrown directly left or right the range shall be exactly long enough to touch the left/right display border. Which formula(s) do I need to use and how to implement them correctly? Thanks in advance!

    Read the article

  • How do you author HDR content?

    - by Nathan Reed
    How do you make it easy for your artists to author content for an HDR renderer? What kinds of tools should you provide, and what workflows need to change, in going from LDR to HDR? Note that I'm not asking about the technical aspects of implementing an HDR renderer, but about best practices for creating materials and lighting in HDR. I've googled around a bit, but there doesn't seem to be much about this topic on the web. Can anyone point me to some good resources on this, or share their own experiences? Some specific points: Lighting - how can lighting artists pick HDR light colors? Do they have a standard LDR color picker and then a multiplier? Is the multiplier in gamma or linear space? Maybe instead of a multiplier it's a log-luminance? Or a physical brightness level, like the number of lumens? How will they know what multiplier/luminance/brightness is "correct" for a given light? Materials - how can texture artists make emissive color maps, such as neon signs, TV screens, skyboxes, etc? Can you paint one as a regular LDR (8-bit-per-channel) image and apply a multiplier (or log-luminance, etc.)? Are there cases where it's necessary to actually paint HDR images? If so, how do you go about this in Photoshop (or other software)?

    Read the article

  • Voxel terrain rendering with marching cubes

    - by JavaJosh94
    I was working on making procedurally generated terrain using normal cubish voxels (like minecraft) But then I read about marching cubes and decided to convert to using those. I managed to create a working marching cubes class and cycle through the densities and everything in it seemed to be working so I went on to work on actual terrain generation. I'm using XNA (C#) and a ported libnoise library to generate noise for the terrain generator. But instead of rendering smooth terrain I get a 64x64 chunk (I specified 64 but can change it) of seemingly random marching cubes using different triangles. This is the code I'm using to generate a "chunk": public MarchingCube[, ,] getTerrainChunk(int size, float dMultiplyer, int stepsize) { MarchingCube[, ,] temp = new MarchingCube[size / stepsize, size / stepsize, size / stepsize]; for (int x = 0; x < size; x += stepsize) { for (int y = 0; y <size; y += stepsize) { for (int z = 0; z < size; z += stepsize) { float[] densities = {(float)terrain.GetValue(x, y, z)*dMultiplyer, (float)terrain.GetValue(x, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y, z)*dMultiplyer, (float)terrain.GetValue(x,y,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y,z+stepsize)*dMultiplyer }; Vector3[] corners = { new Vector3(x,y,z), new Vector3(x,y+stepsize,z),new Vector3(x+stepsize,y+stepsize,z),new Vector3(x+stepsize,y,z), new Vector3(x,y,z+stepsize), new Vector3(x,y+stepsize,z+stepsize), new Vector3(x+stepsize,y+stepsize,z+stepsize), new Vector3(x+stepsize,y,z+stepsize)}; if (x == 0 && y == 0 && z == 0) { temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners, device); } temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners); } } } (terrain is a Perlin Noise generated using libnoise) I'm sure there's probably an easy solution to this but I've been drawing a blank for the past hour. I'm just wondering if the problem is how I'm reading in the data from the noise or if I may be generating the noise wrong? Or maybe the noise is just not good for this kind of generation? If I'm reading it wrong does anyone know the right way? the answers on google were somewhat ambiguous but I'm going to keep searching. Thanks in advance!

    Read the article

  • iOS - pass UIImage to shader as texture

    - by martin pilch
    I am trying to pass UIImage to GLSL shader. The fragment shader is: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform sampler2D inputImageTexture2; void main() { highp vec4 color = texture2D(inputImageTexture, textureCoordinate); highp vec4 color2 = texture2D(inputImageTexture2, textureCoordinate); gl_FragColor = color * color2; } What I want to do is send images from camera and do multiply blend with texture. When I just send data from camera, everything is fine. So problem should be with sending another texture to shader. I am doing it this way: - (void)setTexture:(UIImage*)image forUniform:(NSString*)uniform { CGSize sizeOfImage = [image size]; CGFloat scaleOfImage = [image scale]; CGSize pixelSizeOfImage = CGSizeMake(scaleOfImage * sizeOfImage.width, scaleOfImage * sizeOfImage.height); //create context GLubyte * spriteData = (GLubyte *)malloc(pixelSizeOfImage.width * pixelSizeOfImage.height * 4 * sizeof(GLubyte)); CGContextRef spriteContext = CGBitmapContextCreate(spriteData, pixelSizeOfImage.width, pixelSizeOfImage.height, 8, pixelSizeOfImage.width * 4, CGImageGetColorSpace(image.CGImage), kCGImageAlphaPremultipliedLast); //draw image into context CGContextDrawImage(spriteContext, CGRectMake(0.0, 0.0, pixelSizeOfImage.width, pixelSizeOfImage.height), image.CGImage); //get uniform of texture GLuint uniformIndex = glGetUniformLocation(__programPointer, [uniform UTF8String]); //generate texture GLuint textureIndex; glGenTextures(1, &textureIndex); glBindTexture(GL_TEXTURE_2D, textureIndex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //create texture glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pixelSizeOfImage.width, pixelSizeOfImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, spriteData); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textureIndex); //"send" to shader glUniform1i(uniformIndex, 1); free(spriteData); CGContextRelease(spriteContext); } Uniform for texture is fine, glGetUniformLocation function do not returns -1. The texture is PNG file of resolution 2000x2000 pixels. PROBLEM: When the texture is passed to shader, I have got "black screen". Maybe problem are parameters of the CGContext or parameters of the function glTexImage2D Thank you

    Read the article

  • Vertex buffer acting strange? [on hold]

    - by Ryan Capote
    I'm having a strange problem, and I don't know what could be causing it. My current code is identical to how I've done this before. I'm trying to render a rectangle using VBO and orthographic projection.   My results:     What I expect: 3x3 rectangle in the top left corner   #include <stdio.h> #include <GL\glew.h> #include <GLFW\glfw3.h> #include "lodepng.h"   static const int FALSE = 0; static const int TRUE = 1;   static const char* VERT_SHADER =     "#version 330\n"       "layout(location=0) in vec4 VertexPosition; "     "layout(location=1) in vec2 UV;"     "uniform mat4 uProjectionMatrix;"     /*"out vec2 TexCoords;"*/       "void main(void) {"     "    gl_Position = uProjectionMatrix*VertexPosition;"     /*"    TexCoords = UV;"*/     "}";   static const char* FRAG_SHADER =     "#version 330\n"       /*"uniform sampler2D uDiffuseTexture;"     "uniform vec4 uColor;"     "in vec2 TexCoords;"*/     "out vec4 FragColor;"       "void main(void) {"    /* "    vec4 texel = texture2D(uDiffuseTexture, TexCoords);"     "    if(texel.a <= 0) {"     "         discard;"     "    }"     "    FragColor = texel;"*/     "    FragColor = vec4(1.f);"     "}";   static int g_running; static GLFWwindow *gl_window; static float gl_projectionMatrix[16];   /*     Structures */ typedef struct _Vertex {     float x, y, z, w;     float u, v; } Vertex;   typedef struct _Position {     float x, y; } Position;   typedef struct _Bitmap {     unsigned char *pixels;     unsigned int width, height; } Bitmap;   typedef struct _Texture {     GLuint id;     unsigned int width, height; } Texture;   typedef struct _VertexBuffer {     GLuint bufferObj, vertexArray; } VertexBuffer;   typedef struct _ShaderProgram {     GLuint vertexShader, fragmentShader, program; } ShaderProgram;   /*   http://en.wikipedia.org/wiki/Orthographic_projection */ void createOrthoProjection(float *projection, float width, float height, float far, float near)  {       const float left = 0;     const float right = width;     const float top = 0;     const float bottom = height;          projection[0] = 2.f / (right - left);     projection[1] = 0.f;     projection[2] = 0.f;     projection[3] = -(right+left) / (right-left);     projection[4] = 0.f;     projection[5] = 2.f / (top - bottom);     projection[6] = 0.f;     projection[7] = -(top + bottom) / (top - bottom);     projection[8] = 0.f;     projection[9] = 0.f;     projection[10] = -2.f / (far-near);     projection[11] = (far+near)/(far-near);     projection[12] = 0.f;     projection[13] = 0.f;     projection[14] = 0.f;     projection[15] = 1.f; }   /*     Textures */ void loadBitmap(const char *filename, Bitmap *bitmap, int *success) {     int error = lodepng_decode32_file(&bitmap->pixels, &bitmap->width, &bitmap->height, filename);       if (error != 0) {         printf("Failed to load bitmap. ");         printf(lodepng_error_text(error));         success = FALSE;         return;     } }   void destroyBitmap(Bitmap *bitmap) {     free(bitmap->pixels); }   void createTexture(Texture *texture, const Bitmap *bitmap) {     texture->id = 0;     glGenTextures(1, &texture->id);     glBindTexture(GL_TEXTURE_2D, texture);       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bitmap->width, bitmap->height, 0,              GL_RGBA, GL_UNSIGNED_BYTE, bitmap->pixels);       glBindTexture(GL_TEXTURE_2D, 0); }   void destroyTexture(Texture *texture) {     glDeleteTextures(1, &texture->id);     texture->id = 0; }   /*     Vertex Buffer */ void createVertexBuffer(VertexBuffer *vertexBuffer, Vertex *vertices) {     glGenBuffers(1, &vertexBuffer->bufferObj);     glGenVertexArrays(1, &vertexBuffer->vertexArray);     glBindVertexArray(vertexBuffer->vertexArray);       glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj);     glBufferData(GL_ARRAY_BUFFER, sizeof(Vertex) * 6, (const GLvoid*)vertices, GL_STATIC_DRAW);       const unsigned int uvOffset = sizeof(float) * 4;       glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), 0);     glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)uvOffset);       glEnableVertexAttribArray(0);     glEnableVertexAttribArray(1);       glBindBuffer(GL_ARRAY_BUFFER, 0);     glBindVertexArray(0); }   void destroyVertexBuffer(VertexBuffer *vertexBuffer) {     glDeleteBuffers(1, &vertexBuffer->bufferObj);     glDeleteVertexArrays(1, &vertexBuffer->vertexArray); }   void bindVertexBuffer(VertexBuffer *vertexBuffer) {     glBindVertexArray(vertexBuffer->vertexArray);     glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj); }   void drawVertexBufferMode(GLenum mode) {     glDrawArrays(mode, 0, 6); }   void drawVertexBuffer() {     drawVertexBufferMode(GL_TRIANGLES); }   void unbindVertexBuffer() {     glBindVertexArray(0);     glBindBuffer(GL_ARRAY_BUFFER, 0); }   /*     Shaders */ void compileShader(ShaderProgram *shaderProgram, const char *vertexSrc, const char *fragSrc) {     GLenum err;     shaderProgram->vertexShader = glCreateShader(GL_VERTEX_SHADER);     shaderProgram->fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);       if (shaderProgram->vertexShader == 0) {         printf("Failed to create vertex shader.");         return;     }       if (shaderProgram->fragmentShader == 0) {         printf("Failed to create fragment shader.");         return;     }       glShaderSource(shaderProgram->vertexShader, 1, &vertexSrc, NULL);     glCompileShader(shaderProgram->vertexShader);     glGetShaderiv(shaderProgram->vertexShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile vertex shader.");         return;     }       glShaderSource(shaderProgram->fragmentShader, 1, &fragSrc, NULL);     glCompileShader(shaderProgram->fragmentShader);     glGetShaderiv(shaderProgram->fragmentShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile fragment shader.");         return;     }       shaderProgram->program = glCreateProgram();     glAttachShader(shaderProgram->program, shaderProgram->vertexShader);     glAttachShader(shaderProgram->program, shaderProgram->fragmentShader);     glLinkProgram(shaderProgram->program);          glGetProgramiv(shaderProgram->program, GL_LINK_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to link shader.");         return;     } }   void destroyShader(ShaderProgram *shaderProgram) {     glDetachShader(shaderProgram->program, shaderProgram->vertexShader);     glDetachShader(shaderProgram->program, shaderProgram->fragmentShader);       glDeleteShader(shaderProgram->vertexShader);     glDeleteShader(shaderProgram->fragmentShader);       glDeleteProgram(shaderProgram->program); }   GLuint getUniformLocation(const char *name, ShaderProgram *program) {     GLuint result = 0;     result = glGetUniformLocation(program->program, name);       return result; }   void setUniformMatrix(float *matrix, const char *name, ShaderProgram *program) {     GLuint loc = getUniformLocation(name, program);       if (loc == -1) {         printf("Failed to get uniform location in setUniformMatrix.\n");         return;     }       glUniformMatrix4fv(loc, 1, GL_FALSE, matrix); }   /*     General functions */ static int isRunning() {     return g_running && !glfwWindowShouldClose(gl_window); }   static void initializeGLFW(GLFWwindow **window, int width, int height, int *success) {     if (!glfwInit()) {         printf("Failed it inialize GLFW.");         *success = FALSE;        return;     }          glfwWindowHint(GLFW_RESIZABLE, 0);     *window = glfwCreateWindow(width, height, "Alignments", NULL, NULL);          if (!*window) {         printf("Failed to create window.");         glfwTerminate();         *success = FALSE;         return;     }          glfwMakeContextCurrent(*window);       GLenum glewErr = glewInit();     if (glewErr != GLEW_OK) {         printf("Failed to initialize GLEW.");         printf(glewGetErrorString(glewErr));         *success = FALSE;         return;     }       glClearColor(0.f, 0.f, 0.f, 1.f);     glViewport(0, 0, width, height);     *success = TRUE; }   int main(int argc, char **argv) {          int err = FALSE;     initializeGLFW(&gl_window, 480, 320, &err);     glDisable(GL_DEPTH_TEST);     if (err == FALSE) {         return 1;     }          createOrthoProjection(gl_projectionMatrix, 480.f, 320.f, 0.f, 1.f);          g_running = TRUE;          ShaderProgram shader;     compileShader(&shader, VERT_SHADER, FRAG_SHADER);     glUseProgram(shader.program);     setUniformMatrix(&gl_projectionMatrix, "uProjectionMatrix", &shader);       Vertex rectangle[6];     VertexBuffer vbo;     rectangle[0] = (Vertex){0.f, 0.f, 0.f, 1.f, 0.f, 0.f}; // Top left     rectangle[1] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top right     rectangle[2] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[3] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top left     rectangle[4] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[5] = (Vertex){3.f, 3.f, 0.f, 1.f, 1.f, 1.f}; // Bottom right       createVertexBuffer(&vbo, &rectangle);            bindVertexBuffer(&vbo);          while (isRunning()) {         glClear(GL_COLOR_BUFFER_BIT);         glfwPollEvents();                    drawVertexBuffer();                    glfwSwapBuffers(gl_window);     }          unbindVertexBuffer(&vbo);       glUseProgram(0);     destroyShader(&shader);     destroyVertexBuffer(&vbo);     glfwTerminate();     return 0; }

    Read the article

  • Homemaking a 2d soft body physics engine

    - by Griffin
    hey so I've decided to Code my own 2D soft-body physics engine in C++ since apparently none exist and I'm starting only with a general idea/understanding on how physics work and could be simulated: by giving points and connections between points properties such as elasticity, density, mass, shape retention, friction, stickiness, etc. What I want is a starting point: resources and helpful examples/sites that could give me the specifics needed to actually make this such as equations and required physics knowledge. It would be great if anyone out there also would give me their attempts or ideas. finally I was wondering if it was possible to... use the source code of an existing 3D engine such as Bullet and transform it to be 2D based? use the source code of a 2D Rigid body physics engine such as box2d as a starting point?

    Read the article

  • Can not remove cube in UDK

    - by user32228
    For some reason, I can't move or remove an 'invisible' cube which is on my map. I searched on Google to find a solution but somehow I still can't remove it. The cube looks like this: http://screencloud.net/v/uNyz In Brush Wireframe: http://screencloud.net/v/3C0c In Wireframe: screencloud.net/v/oGBj As you can see, I want to delete the brown cube. Selecting it and pressing the DEL button won't do anything. So, how do you delete the brown cube? EDIT: Seriously, I wrote this post a few minutes ago and I found the solution. However, I still don't know how to delete the brown cube.

    Read the article

  • How do I render my own DirectX Stuff to a full screen WPF's DirectX surface?

    - by marc40000
    Basically Danny Varod seems to know as he posted it as an answer to this question: Display a Message Box over a Full Screen DirectX application I think, theoretically this might work, but I have no idea how to actually do it. Since I'm also not allowed to post a comment under his comment nor am I allwoed to ask on meta about how to contact another user, I ask this as a normal question here: How do I render my own DirectX Stuff to a full screen WPF's DirectX surface? For starters, I have no idea how to get the DirectX surface from a WPF window. If I had it, what do I have to take care of that the WPF rendering doesn't screw up my own rending or vice-versa?

    Read the article

  • box2d tween what am I missing

    - by philipp
    I have a Box2D project and I want to tween an kinematic body from position A, to position B. The tween function, got it from this blog: function easeInOut(t , b, c, d ){ if ( ( t /= d / 2 ) < 1){ return c/2 * t * t * t * t + b; } return -c/2 * ( (t -= 2 ) * t * t * t - 2 ) + b; } where t is the current value, b the start, c the end and d the total amount of frames (in my case). I am using the method introduced by this lesson of todd's b2d tutorials to move the body by setting its linear Velocity so here is relevant update code of the sprite: if( moveData.current == moveData.total ){ this._body.SetLinearVelocity( new b2Vec2() ); return; } var t = easeNone( moveData.current, 0, 1, moveData.total ); var step = moveData.length / moveData.total * t; var dir = moveData.direction.Copy(); //this is the line that I think might be corrected dir.Multiply( t * moveData.length * fps /moveData.total ) ; var bodyPosition = this._body.GetWorldCenter(); var idealPosition = bodyPosition.Copy(); idealPosition.Add( dir ); idealPosition.Subtract( bodyPosition.Copy() ); moveData.current++; this._body.SetLinearVelocity( idealPosition ); moveData is an Object that holds the global values of the tween, namely: current frame (int), total frames (int), the length of the total distance to travel (float) the direction vector (targetposition - bodyposition) (b2Vec2) and the start of the tween (bodyposition) (b2Vec2) Goal is to tween the body based on a fixed amount of frames: in moveData.total frames. The value of t is always between 0 and 1 and the only thing that is not working correctly is the resulting distance the body travels. I need to calculate the multiplier for the direction vector. What am I missing to make it work?? Greetings philipp

    Read the article

  • Create edges in Blender

    - by Mikey
    I've worked with 3DS Max in Uni and am trying to learn Blender. My problem is I know a lot of simple techniques from 3DS max that I'm having trouble translating into Blender. So my question is: Say I have a poly in the middle of a mesh and I want to split it in two. Simply adding an edge between two edges. This would cause a two 5gons either side. It's a simple technique I use every now and then when I want to modify geometry. It's called "Edge connect" in 3DS Max. In Blender the only edge connect method I can find is to create edge loops, not helpful when aiming at low poly iPhone games. Is there an equivalent in blender?

    Read the article

< Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >