Search Results

Search found 11979 results on 480 pages for 'game'.

Page 248/480 | < Previous Page | 244 245 246 247 248 249 250 251 252 253 254 255  | Next Page >

  • Multiple render targets and gamma correctness in Direct3D9

    - by Mario
    Let's say in a deferred renderer when building your G-Buffer you're going to render texture color, normals, depth and whatever else to your multiple render targets at once. Now if you want to have a gamma-correct rendering pipeline and you use regular sRGB textures as well as rendertargets, you'll need to apply some conversions along the way, because your filtering, sampling and calculations should happen in linear space, not sRGB space. Of course, you could store linear color in your textures and rendertargets, but this might very well introduce bad precision and banding issues. Reading from sRGB textures is easy: just set SRGBTexture = true; in your texture sampler in your HLSL effect code and the hardware does the conversion sRGB-linear for you. Writing to an sRGB rendertarget is theoretically easy, too: just set SRGBWriteEnable = true; in your effect pass in HLSL and your linear colors will be converted to sRGB space automatically. But how does this work with multiple rendertargets? I only want to do these corrections to the color textures and rendertarget, not to the normals, depth, specularity or whatever else I'll be rendering to my G-Buffer. Ok, so I just don't apply SRGBTexture = true; to my non-color textures, but when using SRGBWriteEnable = true; I'll do a gamma correction to all the values I write out to my rendertargets, no matter what I actually store there. I found some info on gamma over at Microsoft: http://msdn.microsoft.com/en-us/library/windows/desktop/bb173460%28v=vs.85%29.aspx For hardware that supports Multiple Render Targets (Direct3D 9) or Multiple-element Textures (Direct3D 9), only the first render target or element is written. If I understand correctly, SRGBWriteEnable should only be applied to the first rendertarget, but according to my tests it doesn't and is used for all rendertargets instead. Now the only alternative seems to be to handle these corrections manually in my shader and only correct the actual color output, but I'm not totally sure, that this'll not have any negative impact on color correctness. E.g. if the GPU does any blending or filtering or multisampling after the Linear-sRGB conversion... Do I even need gamma correction in this case, if I'm just writing texture color without lighting to my rendertarget? As far as I know, I DO need it because of the texture filtering and mip sampling happening in sRGB space instead, if I don't correct for it. Anyway, it'd be interesting to hear other people's solutions or thoughts about this.

    Read the article

  • How to read BC4 texture in GLSL?

    - by Question
    I'm supposed to receive a texture in BC4 format. In OpenGL, i guess this format is called GL_COMPRESSED_RED_RGTC1. The texture is not really a "texture", more like a data to handle at fragment shader. Usually, to get colors from a texture within a fragment shader, i do : uniform sampler2D TextureUnit; void main() { vec4 TexColor = texture2D(TextureUnit, vec2(gl_TexCoord[0])); (...) the result of which is obviously a v4, for RGBA. But now, i'm supposed to receive a single float from the read. I'm struggling to understand how this is achieved. Should i still use a texture sampler, and expect the value to be in a specific position (for example, within TexColor.r ?), or should i use something else ?

    Read the article

  • Suitability of ground fog using layered alpha quads?

    - by Nick Wiggill
    A layered approach would use a series of massive alpha-textured quads arranged parallel to the ground, intersecting all intervening terrain geometry, to provide the illusion of ground fog quite effectively from high up, looking down, and somewhat less effectively when inside the fog and looking toward the horizon (see image below). Alternatively, a shader-heavy approach would instead calculate density as function of view distance into the ground fog substrate, and output the fragment value based on that. Without having to performance-test each approach myself, I would like first to hear others' experiences (not speculation!) on what sort of performance impact the layered alpha texture approach is likely to have. I ask specifically due to the oft-cited impacts of overdraw (not sure how fill-rate bound your average desktop system is). A list of games using this approach, particularly older games, would be immensely useful: if this was viable on pre DX9/OpenGL2 hardware, it is likely to work fine for me. One big question is in regards to this sort of effect: (Image credit goes to Lume of lume.com) Notice how the vertical fog gradation is continuous / smooth. OTOH, using textured quad layers, I can only assume that layers would be mighty obvious when walking through them -- the more sparse they were, the more obvious this would be. This is in contrast to where fog planes are aligned to face the player every frame, where this coarseness would be much less obvious.

    Read the article

  • Omni-directional shadow mapping

    - by gridzbi
    What is a good/the best way to fill a cube map with depth values that are going to give me the least amount of trouble with floating point imprecision? To get up and running I'm just writing the raw depth to the buffer, as you can imagine it's pretty terrible - I need to to improve it, but I'm not sure how. A few tutorials on directional lights divide the depth by W and store the Z/W value in the cube map - How would I perform the depth comparison in my shadow mapping step? The nvidia article here http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html appears to do something completely different and use the dot of the light vector, presumably to counter the depth precision worsening over distance? He also scales the geometry so that it fits into the range -.5 +.5 - The article looks a bit dated, though - is this technique still reasonable? Shader code http://pastebin.com/kNBzX4xU Screenshot http://imgur.com/54wFI

    Read the article

  • Convert vector interpolation to quaternion interpolation? (Catmull-Rom)

    - by edA-qa mort-ora-y
    I have some existing code which does catmull-rom interpolation on two vectors (facing and up). I'm converting this to use quaternions instead (to replace the two vectors). Is there a general way to convert the vector based interpolation to a quaternion one? The approach I'm using now is to exact the axis and angle from the quanternion. I then interpolate each of those independently and convert back to a quaternion. Is there a more direct method?

    Read the article

  • Semi Fixed-timestep ported to javascript

    - by abernier
    In Gaffer's "Fix Your Timestep!" article, the author explains how to free your physics' loop from the paint one. Here is the final code, written in C: double t = 0.0; const double dt = 0.01; double currentTime = hires_time_in_seconds(); double accumulator = 0.0; State previous; State current; while ( !quit ) { double newTime = time(); double frameTime = newTime - currentTime; if ( frameTime > 0.25 ) frameTime = 0.25; // note: max frame time to avoid spiral of death currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { previousState = currentState; integrate( currentState, t, dt ); t += dt; accumulator -= dt; } const double alpha = accumulator / dt; State state = currentState*alpha + previousState * ( 1.0 - alpha ); render( state ); } I'm trying to implement this in JavaScript but I'm quite confused about the second while loop... Here is what I have for now (simplified): ... (function animLoop(){ ... while (accumulator >= dt) { // While? In a requestAnimation loop? Maybe if? ... } ... // render requestAnimationFrame(animLoop); // stand for the 1st while loop [OK] }()) As you can see, I'm not sure about the while loop inside the requestAnimation one... I thought replacing it with a if but I'm not sure it will be equivalent... Maybe some can help me.

    Read the article

  • Algorithm to generate multifaced cube?

    - by OnePie
    Are there any elegant soloution to generate a simple-six sided cube, where each cube is made out of more than one face? The method I have used ended up a horrible and complicated mess of logic that is imopssible to follow and most likely to maintain. The algorithm should not generate reduntant vertices, and should output the indice list for the mesh as well. The reason I need this is that the cubes vertices will be deformed depending on various factors, meaning that a simple six-faced cube will nto do.

    Read the article

  • How to load stacking chunks on the fly?

    - by Brettetete
    I'm currently working on an infinite world, mostly inspired by minecraft. A Chunk consists of 16x16x16 blocks. A block(cube) is 1x1x1. This runs very smoothly with a ViewRange of 12 Chunks (12x16) on my computer. Fine. When I change the Chunk height to 256 this becomes - obviously - incredible laggy. So what I basically want to do is stacking chunks. That means my world could be [8,16,8] Chunks large. The question is now how to generate chunks on the fly? At the moment I generate not existing chunks circular around my position (near to far). Since I don't stack chunks yet, this is not very complex. As important side note here: I also want to have biomes, with different min/max height. So in Biome Flatlands the highest layer with blocks would be 8 (8x16) - in Biome Mountains the highest layer with blocks would be 14 (14x16). Just as example. What I could do would be loading 1 Chunk above and below me for example. But here the problem would be, that transitions between different bioms could be larger than one chunk on y. My current chunk loading in action For the completeness here my current chunk loading "algorithm" private IEnumerator UpdateChunks(){ for (int i = 1; i < VIEW_RANGE; i += ChunkWidth) { float vr = i; for (float x = transform.position.x - vr; x < transform.position.x + vr; x += ChunkWidth) { for (float z = transform.position.z - vr; z < transform.position.z + vr; z += ChunkWidth) { _pos.Set(x, 0, z); // no y, yet _pos.x = Mathf.Floor(_pos.x/ChunkWidth)*ChunkWidth; _pos.z = Mathf.Floor(_pos.z/ChunkWidth)*ChunkWidth; Chunk chunk = Chunk.FindChunk(_pos); // If Chunk is already created, continue if (chunk != null) continue; // Create a new Chunk.. chunk = (Chunk) Instantiate(ChunkFab, _pos, Quaternion.identity); } } // Skip to next frame yield return 0; } }

    Read the article

  • FrameBuffer Render to texture not working all the way

    - by brainydexter
    I am learning to use Frame Buffer Objects. For this purpose, I chose to render a triangle to a texture and then map that to a quad. When I render the triangle, I clear the color to something blue. So, when I render the texture on the quad from fbo, it only renders everything blue, but doesn't show up the triangle. I can't seem to figure out why this is happening. Can someone please help me out with this ? I'll post the rendering code here, since glCheckFramebufferStatus doesn't complain when I setup the FBO. I've pasted the setup code at the end. Here is my rendering code: void FrameBufferObject::Render(unsigned int elapsedGameTime) { glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); glClearColor(0.0, 0.6, 0.5, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // adjust viewport and projection matrices to texture dimensions glPushAttrib(GL_VIEWPORT_BIT); glViewport(0,0, m_FBOWidth, m_FBOHeight); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0, m_FBOWidth, 0, m_FBOHeight, 1.0, 100.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); DrawTriangle(); glPopAttrib(); // setting FrameBuffer back to window-specified Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); //unbind // back to normal viewport and projection matrix //glViewport(0, 0, 1280, 768); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, 1.33, 1.0, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); render(elapsedGameTime); } void FrameBufferObject::DrawTriangle() { glPushMatrix(); glBegin(GL_TRIANGLES); glColor3f(1, 0, 0); glVertex2d(0, 0); glVertex2d(m_FBOWidth, 0); glVertex2d(m_FBOWidth, m_FBOHeight); glEnd(); glPopMatrix(); } void FrameBufferObject::render(unsigned int elapsedTime) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, m_TextureID); glPushMatrix(); glTranslated(0, 0, -20); glBegin(GL_QUADS); glColor4f(1, 1, 1, 1); glTexCoord2f(1, 1); glVertex3f(1,1,1); glTexCoord2f(0, 1); glVertex3f(-1,1,1); glTexCoord2f(0, 0); glVertex3f(-1,-1,1); glTexCoord2f(1, 0); glVertex3f(1,-1,1); glEnd(); glPopMatrix(); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); } void FrameBufferObject::Initialize() { // Generate FBO glGenFramebuffers(1, &m_FBO); glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); // Add depth buffer as a renderbuffer to fbo // create depth buffer id glGenRenderbuffers(1, &m_DepthBuffer); glBindRenderbuffer(GL_RENDERBUFFER, m_DepthBuffer); // allocate space to render buffer for depth buffer glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, m_FBOWidth, m_FBOHeight); // attaching renderBuffer to FBO // attach depth buffer to FBO at depth_attachment glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_DepthBuffer); // Adding a texture to fbo // Create a texture glGenTextures(1, &m_TextureID); glBindTexture(GL_TEXTURE_2D, m_TextureID); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, m_FBOWidth, m_FBOHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); // onlly allocating space glBindTexture(GL_TEXTURE_2D, 0); // attach texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_TextureID, 0); // Check FBO Status if( glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "\n Error:: FrameBufferObject::Initialize() :: FBO loading not complete \n"; // switch back to window system Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); } Thanks!

    Read the article

  • Team matchups for Dota Bot

    - by Dan
    I have a ghost++ bot that hosts games of Dota (a warcraft 3 map that is played 5 players versus 5 players) and I'm trying to come up with good formulas to balance the players going into a match based on their records (I have game history for several thousand games). I'm familear with some of the concepts required to match up players, like confidence based on sample size of the number of games they played, and also perameter approximation and degrees of freedom and thus throwing out any variables that don't contribute enough to the r^2. My bot collects quite a few variables for each player from each game: The Important ones: Win/Lose/Game did not finish # of Player Kills # of Player Deaths # of Kills player assisted The not so important ones: # of enemy creep kills # of creep sneak attacks # of neutral creep kills # of Tower kills # of Rax kills # of courier kills Quick explination: The kills/deaths don't determine who wins, but the gold gained and lost from this usually is enough to tilt the game. Tower/Rax kills are what the goal of the game is (once a team looses all their towers/rax their thrown can be attacked if that is destroyed they lose), but I don't really count these as important because it is pretty random who gets the credit for the tower kill, and chances are if you destroy a tower it is only because some other player is doing well and distracting the otherteam elsewhere on the map. I'm getting a bit confused when trying to deal with the fact that 5 players are on a team, so ultimately each individual isn't that responsible for the team winner or losing. Take a player that is really good at killing and has 40 kills and only 10 deaths, but in their 5 games they've only won 1. Should I give him extra credit for such a high kill score despite losing? (When losing it is hard to keep a positive kill/death ratio) Or should I dock him for losing assuming that despite the nice kill/death ratio he probably plays in a really greedy way only looking out for himself and not helping the team? Ultimately I don't think I have to guess at questions like this because I have so much data... but I don't really know how to look at the data to answer questions like this. Can anyone help me come up with formulas to help team balance and predict the outcome? Thanks, Dan

    Read the article

  • Does somebody know of a testcase(s) of libRocket

    - by Bjorn
    Today I implemented the interfaces for libRocket in my engine using opengl 3.3. I got a standard rml file and some fonts and images which where needed in this rml file. It seems that the page/rml I'm rendering know is the correct one, but I'm not 100% sure. Also because I still don't know a lot of rml and it is a fairly complex one. So my question: Are there any testcases for example an rml with images and fonts with the result as it should be rendered in a png or some other image format? If there aren't would somebody who actually implemented the libRocket interface correctly be so kind and share a result of a rendering in a png with the rml tobe rendered?

    Read the article

  • Doing an SNES Mode 7 (affine transform) effect in pygame

    - by 2D_Guy
    Is there such a thing as a short answer on how to do a Mode 7 / mario kart type effect in pygame? I have googled extensively, all the docs I can come up with are dozens of pages in other languages (asm, c) with lots of strange-looking equations and such. Ideally, I would like to find something explained more in English than in mathematical terms. I can use PIL or pygame to manipulate the image/texture, or whatever else is necessary. I would really like to achieve a mode 7 effect in pygame, but I seem close to my wit's end. Help would be greatly appreciated. Any and all resources or explanations you can provide would be fantastic, even if they're not as simple as I'd like them to be. If I can figure it out, I'll write a definitive how to do mode 7 for newbies page. edit: mode 7 doc: http://www.coranac.com/tonc/text/mode7.htm

    Read the article

  • OpenGL-ES: clearing the alpha of the FrameBufferObject

    - by MrDatabase
    This question is a follow-up to Texture artifacts on iPad How does one "clear the alpha of the render texture frameBufferObject"? I've searched around here, StackOverflow and various search engines but no luck. I've tried a few things... for example calling GlClear(GL_COLOR_BUFFER_BIT) at the beginning of my render loop... but it doesn't seem to make a difference. Any help is appreciated since I'm still new to OpenGL. Cheers! p.s. I read on SO and in Apple's documentation that GlClear should always be called at the beginning of the renderLoop. Agree? Disagree? Here's where I read this: http://stackoverflow.com/questions/2538662/how-does-glclear-improve-performance

    Read the article

  • Orthographic Projection Issue

    - by Nick
    I have a problem with my Ortho Matrix. The engine uses the perspective projection fine but for some reason the Ortho matrix is messed up. (See screenshots below). Can anyone understand what is happening here? At the min I am taking the Projection matrix * Transform (Translate, rotate, scale) and passing to the Vertex shader to multiply the Vertices by it. VIDEO Shows the same scene, rotating on the Y axis. http://youtu.be/2feiZAIM9Y0 void Matrix4f::InitOrthoProjTransform(float left, float right, float top, float bottom, float zNear, float zFar) { m[0][0] = 2 / (right - left); m[0][1] = 0; m[0][2] = 0; m[0][3] = 0; m[1][0] = 0; m[1][1] = 2 / (top - bottom); m[1][2] = 0; m[1][3] = 0; m[2][0] = 0; m[2][1] = 0; m[2][2] = -1 / (zFar - zNear); m[2][3] = 0; m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -zNear / (zFar - zNear); m[3][3] = 1; } This is what happens with Ortho Matrix: This is the Perspective Matrix:

    Read the article

  • How to make rigid bodies collide with Apex Clothing in PhysX for Maya

    - by b1nary.atr0phy
    According to the [Apex] Clothing Overview section of the documentation: Colliding with Rigid Bodies Rigid bodies present in your scene will push clothing around roughly as you might expect. Well, I beg to differ. The Apex Cloth collides with the floor just fine, but that's about the only thing it collides with (unless I add ragdoll to the same skeleton that the cloth is attached to.) So for example, if I try to bounce a ball (dynamic rigid body) into the cloth, it simply bounces through it. If I try to walk an actor with ragdoll through it, he simply clips through it as well. Anyone have any insight on this?

    Read the article

  • GLSL Bokeh using Quads and Textures

    - by Notoriousaur
    I'm trying to create a depth of field effect with bokeh sprites in GLSL. Specifically, what i would like to do is, for each pixel: See if the pixel is out of the focal range If it is, draw a quad and apply a texture to provide a bokeh sprite. This kind of implementation is seen in the Unreal Engine and by Matt Pettineo, however, both implementations are in DX11 and I'm using OpenGL. I'm a bit stuck on the drawing a quad and applying a texture bit. Does anyone know how I can do this, or provide any relevant links as to how I can do this? Thanks

    Read the article

  • Algorithmically generating neon layers on pixel grid

    - by user190929
    In an attempt at a screensaver I am making, I am a fan of neo-like graphics, which, of course, look great against a black background. As I understand it, neon, graphically speaking, is essentially a gradient of a color, brightest in the center, and gets darker proceeding outward. Although, more accurate is similar, but separating it into tubes and glow. The tubes are mostly white, while the glow is where most of the color is seen. Well... the tubes could also be a light variant of the color, you could say. The glow is darker. Anyhow, my question is, how could you generate such things given an initial pattern of pixels that would be the tubes? For example, let's say I want to make a neon 'H'. I, via the libraries, can attain the rectangles of pixels which represent it, but I want to make it look neonized. How could I algorithmically achieve such an effect given a base tube shape and base color? EDIT: ok, I mistated that. Got a bit distracted. My purpose for this was similar to a neon effect, but not. Sorry about that. What I am looking for is something like this: Start with a pattern of pixels: [!][!][!][!][!][!][!][!] [!][!][O][!][!][!][!][!] [!][!][O][O][!][!][!][!] [!][!][!][!][O][!][!][!] [!][!][!][!][!][!][!][!] How to I find the U pixels? [!][E][E][E][!][!][!][!] [!][E][O][E][E][!][!][!] [!][E][O][O][E][E][!][!] [!][E][E][E][O][E][!][!] [!][!][!][E][E][E][!][!] Sorry if that looks bad.

    Read the article

  • Can one draw a cube using different method/drawing mode?

    - by den-javamaniac
    Hi. I've just started learning gamedev (in particular android EGL based) and have ran over a code from Pro Android Games 2 that looks as follows: /* * Copyright (C) 2007 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opengl.scenes.cubes; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.IntBuffer; import javax.microedition.khronos.opengles.GL10; public class Cube { public Cube(){ int one = 0x10000; int vertices[] = { -one, -one, -one, one, -one, -one, one, one, -one, -one, one, -one, -one, -one, one, one, -one, one, one, one, one, -one, one, one, }; int colors[] = { 0, 0, 0, one, one, 0, 0, one, one, one, 0, one, 0, one, 0, one, 0, 0, one, one, one, 0, one, one, one, one, one, one, 0, one, one, one, }; byte indices[] = { 0, 4, 5, 0, 5, 1, 1, 5, 6, 1, 6, 2, 2, 6, 7, 2, 7, 3, 3, 7, 4, 3, 4, 0, 4, 7, 6, 4, 6, 5, 3, 0, 1, 3, 1, 2 }; // Buffers to be passed to gl*Pointer() functions // must be direct, i.e., they must be placed on the // native heap where the garbage collector cannot vbb.asIntBuffer() // move them. // // Buffers with multi-byte datatypes (e.g., short, int, float) // must have their byte order set to native order ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length*4); vbb.order(ByteOrder.nativeOrder()); mVertexBuffer = vbb.asIntBuffer(); mVertexBuffer.put(vertices); mVertexBuffer.position(0); ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length*4); cbb.order(ByteOrder.nativeOrder()); mColorBuffer = cbb.asIntBuffer(); mColorBuffer.put(colors); mColorBuffer.position(0); mIndexBuffer = ByteBuffer.allocateDirect(indices.length); mIndexBuffer.put(indices); mIndexBuffer.position(0); } public void draw(GL10 gl) { gl.glFrontFace(GL10.GL_CW); gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer); gl.glColorPointer(4, GL10.GL_FIXED, 0, mColorBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE, mIndexBuffer); } private IntBuffer mVertexBuffer; private IntBuffer mColorBuffer; private ByteBuffer mIndexBuffer;} So it suggests to draw a cube using triangles. My question is: can I draw the same cube using GL_TPOLYGON? If so, isn't that an easier/more understandable way to do things?

    Read the article

  • Drawing a textured triangle with CPU instead of GPU

    - by Jenko
    I understand the benefits of GPU rendering and such, but for a certain limited application I need to render textured triangles purely using CPU. I've built a 3D engine capable of object handling, transform, projection, culling and the likes ... now all I need is a little code snippet that draws a single textured triangle onto a bitmap... any language accepted! Inputs: Texture bitmap, Triangle U/V/W coords, Triangle X/Y screen coords Output: The textured triangle drawn at the given screen coords I've currently been using a platform function to draw triangles to screen, but I'm looking to handle it myself to speeden up the process.

    Read the article

  • Dynamic Environment Creation

    - by Jack
    I was wondering, I'm thinking on a more small-scale, abstracted level, but how does one create a dynamic environment a la Minecraft? In specific, I'm thinking of the world as a 3 dimensional array of block objects, how is it made so that large features such as oceans are created? The language isn't important, I'm thinking on a conceptual level, but if it helps, I use C# or C++. Thanks for any help!

    Read the article

  • Can't click on a button with startDrag() active on stage

    - by Pedro
    I need to know how can I enable mouse click on a button when I have a MouseEvent listener for the stage. I have a MClip associated with the mouse cursor: Mouse.hide(); scope.startDrag(true); And an MouseEnvet on the stage: stage.addEventListener(MouseEvent.CLICK, FunctionXYZ); When I try to click on any button they don't assume the function that I create for those buttons... for example, button for fullscreen, exit, help, etc... Thank you very much. BR, Pedro

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • running GL ES 2.0 code under Linux ( no Android no iOS )

    - by user827992
    I need to code OpenGL ES 2.0 bits and i would like to do this and run the programs on my desktop for practical reasons. Now, i already have tried the official GLES SDK from ATI for my videocard but it not even runs the examples that comes with the SDK itself, i'm not looking for performance here, even a software based rendering pipeline could be enough, i just need full support for GLES 2.0 and GLSL to code and run GL stuff. There is a reliable solution for this under Ubuntu Linux ?

    Read the article

  • RenderState in XNA 4

    - by Shashwat
    I was going through this tutorial for having transparency which can be used to solve my problem here. The code is written in XNA 3 but I'm using XNA 4. What is the alternative for the following code in XNA 4? device.RenderState.AlphaTestEnable = true; device.RenderState.AlphaFunction = CompareFunction.GreaterEqual; device.RenderState.ReferenceAlpha = 200; device.RenderState.DepthBufferWriteEnable = false; I searched a lot but didn't find anything useful.

    Read the article

  • Why isn't my lighting working properly? Are my normals messed up?

    - by Radek Slupik
    I'm relatively new to OpenGL and I am trying to draw a 3D model (loaded from a 3ds file using lib3ds) using OpenGL with lighting, but about half of it is drawn in black. I set up the light as such: glEnable(GL_LIGHTING); glShadeModel(GL_SMOOTH); GLfloat ambientColor[] = {0.2f, 0.2f, 0.2f, 1.0f}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientColor); glEnable(GL_LIGHT0); GLfloat lightColor0[] = {1.0f, 1.0f, 1.0f, 1.0f}; GLfloat lightPos0[] = {4.0f, 0.0f, 8.0f, 0.0f}; glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor0); glLightfv(GL_LIGHT0, GL_POSITION, lightPos0); The model is in a VBO and drawn using glDrawArrays. The normals are in a separate VBO, and the normals are calculated using lib3ds_mesh_calculate_vertex_normals: std::vector<std::array<float, 3>> normals; for (std::size_t i = 0; i < model->nmeshes; ++i) { auto& mesh = *model->meshes[i]; std::vector<float[3]> vertex_normals(mesh.nfaces * 3); lib3ds_mesh_calculate_vertex_normals(&mesh, vertex_normals.data()); for (std::size_t j = 0; j < mesh.nfaces; ++j) { auto& face = mesh.faces[j]; normals.push_back(make_array(vertex_normals[j])); } } glBindBuffer(GL_ARRAY_BUFFER, normal_vbo_); glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(decltype(normals)::value_type), normals.data(), GL_STATIC_DRAW); The problem isn't the vertices; the model is drawn correctly when drawing it as a wireframe. I also fixed the normals in Blender using controlN. What could be the problem? Should I store the normals in a different order?

    Read the article

< Previous Page | 244 245 246 247 248 249 250 251 252 253 254 255  | Next Page >