Search Results

Search found 21456 results on 859 pages for 'video memory'.

Page 293/859 | < Previous Page | 289 290 291 292 293 294 295 296 297 298 299 300  | Next Page >

  • How to get IMediaControl.Run() to start a file playing with no delay

    - by MusiGenesis
    I am attempting to use DirectShow to play two AVI files consecutively (one after the other) so that there is no interruption in the audio or video when the player transitions from one file to the next. I have two custom controls on my form. Each one is pre-loaded with an AVI file, and before playback begins I set up all the DirectShow interfaces, set the video windows and resize them, call IMediaControl.Run(), then IMediaControl.Pause(), then IMediaSeeking.SetPositions to reset to frame 0, on both controls. On the form, you can see that both files are paused at their initial frames. I then call IMediaControl.Run() on the first control, and wait for it to complete before calling Run() on the second control. Initially, I hooked into the first video's EC_COMPLETE notification message, and used this to start the second. Thinking that this event might be slow to arrive (turns out it is, but for a weird reason), I tried two other approaches: Check the first video's current position inside a timer that goes off every second or so (using IMediaPosition.get_CurrentPosition). When the current position is within a second of the video's stop time (known in advance from IMediaPosition.get_StopTime), I go into a tight while loop and wait for the current position to equal the stop time, and then call Run() on the second video. Same as the first, except I replace the while loop with a call to timeSetEvent from winmm.dll, with a delay set so that it fires right when the first file is supposed to end. I use the callback to Run() the second file. Either of these two methods substantially cuts down the delay between the end of the first file and the beginning of the second, indicating that the EC_COMPLETE message doesn't arrive immediately after the file is complete (I also tried hooking the EC_SEGMENT_COMPLETE message, which is supposed to be used for looping within a file, but apparently nobody supports this - it never occurs on my machine, at least). Doing all of the above has cut the transition delay from as much as a second, down to a barely perceptible glitch; about a third of the time the files transition with no interruption at all, which suggests there's no fundamental reason I can't get this to work all the time. The slight delay is still unacceptable, unfortunately. I assume (and I could easily be wrong) that the remaining delay is due to a slight variable delay between the call to IMediaControl.Run() and when the video actually starts playing. Does anybody know anything I can do to eliminate this little lag? It would also help to be told this is fundamentally impossible for whatever reason, which wouldn't surprise me. I've never encountered a video player in Windows that doesn't have this problem, so it may not be doable. More info: the AVI files I'm playing are completely uncompressed (video and audio are uncompressed), so I don't think the lag is due to DirectShow's having to uncompress the video ahead of play start, although it may still buffer ahead as matter of course (and this may be the source of the problem). I would have though that starting play, pausing and then rewinding to the beginning would fix this. Also, the way I'm handling the transition is to actually have the second control underneath the first; when the first completes playing, I start the second and then call BringToFront on it, creating the appearance of a single video transitioning between the two originals. I don't think the glitch is due to this, because it works perfectly some of the time, and even if this were problematic, it wouldn't explain the matching audio glitch. Even more: I just tried starting the second video 30-50 milliseconds "early" and that seemed to eliminate even more of the gap, so I'm guessing that the lag in Run() is about that long. It appears to be variable, though, so this is still not where I need it to be.

    Read the article

  • String Sharing/Reference issue with objects in Delphi

    - by jenakai123
    My application builds many objects in memory based on filenames (among other string based information). I was hoping to optimise memory usage by storing the path and filename separately, and then sharing the path between objects in the same path. I wasn't trying to look at using a string pool or anything, basically my objects are sorted so if I have 10 objects with the same path I want objects 2-10 to have their path "pointed" at object 1's path (eg object[2].Path=object[1].Path); I have a problem though, I don't believe that my objects are in fact sharing a reference to the same string after I think I am telling them to (by the object[2].Path=object[1].Path assignment). When I do an experiment with a string list and set all the values to point to the first value in the list I can see the "memory conservation" in action, but when I use objects I see absolutely no change at all, admittedly I am only using task manager (private working set) to watch for memory use changes. Here's a contrived example, I hope this makes sense. I have an object: TfileObject=class(Tobject) FpathPart: string; FfilePart: string; end; Now I create 1,000,000 instances of the object, using a new string for each one: var x: integer; MyFilePath: string; fo: TfileObject; begin for x := 1 to 1000000 do begin // create a new string for every iteration of the loop MyFilePath:=ExtractFilePath(Application.ExeName); fo:=TfileObject.Create; fo.FpathPart:=MyFilePath; FobjectList.Add(fo); end; end; Run this up and task manager says I am using 68MB of memory or something. (Note that if I allocated MyFilePath outside of the loop then I do save memory because of 1 instance of the string, but this is a contrived example and not actually how it would happen in the app). Now I want to "optimise" my memory usage by making all objects share the same instance of the path string, since it's the same value: var x: integer; begin for x:=1 to FobjectList.Count-1 do begin TfileObject(FobjectList[x]).FpathPart:=TfileObject(FobjectList[0]).FpathPart; end; end; Task Manager shows absouletly no change. However if I do something similar with a TstringList: var x: integer; begin for x := 1 to 1000000 do begin FstringList.Add(ExtractFilePath(Application.ExeName)); end; end; Task Manager says 60MB memory use. Now optimise with: var x: integer; begin for x := 1 to FstringList.Count - 1 do FstringList[x]:=FstringList[0]; end; Task Manager shows the drop in memory usage that I would expect, now 10MB. So I seem to be able to share strings in a string list, but not in objects. I am obviously missing something conceptually, in code or both! I hope this makes sense, I can really see the ability to conserve memory using this technique as I have a lot of objects all with lots of string information, that data is sorted in many different ways and I would like to be able to iterate over this data once it is loaded into memory and free some of that memory back up again by sharing strings in this way. Thanks in advance for any assistance you can offer.

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

  • How to solve out of memory exception error in Entity FramWork?

    - by programmerist
    Hello; these below codes give whole data of my Rehber datas. But if i want to show web page via Gridview send me out of memory exception error. GenoTip.BAL: public static List<Rehber> GetAllDataOfRehber() { using (GenoTipSatisEntities genSatisCtx = new GenoTipSatisEntities()) { ObjectQuery<Rehber> rehber = genSatisCtx.Rehber; return rehber.ToList(); } } if i bind data directly dummy gridview like that no problem occures every thing is great!!! <asp:GridView ID="gwRehber" runat="server"> </asp:GridView> if above codes send data to Satis.aspx page: using GenoTip.BAL; namespace GenoTip.Web.ContentPages.Satis { public partial class Satis : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { gwRehber.DataSource = SatisServices.GetAllDataOfRehber(); gwRehber.DataBind(); //gwRehber.Columns[0].Visible = false; } } } } but i rearranged my gridview send me out of memory exception!!!! i need this arrangenment to show deta!!! <asp:GridView ID="gwRehber" runat="server"> <Columns> <%-- <asp:TemplateField> <ItemTemplate> <asp:Button runat="server" ID="btnID" CommandName="select" CommandArgument='<%# Eval("ID") %>' Text="Seç" /> </ItemTemplate> </asp:TemplateField>--%> <asp:BoundField DataField="Ad" HeaderText="Ad" /> <asp:BoundField DataField="BireyID" HeaderText="BireyID" Visible="false" /> <asp:BoundField DataField="Degistiren" HeaderText="Degistiren" /> <asp:BoundField DataField="EklemeTarihi" HeaderText="EklemeTarihi" /> <asp:BoundField DataField="DegistirmeTarihi" HeaderText="Degistirme Tarihi" Visible="false" /> <asp:BoundField DataField="Ekleyen" HeaderText="Ekleyen" /> <asp:BoundField DataField="ID" HeaderText="ID" Visible="false" /> <asp:BoundField DataField="Imza" HeaderText="Imza" /> <asp:BoundField DataField="KurumID" HeaderText="KurumID" Visible="false" /> </Columns> </asp:GridView> Error Detail : [OutOfMemoryException: 'System.OutOfMemoryException' türünde özel durum olusturuldu.] System.String.GetStringForStringBuilder(String value, Int32 startIndex, Int32 length, Int32 capacity) +29 System.Convert.ToBase64String(Byte[] inArray, Int32 offset, Int32 length, Base64FormattingOptions options) +146 System.Web.UI.ObjectStateFormatter.Serialize(Object stateGraph) +183 System.Web.UI.ObjectStateFormatter.System.Web.UI.IStateFormatter.Serialize(Object state) +4 System.Web.UI.Util.SerializeWithAssert(IStateFormatter formatter, Object stateGraph) +37 System.Web.UI.HiddenFieldPageStatePersister.Save() +79 System.Web.UI.Page.SavePageStateToPersistenceMedium(Object state) +105 System.Web.UI.Page.SaveAllState() +236 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +1099

    Read the article

  • Ubuntu 14.04 Failed to load module udlfb

    - by jar276705
    DisplayLink doesn't load and run. The adapter is recognized and /dev/FB1 is created. USB bus info: Bus 001 Device 006: ID 17e9:0198 DisplayLink Xorg.0.log: X.Org X Server 1.15.1 Release Date: 2014-04-13 [ 44708.386] X Protocol Version 11, Revision 0 [ 44708.389] Build Operating System: Linux 3.2.0-37-generic i686 Ubuntu [ 44708.392] Current Operating System: Linux rrl 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:08:14 UTC 2014 i686 [ 44708.392] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-24-generic root=UUID=6b719a77-29e0-4668-8f16-57d0d3a73a3f ro quiet splash vt.handoff=7 [ 44708.399] Build Date: 16 April 2014 01:40:08PM [ 44708.402] xorg-server 2:1.15.1-0ubuntu2 (For technical support please see http://www.ubuntu.com/support) [ 44708.405] Current version of pixman: 0.30.2 [ 44708.412] Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. [ 44708.412] Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. [ 44708.427] (==) Log file: "/var/log/Xorg.0.log", Time: Thu May 1 09:38:27 2014 [ 44708.431] (==) Using config file: "/etc/X11/xorg.conf" [ 44708.434] (==) Using system config directory "/usr/share/X11/xorg.conf.d" [ 44708.435] (==) ServerLayout "X.org Configured" [ 44708.435] (**) |-->Screen "DisplayLinkScreen" (0) [ 44708.435] (**) | |-->Monitor "DisplayLinkMonitor" [ 44708.435] (**) | |-->Device "DisplayLinkDevice" [ 44708.435] (**) |-->Screen "Screen0" (1) [ 44708.435] (**) | |-->Monitor "Monitor0" [ 44708.435] (**) | |-->Device "Card0" [ 44708.435] (**) |-->Input Device "Mouse0" [ 44708.435] (**) |-->Input Device "Keyboard0" [ 44708.435] (==) Automatically adding devices [ 44708.435] (==) Automatically enabling devices [ 44708.435] (==) Automatically adding GPU devices [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (**) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins, /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins [ 44708.435] (**) ModulePath set to "/usr/lib/xorg/modules" [ 44708.435] (WW) Hotplugging is on, devices using drivers 'kbd', 'mouse' or 'vmmouse' will be disabled. [ 44708.435] (WW) Disabling Mouse0 [ 44708.435] (WW) Disabling Keyboard0 [ 44708.435] (II) Loader magic: 0xb77106c0 [ 44708.435] (II) Module ABI versions: [ 44708.435] X.Org ANSI C Emulation: 0.4 [ 44708.435] X.Org Video Driver: 15.0 [ 44708.435] X.Org XInput driver : 20.0 [ 44708.435] X.Org Server Extension : 8.0 [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card0) [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card1) [ 44708.437] (--) PCI:*(0:1:5:0) 1002:9616:105b:0e26 rev 0, Mem @ 0xf0000000/134217728, 0xfeae0000/65536, 0xfe900000/1048576, I/O @ 0x0000b000/256 [ 44708.441] Initializing built-in extension Generic Event Extension [ 44708.444] Initializing built-in extension SHAPE [ 44708.448] Initializing built-in extension MIT-SHM [ 44708.452] Initializing built-in extension XInputExtension [ 44708.456] Initializing built-in extension XTEST [ 44708.460] Initializing built-in extension BIG-REQUESTS [ 44708.464] Initializing built-in extension SYNC [ 44708.468] Initializing built-in extension XKEYBOARD [ 44708.471] Initializing built-in extension XC-MISC [ 44708.475] Initializing built-in extension SECURITY [ 44708.479] Initializing built-in extension XINERAMA [ 44708.483] Initializing built-in extension XFIXES [ 44708.487] Initializing built-in extension RENDER [ 44708.491] Initializing built-in extension RANDR [ 44708.494] Initializing built-in extension COMPOSITE [ 44708.498] Initializing built-in extension DAMAGE [ 44708.502] Initializing built-in extension MIT-SCREEN-SAVER [ 44708.506] Initializing built-in extension DOUBLE-BUFFER [ 44708.510] Initializing built-in extension RECORD [ 44708.513] Initializing built-in extension DPMS [ 44708.517] Initializing built-in extension Present [ 44708.521] Initializing built-in extension DRI3 [ 44708.525] Initializing built-in extension X-Resource [ 44708.528] Initializing built-in extension XVideo [ 44708.532] Initializing built-in extension XVideo-MotionCompensation [ 44708.535] Initializing built-in extension SELinux [ 44708.539] Initializing built-in extension XFree86-VidModeExtension [ 44708.542] Initializing built-in extension XFree86-DGA [ 44708.546] Initializing built-in extension XFree86-DRI [ 44708.549] Initializing built-in extension DRI2 [ 44708.549] (II) "glx" will be loaded. This was enabled by default and also specified in the config file. [ 44708.549] (WW) "xmir" is not to be loaded by default. Skipping. [ 44708.549] (II) LoadModule: "glx" [ 44708.549] (II) Loading /usr/lib/xorg/modules/extensions/libglx.so [ 44708.550] (II) Module glx: vendor="X.Org Foundation" [ 44708.550] compiled for 1.15.1, module version = 1.0.0 [ 44708.550] ABI class: X.Org Server Extension, version 8.0 [ 44708.550] (==) AIGLX enabled [ 44708.553] Loading extension GLX [ 44708.553] (II) LoadModule: "udlfb" [ 44708.554] (WW) Warning, couldn't open module udlfb [ 44708.554] (II) UnloadModule: "udlfb" [ 44708.554] (II) Unloading udlfb [ 44708.554] (EE) Failed to load module "udlfb" (module does not exist, 0) [ 44708.554] (II) LoadModule: "modesetting" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.554] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 0.8.1 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (==) Matched fglrx as autoconfigured driver 0 [ 44708.554] (==) Matched ati as autoconfigured driver 1 [ 44708.554] (==) Matched fglrx as autoconfigured driver 2 [ 44708.554] (==) Matched ati as autoconfigured driver 3 [ 44708.554] (==) Matched modesetting as autoconfigured driver 4 [ 44708.554] (==) Matched fbdev as autoconfigured driver 5 [ 44708.554] (==) Matched vesa as autoconfigured driver 6 [ 44708.554] (==) Assigned the driver to the xf86ConfigLayout [ 44708.554] (II) LoadModule: "fglrx" [ 44708.554] (WW) Warning, couldn't open module fglrx [ 44708.554] (II) UnloadModule: "fglrx" [ 44708.554] (II) Unloading fglrx [ 44708.554] (EE) Failed to load module "fglrx" (module does not exist, 0) [ 44708.554] (II) LoadModule: "ati" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/ati_drv.so [ 44708.554] (II) Module ati: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 7.3.0 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (II) LoadModule: "radeon" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/radeon_drv.so [ 44708.555] (II) Module radeon: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 7.3.0 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "modesetting" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.555] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.8.1 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) UnloadModule: "modesetting" [ 44708.555] (II) Unloading modesetting [ 44708.555] (II) Failed to load module "modesetting" (already loaded, 0) [ 44708.555] (II) LoadModule: "fbdev" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/fbdev_drv.so [ 44708.555] (II) Module fbdev: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.4.4 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "vesa" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 44708.555] (II) Module vesa: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 2.3.3 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) modesetting: Driver for Modesetting Kernel Drivers: kms [ 44708.555] (II) RADEON: Driver for ATI Radeon chipsets: [ 44708.560] (II) FBDEV: driver for framebuffer: fbdev [ 44708.560] (II) VESA: driver for VESA chipsets: vesa [ 44708.560] (--) using VT number 7 [ 44708.578] (II) modesetting(0): using drv /dev/dri/card0 [ 44708.578] (II) modesetting(G0): using drv /dev/dri/card1 [ 44708.578] (WW) Falling back to old probe method for fbdev [ 44708.578] (II) Loading sub module "fbdevhw" [ 44708.578] (II) LoadModule: "fbdevhw" [ 44708.578] (II) Loading /usr/lib/xorg/modules/libfbdevhw.so [ 44708.578] (II) Module fbdevhw: vendor="X.Org Foundation" [ 44708.578] compiled for 1.15.1, module version = 0.0.2 [ 44708.578] ABI class: X.Org Video Driver, version 15.0 [ 44708.578] (WW) Falling back to old probe method for vesa [ 44708.578] (**) modesetting(0): Depth 16, (--) framebuffer bpp 16 [ 44708.578] (==) modesetting(0): RGB weight 565 [ 44708.578] (==) modesetting(0): Default visual is TrueColor [ 44708.578] (II) modesetting(0): ShadowFB: preferred YES, enabled YES [ 44708.608] (II) modesetting(0): Output VGA-0 using monitor section DisplayLinkMonitor [ 44708.610] (II) modesetting(0): Output DVI-0 has no monitor section [ 44708.640] (II) modesetting(0): EDID for output VGA-0 [ 44708.640] (II) modesetting(0): Manufacturer: ACR Model: 74 Serial#: 2483090993 [ 44708.640] (II) modesetting(0): Year: 2009 Week: 40 [ 44708.640] (II) modesetting(0): EDID Version: 1.3 [ 44708.640] (II) modesetting(0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.640] (II) modesetting(0): Sync: Separate [ 44708.640] (II) modesetting(0): Max Image Size [cm]: horiz.: 53 vert.: 29 [ 44708.640] (II) modesetting(0): Gamma: 2.20 [ 44708.640] (II) modesetting(0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.641] (II) modesetting(0): First detailed timing is preferred mode [ 44708.641] (II) modesetting(0): redX: 0.649 redY: 0.338 greenX: 0.289 greenY: 0.609 [ 44708.641] (II) modesetting(0): blueX: 0.146 blueY: 0.070 whiteX: 0.313 whiteY: 0.329 [ 44708.641] (II) modesetting(0): Supported established timings: [ 44708.641] (II) modesetting(0): 720x400@70Hz [ 44708.641] (II) modesetting(0): 640x480@60Hz [ 44708.641] (II) modesetting(0): 640x480@72Hz [ 44708.641] (II) modesetting(0): 640x480@75Hz [ 44708.641] (II) modesetting(0): 800x600@56Hz [ 44708.641] (II) modesetting(0): 800x600@60Hz [ 44708.641] (II) modesetting(0): 800x600@72Hz [ 44708.641] (II) modesetting(0): 800x600@75Hz [ 44708.641] (II) modesetting(0): 1024x768@60Hz [ 44708.641] (II) modesetting(0): 1024x768@70Hz [ 44708.641] (II) modesetting(0): 1024x768@75Hz [ 44708.641] (II) modesetting(0): 1280x1024@75Hz [ 44708.641] (II) modesetting(0): Manufacturer's mask: 0 [ 44708.641] (II) modesetting(0): Supported standard timings: [ 44708.641] (II) modesetting(0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.641] (II) modesetting(0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.641] (II) modesetting(0): #2: hsize: 1440 vsize 900 refresh: 60 vid: 149 [ 44708.641] (II) modesetting(0): #3: hsize: 1440 vsize 900 refresh: 75 vid: 3989 [ 44708.641] (II) modesetting(0): #4: hsize: 1600 vsize 1200 refresh: 60 vid: 16553 [ 44708.641] (II) modesetting(0): #5: hsize: 1680 vsize 1050 refresh: 60 vid: 179 [ 44708.641] (II) modesetting(0): Supported detailed timing: [ 44708.641] (II) modesetting(0): clock: 138.5 MHz Image Size: 531 x 298 mm [ 44708.641] (II) modesetting(0): h_active: 1920 h_sync: 1968 h_sync_end 2000 h_blank_end 2080 h_border: 0 [ 44708.641] (II) modesetting(0): v_active: 1080 v_sync: 1083 v_sync_end 1088 v_blanking: 1111 v_border: 0 [ 44708.641] (II) modesetting(0): Monitor name: H243H [ 44708.641] (II) modesetting(0): Ranges: V min: 56 V max: 76 Hz, H min: 31 H max: 83 kHz, PixClock max 185 MHz [ 44708.641] (II) modesetting(0): Serial No: LEW0C0044002 [ 44708.641] (II) modesetting(0): EDID (in hex): [ 44708.641] (II) modesetting(0): 00ffffffffffff000472740031f60094 [ 44708.641] (II) modesetting(0): 2813010368351d78ea6085a6564a9c25 [ 44708.641] (II) modesetting(0): 125054afcf008180714f9500950fa940 [ 44708.641] (II) modesetting(0): b300010101011a3680a070381f403020 [ 44708.641] (II) modesetting(0): 3500132a2100001a000000fc00483234 [ 44708.642] (II) modesetting(0): 33480a20202020202020000000fd0038 [ 44708.642] (II) modesetting(0): 4c1f5312000a202020202020000000ff [ 44708.642] (II) modesetting(0): 004c45573043303034343030320a003c [ 44708.642] (II) modesetting(0): Printing probed modes for output VGA-0 [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz UeP) [ 44708.642] (II) modesetting(0): Modeline "1920x1080"x59.9 138.50 1920 1968 2000 2080 1080 1083 1088 1111 +hsync -vsync (66.6 kHz eP) [ 44708.642] (II) modesetting(0): Modeline "1600x1200"x60.0 162.00 1600 1664 1856 2160 1200 1201 1204 1250 +hsync +vsync (75.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1680x1050"x60.0 146.25 1680 1784 1960 2240 1050 1053 1059 1089 -hsync +vsync (65.3 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x75.0 136.75 1440 1536 1688 1936 900 903 909 942 -hsync +vsync (70.6 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x59.9 106.50 1440 1520 1672 1904 900 903 909 934 -hsync +vsync (55.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.645] (II) modesetting(0): EDID for output DVI-0 [ 44708.645] (II) modesetting(0): Output VGA-0 connected [ 44708.645] (II) modesetting(0): Output DVI-0 disconnected [ 44708.645] (II) modesetting(0): Using user preference for initial modes [ 44708.645] (II) modesetting(0): Output VGA-0 using initial mode 1280x1024 [ 44708.645] (II) modesetting(0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.645] (==) modesetting(0): DPI set to (96, 96) [ 44708.645] (II) Loading sub module "fb" [ 44708.645] (II) LoadModule: "fb" [ 44708.645] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.645] (II) Module fb: vendor="X.Org Foundation" [ 44708.645] compiled for 1.15.1, module version = 1.0.0 [ 44708.645] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.645] (II) Loading sub module "shadow" [ 44708.645] (II) LoadModule: "shadow" [ 44708.646] (II) Loading /usr/lib/xorg/modules/libshadow.so [ 44708.646] (II) Module shadow: vendor="X.Org Foundation" [ 44708.646] compiled for 1.15.1, module version = 1.1.0 [ 44708.646] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.646] (**) modesetting(G0): Depth 16, (--) framebuffer bpp 16 [ 44708.646] (==) modesetting(G0): RGB weight 565 [ 44708.646] (==) modesetting(G0): Default visual is TrueColor [ 44708.646] (II) modesetting(G0): ShadowFB: preferred NO, enabled NO [ 44708.727] (II) modesetting(G0): Output DVI-1-0 using monitor section DisplayLinkMonitor [ 44708.808] (II) modesetting(G0): EDID for output DVI-1-0 [ 44708.808] (II) modesetting(G0): Manufacturer: WDE Model: 1702 Serial#: 0 [ 44708.808] (II) modesetting(G0): Year: 2005 Week: 14 [ 44708.808] (II) modesetting(G0): EDID Version: 1.3 [ 44708.808] (II) modesetting(G0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.808] (II) modesetting(G0): Sync: Separate [ 44708.808] (II) modesetting(G0): Max Image Size [cm]: horiz.: 34 vert.: 27 [ 44708.808] (II) modesetting(G0): Gamma: 2.20 [ 44708.808] (II) modesetting(G0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.808] (II) modesetting(G0): Default color space is primary color space [ 44708.808] (II) modesetting(G0): First detailed timing is preferred mode [ 44708.808] (II) modesetting(G0): GTF timings supported [ 44708.808] (II) modesetting(G0): redX: 0.643 redY: 0.352 greenX: 0.283 greenY: 0.608 [ 44708.808] (II) modesetting(G0): blueX: 0.147 blueY: 0.102 whiteX: 0.313 whiteY: 0.329 [ 44708.808] (II) modesetting(G0): Supported established timings: [ 44708.808] (II) modesetting(G0): 720x400@70Hz [ 44708.808] (II) modesetting(G0): 640x480@60Hz [ 44708.808] (II) modesetting(G0): 640x480@67Hz [ 44708.808] (II) modesetting(G0): 640x480@72Hz [ 44708.808] (II) modesetting(G0): 640x480@75Hz [ 44708.808] (II) modesetting(G0): 800x600@56Hz [ 44708.808] (II) modesetting(G0): 800x600@60Hz [ 44708.808] (II) modesetting(G0): 800x600@72Hz [ 44708.808] (II) modesetting(G0): 800x600@75Hz [ 44708.808] (II) modesetting(G0): 832x624@75Hz [ 44708.808] (II) modesetting(G0): 1024x768@60Hz [ 44708.808] (II) modesetting(G0): 1024x768@70Hz [ 44708.808] (II) modesetting(G0): 1024x768@75Hz [ 44708.809] (II) modesetting(G0): 1280x1024@75Hz [ 44708.809] (II) modesetting(G0): Manufacturer's mask: 0 [ 44708.809] (II) modesetting(G0): Supported standard timings: [ 44708.809] (II) modesetting(G0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.809] (II) modesetting(G0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.809] (II) modesetting(G0): Supported detailed timing: [ 44708.809] (II) modesetting(G0): clock: 108.0 MHz Image Size: 338 x 270 mm [ 44708.809] (II) modesetting(G0): h_active: 1280 h_sync: 1328 h_sync_end 1440 h_blank_end 1688 h_border: 0 [ 44708.809] (II) modesetting(G0): v_active: 1024 v_sync: 1025 v_sync_end 1028 v_blanking: 1066 v_border: 0 [ 44708.809] (II) modesetting(G0): Ranges: V min: 50 V max: 75 Hz, H min: 30 H max: 82 kHz, PixClock max 145 MHz [ 44708.809] (II) modesetting(G0): Monitor name: WDE LCM-17v2 [ 44708.809] (II) modesetting(G0): Serial No: 0 [ 44708.809] (II) modesetting(G0): EDID (in hex): [ 44708.809] (II) modesetting(G0): 00ffffffffffff005c85021700000000 [ 44708.809] (II) modesetting(G0): 0e0f010368221b78ef8bc5a45a489b25 [ 44708.809] (II) modesetting(G0): 1a5054bfef008180714f010101010101 [ 44708.809] (II) modesetting(G0): 010101010101302a009851002a403070 [ 44708.809] (II) modesetting(G0): 1300520e1100001e000000fd00324b1e [ 44708.809] (II) modesetting(G0): 520e000a202020202020000000fc0057 [ 44708.809] (II) modesetting(G0): 4445204c434d2d313776320a000000ff [ 44708.809] (II) modesetting(G0): 00300a202020202020202020202000e7 [ 44708.809] (II) modesetting(G0): Printing probed modes for output DVI-1-0 [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz UeP) [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x960"x60.0 108.00 1280 1376 1488 1800 960 961 964 1000 +hsync +vsync (60.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x74.9 106.50 1280 1360 1488 1696 800 803 809 838 -hsync +vsync (62.8 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x59.8 83.50 1280 1352 1480 1680 800 803 809 831 +hsync -vsync (49.7 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x74.9 102.25 1280 1360 1488 1696 768 771 778 805 +hsync -vsync (60.3 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x59.9 79.50 1280 1344 1472 1664 768 771 778 798 -hsync +vsync (47.8 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x576"x60.0 46.97 1024 1064 1168 1312 576 577 580 597 -hsync +vsync (35.8 kHz) [ 44708.810] (II) modesetting(G0): Modeline "832x624"x74.6 57.28 832 864 928 1152 624 625 628 667 -hsync -vsync (49.7 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "848x480"x60.0 33.75 848 864 976 1088 480 486 494 517 +hsync +vsync (31.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x66.7 30.24 640 704 768 864 480 483 486 525 -hsync -vsync (35.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.810] (==) modesetting(G0): DPI set to (96, 96) [ 44708.810] (II) Loading sub module "fb" [ 44708.810] (II) LoadModule: "fb" [ 44708.810] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.810] (II) Module fb: vendor="X.Org Foundation" [ 44708.810] compiled for 1.15.1, module version = 1.0.0 [ 44708.811] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.811] (II) UnloadModule: "radeon" [ 44708.811] (II) Unloading radeon [ 44708.811] (II) UnloadModule: "fbdev" [ 44708.811] (II) Unloading fbdev [ 44708.811] (II) UnloadSubModule: "fbdevhw" [ 44708.811] (II) Unloading fbdevhw [ 44708.811] (II) UnloadModule: "vesa" [ 44708.811] (II) Unloading vesa [ 44708.811] (==) modesetting(G0): Backing store enabled [ 44708.811] (==) modesetting(G0): Silken mouse enabled [ 44708.812] (II) modesetting(G0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(G0): DPMS enabled [ 44708.812] (WW) modesetting(G0): Option "fbdev" is not used [ 44708.812] (==) modesetting(0): Backing store enabled [ 44708.812] (==) modesetting(0): Silken mouse enabled [ 44708.812] (II) modesetting(0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(0): DPMS enabled [ 44708.812] (WW) modesetting(0): Option "fbdev" is not used [ 44708.856] (--) RandR disabled [ 44708.867] (II) SELinux: Disabled on system [ 44708.868] (II) AIGLX: Screen 0 is not DRI2 capable [ 44708.868] (EE) AIGLX: reverting to software rendering [ 44708.878] (II) AIGLX: Loaded and initialized swrast [ 44708.878] (II) GLX: Initialized DRISWRAST GL provider for screen 0 [ 44708.879] (II) modesetting(G0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Setting screen physical size to 338 x 270 [ 44708.900] (II) XKB: generating xkmfile /tmp/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm [ 44708.918] (II) config/udev: Adding input device Power Button (/dev/input/event1) [ 44708.918] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.918] (II) LoadModule: "evdev" [ 44708.918] (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so [ 44708.918] (II) Module evdev: vendor="X.Org Foundation" [ 44708.918] compiled for 1.15.0, module version = 2.8.2 [ 44708.918] Module class: X.Org XInput Driver [ 44708.918] ABI class: X.Org XInput driver, version 20.0 [ 44708.918] (II) Using input driver 'evdev' for 'Power Button' [ 44708.918] (**) Power Button: always reports core events [ 44708.918] (**) evdev: Power Button: Device: "/dev/input/event1" [ 44708.918] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.918] (--) evdev: Power Button: Found keys [ 44708.918] (II) evdev: Power Button: Configuring as keyboard [ 44708.918] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input1/event1" [ 44708.918] (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD, id 6) [ 44708.918] (**) Option "xkb_rules" "evdev" [ 44708.918] (**) Option "xkb_model" "pc105" [ 44708.918] (**) Option "xkb_layout" "us" [ 44708.919] (II) config/udev: Adding input device Power Button (/dev/input/event0) [ 44708.919] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.919] (II) Using input driver 'evdev' for 'Power Button' [ 44708.919] (**) Power Button: always reports core events [ 44708.919] (**) evdev: Power Button: Device: "/dev/input/event0" [ 44708.919] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.919] (--) evdev: Power Button: Found keys [ 44708.919] (II) evdev: Power Button: Configuring as keyboard [ 44708.919] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0/event0" Is there anything I can do to fix this problem.

    Read the article

  • Finally, I have my HP 6910p laptop running with 8Gb RAM

    - by Liam Westley
    Today, I received two Corsair Value Select 4Gb DDR SO-DIMMs (from overclock.co.uk) for my aging HP 6910p to give it the extra lease of life to keep it going until the end of 2010.  And here is the proof that Windows 7 64-bit happily sees all 8Gb, There are no 4Gb modules are officially supported for the HP 6910p (they didn’t exist when it was first build).  I was taking a bit of a gamble, and relying on the UK distance selling regulations which meant that even if they didn’t work I’d be able to send them back, getting a full refund and only paying for the return postage. I’d read Keith Comb’s blog back in 2008, (http://blogs.technet.com/b/keithcombs/archive/2008/07/05/loading-a-hp-6910p-with-8gb-of-ram.aspx) where he mentioned ‘trying’ out 4Gb samples of SO-DIMMs in a HP 6910p laptop, but there still appears to be no mentions of running this configuration in any other blog. Seeing how the 8Gb of memory is used is made easier with the new Resource Monitor available in Windows 7.  With two copies of Visual Studio 2008, Outlook, Firefox (with 30+ tabs), TweetDeck (an infamous memory hog) and VMWare workstation running a virtual machine allocated with 2Gb of memory, you might have no ‘free’ memory remaining, but the standby memory is an awesome 2.4Gb, and once the VM is up and running the Hard Faults/sec hovers around zero,   It’s the page fault figure which really counts, because reducing that value means that you are preventing the Windows 7 system drive from being used for virtual memory paging operations.  Even after only a few hours of use it’s noticeable that disc access has been reduced and applications feel more responsive and ‘snappy’.  I did consider the option of purchasing an SSD to replace the main drive, rather than go for 8Gb of RAM, but I think I’ve probably made the correct decision. Given my hobby topic of virtualisation, I take the view that you can never have too much memory.   It was also a decision made easier by the price differential between 8Gb of RAM compared to a decent size SSD.  In the 18 months since Keith Comb tested the first 4Gb SO-DIMMS they have plummeted in price, at just under £100 per 4Gb, they are around a fifth of the price when launched. So if you ever wondered if a HP 6910p can handle 8Gb, now you know.

    Read the article

  • How to crop or get a smaller size UIImage in iPhone without memory leaks?

    - by rkbang
    Hello all, I am using a navigation controller in which I push a tableview Controller as follows: TableView *Controller = [[TableView alloc] initWithStyle:UITableViewStylePlain]; [self.navigationController pushViewController:Controller animated:NO]; [Controller release]; In this table view I am using following two methods to display images: - (UIImage*) getSmallImage:(UIImage*) img { CGSize size = img.size; CGFloat ratio = 0; if (size.width < size.height) { ratio = 36 / size.width; } else { ratio = 36 / size.height; } CGRect rect = CGRectMake(0.0, 0.0, ratio * size.width, ratio * size.height); UIGraphicsBeginImageContext(rect.size); [img drawInRect:rect]; return UIGraphicsGetImageFromCurrentImageContext(); UIGraphicsEndImageContext(); } - (UIImage*)imageByCropping:(UIImage *)imageToCrop toRect:(CGRect)rect { //create a context to do our clipping in UIGraphicsBeginImageContext(rect.size); CGContextRef currentContext = UIGraphicsGetCurrentContext(); //create a rect with the size we want to crop the image to //the X and Y here are zero so we start at the beginning of our //newly created context CGFloat X = (imageToCrop.size.width - rect.size.width)/2; CGFloat Y = (imageToCrop.size.height - rect.size.height)/2; CGRect clippedRect = CGRectMake(X, Y, rect.size.width, rect.size.height); //CGContextClipToRect( currentContext, clippedRect); //create a rect equivalent to the full size of the image //offset the rect by the X and Y we want to start the crop //from in order to cut off anything before them CGRect drawRect = CGRectMake(0, 0, imageToCrop.size.width, imageToCrop.size.height); CGContextTranslateCTM(currentContext, 0.0, drawRect.size.height); CGContextScaleCTM(currentContext, 1.0, -1.0); //draw the image to our clipped context using our offset rect //CGContextDrawImage(currentContext, drawRect, imageToCrop.CGImage); CGImageRef tmp = CGImageCreateWithImageInRect(imageToCrop.CGImage, clippedRect); //pull the image from our cropped context UIImage *cropped = [UIImage imageWithCGImage:tmp];//UIGraphicsGetImageFromCurrentImageContext(); CGImageRelease(tmp); //pop the context to get back to the default UIGraphicsEndImageContext(); //Note: this is autoreleased*/ return cropped; } But when I pop the Controller, the memory being used is not released. Is there any leaks in the above code used to create and crop images. Also are there any efficient method to deal with images in iPhone. I am having a lot of images and facing major challeges in resolving the memory issues. tnx in advance.

    Read the article

  • Is this way of storing typed objects in memory good?

    - by Pindatjuh
    This is an "is this okay, or can it be done better" question. Topic: Storing typed objects in memory. Background information: I'm building a compiler for the x86-32 platform for my language. My goal includes typed objects. Idea: Every primitive is a semi-class (it can be used as if it was a normal class, but it's stored more compact). Every class is represented by primitives and some meta-data (containing class-properties, inheritance stuff, etc.). The meta-data is complex: it doesn't use fields but instead context-switches. For primitives, the meta-data is very small, compared to a "real" class, which is alot bigger. This enables another idea that "primitives are objects", in my language, which I found nessecairy. Example: If I have an array of 32 booleans, then the pure content of this array is exactly 4 byte (32 bits of booleans). The meta-data will contain flags that the type is an array of booleans, which contains 32 entries. The meta-data is very compacted, on bit-level: using a sort of "packing" mechanism, which is read by a FSM at runtime, when doing inspection of the type (like when passing the object to methods for checking, etc.) For instance (read from left to right, top to bottom, remember vertical possition when going to the right, and check nearest column header for meaning of switch): Primitive? Array? Type-Meta 1 Byte? || Size (1 byte) 1 1 [...] 1 [...] done 0 2 Bytes? || Size (2 bytes) 1 [...] done || Size (4 bytes) 0 [...] done Integer? 1 Byte? 2 Bytes? 0 1 0 1 done 1 done 0 done Boolean? Byte? 0 1 0 done 1 done More-Primitives 0 .... Class-Stuff (Huge) 0 ... (After reaching done the data is inserted. || = byte alignement. [...] is variable sized. ... is not described here, for simplicity. And let's call them cost-based-data-structures.) For an array of 32 booleans containing all true values, the memory for this type would be (read top-down): 1 Primitive 1 Array 1 ArrayType: Primitive 0 Not-Array 0 Not-Integer 1 Boolean 0 Not-Byte (thus bit) 1 Integer Size: 1 Byte 00100000 Array size 11111111 11111111 11111111 11111111 Data Thus, 8 bytes represent 32 booleans in an array: 11100101 00100000 11111111 11111111 11111111 11111111 Is this okay, or can it be done better?

    Read the article

  • How To Extract .flv Stream from JW Player 5.1?

    - by Catfish
    The problem is I've a slow internet connection, and the video doesn't buffer like in YouTube. Therefore I was wondering weather I can extract the url of the .flv file which is being streamed in JW Player and directly download it. Doing some preliminary research, I've found the following info: Main Video URL: http://ijf10.ilcannocchiale.tv/video/2263 Link Only To Video: http://ijf10.ilcannocchiale.tv/js/mediaplayer.swf?... XML File: http://ijf10.ilcannocchiale.tv/xml/video/2263 Actual File Name: 20100425_mother.flv

    Read the article

  • Can a memory page be moved by modifying the page table?

    - by Adam
    Is it possible (on any reasonable OS, preferably Linux) to swap the contents of two memory pages by only modifying the page table and not actually moving any data? The motivation is a dense matrix transpose. If the data were blocked by page size it would be possible to transpose the data within a page (fits in cache) then swap pages to move the blocks into their final place. A large matrix would have many many pages moved, so hopefully flushing the TLB wouldn't cause trouble.

    Read the article

  • How can I embed a youtube video using variable widths/heights for a dynamic width web page?

    - by Dan Gayle
    I want to set a youtube video to 100% width so that it scales appropriately in a dynamic width column on a web page I am designing. The problem is that the height doesn't behave like the height of an image. Instead of scaling proportionately, it either collapses (if set to "auto" or left blank) or it scales seemingly random if set to a percentage. How can I get it to remain proportionate while still dynamic?

    Read the article

  • Garbage Collector not doing its job. Memory Consumption = 1.5GB & OutOFMemory Exception.

    - by imageWorker
    I'm working with images (each of size = 5MB). The following code extract some information from each image that is present in the given directory. I'm getting out of memory exception. The size of the process is around (1.5GB). I don't know why garbage collector is not freeing memory. I even tried adding GC.Collect() as last line of foreach loop. Still I'm getting 'OutOFMemory' using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.IO; using System.Drawing; using System.Drawing.Imaging; namespace TrainSVM { class Program { static void Main(string[] args) { FileStream fs = new FileStream("dg.train",FileMode.OpenOrCreate,FileAccess.Write); StreamWriter sw = new StreamWriter(fs); String[] filePathArr = Directory.GetFiles("E:\\images\\"); foreach (string filePath in filePathArr) { if (filePath.Contains("lmn")) { sw.Write("1 "); Console.Write("1 "); } else { sw.Write("1 "); Console.Write("1 "); } Bitmap originalBMP = new Bitmap(filePath); /***********************/ Bitmap imageBody; ImageBody.ImageBody im = new ImageBody.ImageBody(originalBMP); imageBody = im.GetImageBody(-1); /* white coat */ Bitmap whiteCoatBitmap = Rgb2Hsi.Rgb2Hsi.GetHuePlane(imageBody); float WhiteCoatPixelPercentage = Rgb2Hsi.Rgb2Hsi.GetWhiteCoatPixelPercentage(whiteCoatBitmap); //Console.Write("whiteDone\t"); sw.Write("1:" + WhiteCoatPixelPercentage + " "); Console.Write("1:" + WhiteCoatPixelPercentage + " "); /******************/ Quaternion.Quaternion qtr = new Quaternion.Quaternion(-15); Bitmap yellowCoatBMP = qtr.processImage(imageBody); //yellowCoatBMP.Save("yellowCoat.bmp"); float yellowCoatPixelPercentage = qtr.GetYellowCoatPixelPercentage(yellowCoatBMP); //Console.Write("yellowCoatDone\t"); sw.Write("2:" + yellowCoatPixelPercentage + " "); Console.Write("2:" + yellowCoatPixelPercentage + " "); /**********************/ Bitmap balckPatchBitmap = BlackPatchDetection.BlackPatchDetector.MarkBlackPatches(imageBody); float BlackPatchPixelPercentage = BlackPatchDetection.BlackPatchDetector.BlackPatchPercentage; //Console.Write("balckPatchDone\n"); sw.Write("3:" + BlackPatchPixelPercentage + "\n"); Console.Write("3:" + BlackPatchPixelPercentage + "\n"); balckPatchBitmap.Dispose(); yellowCoatBMP.Dispose(); whiteCoatBitmap.Dispose(); originalBMP.Dispose(); sw.Flush(); } sw.Dispose(); fs.Dispose(); } } }

    Read the article

  • How can I solve out of memory exception in generic list generic ?

    - by Phsika
    How can i solve out of memory exception in list generic if adding new value foreach(DataColumn dc in dTable.Columns) foreach (DataRow dr in dTable.Rows) myScriptCellsCount.MyCellsCharactersCount.Add(dr[dc].ToString().Length); MyBase Class: public class MyExcelSheetsCells { public List<int> MyCellsCharactersCount { get; set; } public MyExcelSheetsCells() { MyCellsCharactersCount = new List<int>(); } }

    Read the article

  • How to share memory buffer across sessions in Django?

    - by afriza
    I want to have one party (or more) sends a stream of data via HTTP request(s). Other parties will be able to receive the same stream of data in almost real-time. The data stream should be accessible across sessions (according to access control list). How can I do this in Django? If possible I would like to avoid database access and use in memory buffer (along with some synchronization mechanism)

    Read the article

< Previous Page | 289 290 291 292 293 294 295 296 297 298 299 300  | Next Page >