Search Results

Search found 4934 results on 198 pages for 'finding'.

Page 3/198 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Is there a way to display navmesh agent path in Unity?

    - by Antoine Guillien
    I'm currently making a prototype for a game I plan to develop. As far as I did, I managed to set up the navigation mesh and my navmeshagents. I would like to display the path they are following when setDestination() is fired. I did some researches but didn't find anything about it. EDIT 1 : So I instantiate an empty object with a LineRenderer and I have a line bewteen my agent and the destination. Still I've not all the points when the path has to avoid an obstacle. Furthermore, I wonder if the agent.path does reflect the real path that the agent take as I noticed that it actually follow a "smoothier" path. Here is the code so far : GameObject container = new GameObject(); container.transform.parent = agent.gameObject.transform; LineRenderer ligne = container.AddComponent<LineRenderer>(); ligne.SetColors(Color.white,Color.white); ligne.SetWidth(0.1f,0.1f); //Get def material ligne.gameObject.renderer.material.color = Color.white; ligne.gameObject.renderer.material.shader = Shader.Find("Sprites/Default"); ligne.gameObject.AddComponent<LineScript>(); ligne.SetVertexCount(agent.path.corners.Length+1); int i = 0; foreach(Vector3 v in p.corners) { ligne.SetPosition(i,v); //Debug.Log("position agent"+g.transform.position); //Debug.Log("position corner = "+v); i++; } ligne.SetPosition(p.corners.Length,agent.destination); ligne.gameObject.tag = "ligne"; So How can I get the real coordinates my agent is going to walk throught ?

    Read the article

  • Electronic circuit simulator four-way flood-filling issues

    - by AJ Weeks
    I've made an electronic circuit board simulator which has simply 3 types of tiles: wires, power sources, and inverters. Wires connect to anything they touch, other than the sides of inverters; inverters have one input side and one output side; and finally power tiles connect in a similar manner as wires. In the case of an infinite loop, caused by the output of the inverter feeding into its input, I want inverters to oscillate (quickly turn on/off). I've attempted to implement a FloodFill algorithm to spread the power throughout the grid, but seem to have gotten something wrong, as only the tiles above the power source get powered (as seen below) I've attempted to debug the program, but have had no luck thus far. My code concerning the updating of power can be seen here.

    Read the article

  • Map building - Tower Defense

    - by Dan K
    Before diving too deep into my question, let it be known that I am learning as far as java script goes and figured a simple Tower Defense game would be an excellent way to learn things. So I have found a simple background image with a path drawn on it and my question is how would I go about building a path so that I can animate my objects. Would I have to take the image and overlay a grid system, or can I store the path in some sort of array and have my objects move across it? Here is the background image:

    Read the article

  • Algorithm for waypoint path following?

    - by Thierry Savard Saucier
    I have a worldmap, with different cities on it. The player can choose a city from a menu, or click on an available cities on the world map, and the toon should walk over there. I want him to follow a predefined path. Lets say our hero is on the city 1. He clicks on city 4. I want him to follow the path to city 2 and from there to city 4. I was handling this easily with arrow movement (left right top bottom) since its a single check. Now I'm not sure how I should do this. Should I loop threw each possible path and check which one leads me to D the fastest ... and if I do how do I avoid running in circle forever with cities 1-5-2 ?

    Read the article

  • Group arrival steering

    - by ltjax
    I've got group movement implemented pretty much like this: http://www.red3d.com/cwr/steer/CrowdPath.html Basically, that's combining path following and separation. It works nicely as long as units are in transit, but arrival does not work very well at all. Right now, units just cease to use the path following component once the "exit" the path, i.e. when their closest point on the path is on or past the end. This leads to those units bumping into each other and also overshooting the point the player clicked. Ideally, I'd have the units arrive scattered around the finish point (and reasonable close to each other), not all clumped up past the finish line. I'd imagine that some kind of arrival steering might work here, but based on other units and a "fuzzy" classification of the end of the path. Is there any proven way to do this?

    Read the article

  • Tool for creating complex paths?

    - by TerryB
    I want to create some fairly complex predefined paths for my AI sprites to follow. I'll need to use curves, splines etc to get the effect I want. Is there a drawing tool out there that will allow me to draw such curves, "mesh" them by placing lots of points along them at some defined density and then output the coordinates of all of those points for me? I could write this tool myself but hopefully one of the drawing packages can do this? Cheers!

    Read the article

  • Smoothing found path on grid

    - by Denis Ermolin
    I implemented several approaches such as A* and Potential fields for my tower defense game. But I want smooth paths, first I tried to find path on very small grid ( 5x5 pixels per tile) but it is extremly slow. I found nice video showing an RTS demo where paths are found on big grid but units dont move from each cell's center to center. How do I implement such behavior? Some examples would be great.

    Read the article

  • A star algorithm implementation problems

    - by bryan226
    I’m having some trouble implementing the A* algorithm in a 2D tile based game. The problem is basically that the algorithm gets stuck when something gets in its direct way (e.g. walls) Note that it only allows Horizontal and Vertical movement. Here's a picture as it works fine across the map without something in its direct way: (Green tile = destination, Blue = In closed list, Green = in open list) This is what happens if I try to walk 'around' a wall: I calculate costs with the F = G + H formula: G = 1 Cost per Step H = 10 Cost per Step //Count how many tiles are between current-tile & destination-tile The functions: short c_astar::GuessH(short Startx,short Starty,short Destinationx,short Destinationy) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Destinationx; Destination.y = Destinationy; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b)*10; } short c_astar::GuessG(short Startx,short Starty,short Currentx,short Currenty) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Currentx; Destination.y = Currenty; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b); } At the end of the loop I check which tile is the cheapest to go according to its F value: Then some quick checks are done for each tile (UP,DOWN,LEFT,RIGHT): //...CX are holding the F value of the TILE specified // Info: C0 = Center (Current) // C1 = UP // C2 = DOWN // C3 = LEFT // C4 = RIGHT //Quick checks if(((C1 < C2) && (C1 < C3) && (C1 < C4))) { Current.y -= 1; bSimilar = false; if(DEBUG) hge->System_Log("C1 < ALL"); } //.. same for C2,C3 & C4 If there are multiple tiles with the same F value: It’s actually a switch for DOWNLEFT,UPRIGHT.. etc. Here’s one of it: case UPRIGHT: { //UP Temporary = Current; Temporary.y -= 1; bTileStatus[0] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[0]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[0] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[0] = true; //RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[1] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[1] = true; //************************************************* // Purpose: ClosedList behavior //************************************************* if(bFoundInClosedList[0] && !bFoundInClosedList[1]) { //UP found in ClosedList. Go RIGHT return RIGHT; } if(!bFoundInClosedList[0] && bFoundInClosedList[1]) { //RIGHT found in ClosedList. Go UP return UP; } if(bFoundInClosedList[0] && bFoundInClosedList[1]) { //Both found in ClosedList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } //************************************************* // Purpose: OpenList behavior //************************************************* if(bFoundInOpenList[0] && !bFoundInOpenList[1]) { //UP found in OpenList. Go RIGHT return RIGHT; } if(!bFoundInOpenList[0] && bFoundInOpenList[1]) { //RIGHT found in OpenList. Go UP return UP; } if(bFoundInOpenList[0] && bFoundInOpenList[1]) { //Both found in OpenList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } } else if(!bTileStatus[1]) { //RIGHT is not walkable OR out of range //Choose UP return UP; } } else if(!bTileStatus[0]) { //UP is not walkable OR out of range //Fast check RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { return RIGHT; } else return FAILED; //Failed, no valid path found! } } break; A log for the second picture: (Cut down to ten passes, because it’s just repeating itself) ----------------------------------------------------- PASS: 1 | C1: 211 | C2: 191 | C3: 211 | C4: 191 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 2 | C1: 200 | C2: 182 | C3: 202 | C4: 182 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 3 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 4 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 5 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 6 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 7 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 8 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- PASS: 9 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 10 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- Its always going after the cheapest F value, which seems to be wrong. If someone could point me to the right direction I'd be thankful. Regards, bryan226

    Read the article

  • Pathfinding in multi goal, multi agent environment

    - by Rohan Agrawal
    I have an environment in which I have multiple agents (a), multiple goals (g) and obstacles (o). . . . a o . . . . . . . o . g . . a . . . . . . . . . . o . . . . o o o o . g . . o . . . . . . . o . . . . o . . . . o o o o a What would an appropriate algorithm for pathfinding in this environment? The only thing I can think of right now, is to Run a separate version of A* for each goal separately, but i don't think that's very efficient.

    Read the article

  • Pathfinding results in false path costs that are too high

    - by user2144536
    I'm trying to implement pathfinding in a game I'm programming using this method. I'm implementing it with recursion but some of the values after the immediate circle of tiles around the player are way off. For some reason I cannot find the problem with it. This is a screen cap of the problem: The pathfinding values are displayed in the center of every tile. Clipped blocks are displayed with the value of 'c' because the values were too high and were covering up the next value. The red circle is the first value that is incorrect. The code below is the recursive method. //tileX is the coordinates of the current tile, val is the current pathfinding value, used[][] is a boolean //array to keep track of which tiles' values have already been assigned public void pathFind(int tileX, int tileY, int val, boolean[][] used) { //increment pathfinding value int curVal = val + 1; //set current tile to true if it hasn't been already used[tileX][tileY] = true; //booleans to know which tiles the recursive call needs to be used on boolean topLeftUsed = false, topUsed = false, topRightUsed = false, leftUsed = false, rightUsed = false, botomLeftUsed = false, botomUsed = false, botomRightUsed = false; //set value of top left tile if necessary if(tileX - 1 >= 0 && tileY - 1 >= 0) { //isClipped(int x, int y) returns true if the coordinates givin are in a tile that can't be walked through (IE walls) //occupied[][] is an array that keeps track of which tiles have an enemy in them // //if the tile is not clipped and not occupied set the pathfinding value if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX - 1][tileY - 1] == false && !(used[tileX - 1][tileY - 1])) { pathFindingValues[tileX - 1][tileY - 1] = curVal; topLeftUsed = true; used[tileX - 1][tileY - 1] = true; } //if it is occupied set it to an arbitrary high number so enemies find alternate routes if the best is clogged if(occupied[tileX - 1][tileY - 1] == true) pathFindingValues[tileX - 1][tileY - 1] = 1000000000; //if it is clipped set it to an arbitrary higher number so enemies don't travel through walls if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY - 1] = 2000000000; } //top middle if(tileY - 1 >= 0 ) { if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX][tileY - 1] == false && !(used[tileX][tileY - 1])) { pathFindingValues[tileX][tileY - 1] = curVal; topUsed = true; used[tileX][tileY - 1] = true; } if(occupied[tileX][tileY - 1] == true) pathFindingValues[tileX][tileY - 1] = 1000000000; if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX][tileY - 1] = 2000000000; } //top right if(tileX + 1 <= used.length && tileY - 1 >= 0) { if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX + 1][tileY - 1] == false && !(used[tileX + 1][tileY - 1])) { pathFindingValues[tileX + 1][tileY - 1] = curVal; topRightUsed = true; used[tileX + 1][tileY - 1] = true; } if(occupied[tileX + 1][tileY - 1] == true) pathFindingValues[tileX + 1][tileY - 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY - 1] = 2000000000; } //left if(tileX - 1 >= 0) { if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX - 1][tileY] == false && !(used[tileX - 1][tileY])) { pathFindingValues[tileX - 1][tileY] = curVal; leftUsed = true; used[tileX - 1][tileY] = true; } if(occupied[tileX - 1][tileY] == true) pathFindingValues[tileX - 1][tileY] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY] = 2000000000; } //right if(tileX + 1 <= used.length) { if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX + 1][tileY] == false && !(used[tileX + 1][tileY])) { pathFindingValues[tileX + 1][tileY] = curVal; rightUsed = true; used[tileX + 1][tileY] = true; } if(occupied[tileX + 1][tileY] == true) pathFindingValues[tileX + 1][tileY] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY] = 2000000000; } //botom left if(tileX - 1 >= 0 && tileY + 1 <= used[0].length) { if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX - 1][tileY + 1] == false && !(used[tileX - 1][tileY + 1])) { pathFindingValues[tileX - 1][tileY + 1] = curVal; botomLeftUsed = true; used[tileX - 1][tileY + 1] = true; } if(occupied[tileX - 1][tileY + 1] == true) pathFindingValues[tileX - 1][tileY + 1] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY + 1] = 2000000000; } //botom middle if(tileY + 1 <= used[0].length) { if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX][tileY + 1] == false && !(used[tileX][tileY + 1])) { pathFindingValues[tileX][tileY + 1] = curVal; botomUsed = true; used[tileX][tileY + 1] = true; } if(occupied[tileX][tileY + 1] == true) pathFindingValues[tileX][tileY + 1] = 1000000000; if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX][tileY + 1] = 2000000000; } //botom right if(tileX + 1 <= used.length && tileY + 1 <= used[0].length) { if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX + 1][tileY + 1] == false && !(used[tileX + 1][tileY + 1])) { pathFindingValues[tileX + 1][tileY + 1] = curVal; botomRightUsed = true; used[tileX + 1][tileY + 1] = true; } if(occupied[tileX + 1][tileY + 1] == true) pathFindingValues[tileX + 1][tileY + 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY + 1] = 2000000000; } //call the method on the tiles that need it if(tileX - 1 >= 0 && tileY - 1 >= 0 && topLeftUsed) pathFind(tileX - 1, tileY - 1, curVal, used); if(tileY - 1 >= 0 && topUsed) pathFind(tileX , tileY - 1, curVal, used); if(tileX + 1 <= used.length && tileY - 1 >= 0 && topRightUsed) pathFind(tileX + 1, tileY - 1, curVal, used); if(tileX - 1 >= 0 && leftUsed) pathFind(tileX - 1, tileY, curVal, used); if(tileX + 1 <= used.length && rightUsed) pathFind(tileX + 1, tileY, curVal, used); if(tileX - 1 >= 0 && tileY + 1 <= used[0].length && botomLeftUsed) pathFind(tileX - 1, tileY + 1, curVal, used); if(tileY + 1 <= used[0].length && botomUsed) pathFind(tileX, tileY + 1, curVal, used); if(tileX + 1 <= used.length && tileY + 1 <= used[0].length && botomRightUsed) pathFind(tileX + 1, tileY + 1, curVal, used); }

    Read the article

  • How to determine where on a path my object will be at a given point in time?

    - by Dave
    I have map and an obj that is meant to move from start to end in X amount of time. The movements are all straight lines, as curves are beyond my ability at the moment. So I am trying to get the object to move from these points, but along the way there are way points which keep it on a given path. The speed of the object is determined by how long it will take to get from start to end (based on X). This is what i have so far: //get_now() returns seconds since epoch var timepassed = get_now() - myObj[id].start; //seconds since epoch for departure var timeleft = myObj[id].end - get_now(); //seconds since epoch for arrival var journey_time = 60; //this means 60 minutes total journey time var array = [[650,250]]; //way points along the straight paths if(step == 0 || step =< array.length){ var destinationx = array[step][0]; var destinationy = array[step][1]; }else if( step == array.length){ var destinationx = 250; var destinationy = 100; } else { var destinationx = myObj[id].startx; var destinationy = myObj[id].starty; } step++; When the user logs in at any given time, the object needs to be drawn in the correct place of the path, almost as if its been travelling along the path whilst the user has not been at the PC with the available information i have above. How do I do this? Note: The camera angle in the game is a birds eye view so its a straight forward X:Y rather than isometric angles.

    Read the article

  • Grid pathfinding with a lot of entities

    - by Vee
    I'd like to explain this problem with a screenshot from a released game, DROD: Gunthro's Epic Blunder, by Caravel Games. The game is turn-based and tile-based. I'm trying to create something very similar (a clone of the game), and I've got most of the fundamentals done, but I'm having trouble implementing pathfinding. Look at the screenshot. The guys in yellow are friendly, and want to kill the roaches. Every turn, every guy in yellow pathfinds to the closest roach, and every roach pathfinds to the closest guy in yellow. By closest I mean the target with the shortest path, not a simple distance calculation. All of this without any kind of slowdown when loading the level or when passing turns. And all of the entities change position every turn. Also (not shown in screenshot), there can be doors that open and close and change the level's layout. Impressive. I've tried implementing pathfinding in my clone. First attempt was making every roach find a path to a yellow guy every turn, using a breadth-first search algorithm. Obviously incredibly slow with more than a single roach, and would get exponentially slower with more than a single yellow guy. Second attempt was mas making every yellow guy generate a pathmap (still breadth-first search) every time he moved. Worked perfectly with multiple roaches and a single yellow guy, but adding more yellow guys made the game slow and unplayable. Last attempt was implementing JPS (jump point search). Every entity would individually calculate a path to its target. Fast, but with a limited number of entities. Having less than half the entities in the screenshot would make the game slow. And also, I had to get the "closest" enemy by calculating distance, not shortest path. I've asked on the DROD forums how they did it, and a user replied that it was breadth-first search. The game is open source, and I took a look at the source code, but it's C++ (I'm using C#) and I found it confusing. I don't know how to do it. Every approach I tried isn't good enough. And I believe that DROD generates global pathmaps, somehow, but I can't understand how every entity find the best individual path to other entities that move every turn. What's the trick? This is a reply I just got on the DROD forums: Without having looked at the code I'd wager it's two (or so) pathmaps for the whole room: One to the nearest enemy, and one to the nearest friendly for every tile. There's no need to make a separate pathmap for every entity when the overall goal is "move towards nearest enemy/friendly"... just mark every tile with the number of moves it takes to the nearest target and have the entity chose the move that takes it to the tile with the lowest number. To be honest, I don't understand it that well.

    Read the article

  • Wikipedia A* pathfinding algorithm takes a lot of time

    - by Vee
    I've successfully implemented A* pathfinding in C# but it is very slow, and I don't understand why. I even tried not sorting the openNodes list but it's still the same. The map is 80x80, and there are 10-11 nodes. I took the pseudocode from here Wikipedia And this is my implementation: public static List<PGNode> Pathfind(PGMap mMap, PGNode mStart, PGNode mEnd) { mMap.ClearNodes(); mMap.GetTile(mStart.X, mStart.Y).Value = 0; mMap.GetTile(mEnd.X, mEnd.Y).Value = 0; List<PGNode> openNodes = new List<PGNode>(); List<PGNode> closedNodes = new List<PGNode>(); List<PGNode> solutionNodes = new List<PGNode>(); mStart.G = 0; mStart.H = GetManhattanHeuristic(mStart, mEnd); solutionNodes.Add(mStart); solutionNodes.Add(mEnd); openNodes.Add(mStart); // 1) Add the starting square (or node) to the open list. while (openNodes.Count > 0) // 2) Repeat the following: { openNodes.Sort((p1, p2) => p1.F.CompareTo(p2.F)); PGNode current = openNodes[0]; // a) We refer to this as the current square.) if (current == mEnd) { while (current != null) { solutionNodes.Add(current); current = current.Parent; } return solutionNodes; } openNodes.Remove(current); closedNodes.Add(current); // b) Switch it to the closed list. List<PGNode> neighborNodes = current.GetNeighborNodes(); double cost = 0; bool isCostBetter = false; for (int i = 0; i < neighborNodes.Count; i++) { PGNode neighbor = neighborNodes[i]; cost = current.G + 10; isCostBetter = false; if (neighbor.Passable == false || closedNodes.Contains(neighbor)) continue; // If it is not walkable or if it is on the closed list, ignore it. if (openNodes.Contains(neighbor) == false) { openNodes.Add(neighbor); // If it isn’t on the open list, add it to the open list. isCostBetter = true; } else if (cost < neighbor.G) { isCostBetter = true; } if (isCostBetter) { neighbor.Parent = current; // Make the current square the parent of this square. neighbor.G = cost; neighbor.H = GetManhattanHeuristic(current, neighbor); } } } return null; } Here's the heuristic I'm using: private static double GetManhattanHeuristic(PGNode mStart, PGNode mEnd) { return Math.Abs(mStart.X - mEnd.X) + Math.Abs(mStart.Y - mEnd.Y); } What am I doing wrong? It's an entire day I keep looking at the same code.

    Read the article

  • XNA RTS A* pathfinding issues

    - by Slayter
    I'm starting to develop an RTS game using the XNA framework in C# and am still in the very early prototyping stage. I'm working on the basics. I've got unit selection down and am currently working on moving multiple units. I've implemented an A* pathfinding algorithm which works fine for moving a single unit. However when moving multiple units they stack on top of each other. I tried fixing this with a variation of the boids flocking algorithm but this has caused units to sometimes freeze and get stuck trying to move but going no where. Ill post the related methods for moving the units below but ill only post a link to the pathfinding class because its really long and i don't want to clutter up the page. These parts of the code are in the update method for the main controlling class: if (selectedUnits.Count > 0) { int indexOfLeader = 0; for (int i = 0; i < selectedUnits.Count; i++) { if (i == 0) { indexOfLeader = 0; } else { if (Vector2.Distance(selectedUnits[i].position, destination) < Vector2.Distance(selectedUnits[indexOfLeader].position, destination)) indexOfLeader = i; } selectedUnits[i].leader = false; } selectedUnits[indexOfLeader].leader = true; foreach (Unit unit in selectedUnits) unit.FindPath(destination); } foreach (Unit unit in units) { unit.Update(gameTime, selectedUnits); } These three methods control movement in the Unit class: public void FindPath(Vector2 destination) { if (path != null) path.Clear(); Point startPoint = new Point((int)position.X / 32, (int)position.Y / 32); Point endPoint = new Point((int)destination.X / 32, (int)destination.Y / 32); path = pathfinder.FindPath(startPoint, endPoint); pointCounter = 0; if (path != null) nextPoint = path[pointCounter]; dX = 0.0f; dY = 0.0f; stop = false; } private void Move(List<Unit> units) { if (nextPoint == position && !stop) { pointCounter++; if (pointCounter <= path.Count - 1) { nextPoint = path[pointCounter]; if (nextPoint == position) stop = true; } else if (pointCounter >= path.Count) { path.Clear(); pointCounter = 0; stop = true; } } else { if (!stop) { map.occupiedPoints.Remove(this); Flock(units); // Move in X ********* TOOK OUT SPEED ********** if ((int)nextPoint.X > (int)position.X) { position.X += dX; } else if ((int)nextPoint.X < (int)position.X) { position.X -= dX; } // Move in Y if ((int)nextPoint.Y > (int)position.Y) { position.Y += dY; } else if ((int)nextPoint.Y < (int)position.Y) { position.Y -= dY; } if (position == nextPoint && pointCounter >= path.Count - 1) stop = true; map.occupiedPoints.Add(this, position); } if (stop) { path.Clear(); pointCounter = 0; } } } private void Flock(List<Unit> units) { float distanceToNextPoint = Vector2.Distance(position, nextPoint); foreach (Unit unit in units) { float distance = Vector2.Distance(position, unit.position); if (unit != this) { if (distance < space && !leader && (nextPoint != position)) { // create space dX += (position.X - unit.position.X) * 0.1f; dY += (position.Y - unit.position.Y) * 0.1f; if (dX > .05f) nextPoint.X = nextPoint.X - dX; else if (dX < -.05f) nextPoint.X = nextPoint.X + dX; if (dY > .05f) nextPoint.Y = nextPoint.Y - dY; else if (dY < -.05f) nextPoint.Y = nextPoint.Y + dY; if ((dX < .05f && dX > -.05f) && (dY < .05f && dY > -.05f)) stop = true; path[pointCounter] = nextPoint; Console.WriteLine("Make Space: " + dX + ", " + dY); } else if (nextPoint != position && !stop) { dX = speed; dY = speed; Console.WriteLine(dX + ", " + dY); } } } } And here's the link to the pathfinder: https://docs.google.com/open?id=0B_Cqt6txUDkddU40QXBMeTR1djA I hope this post wasn't too long. Also please excuse the messiness of the code. As I said before this is early prototyping. Any help would be appreciated. Thanks!

    Read the article

  • 2D Grid Map Connectivity Check (avoiding stack overflow)

    - by SombreErmine
    I am trying to create a routine in C++ that will run before a more expensive A* algorithm that checks to see if two nodes on a 2D grid map are connected or not. What I need to know is a good way to accomplish this sequentially rather than recursively to avoid overflowing the stack. What I've Done Already I've implemented this with ease using a recursive algorithm; however, depending upon different situations it will generate a stack overflow. Upon researching this, I've come to the conclusion that it is overflowing the stack because of too many recursive function calls. I am sure that my recursion does not enter an infinite loop. I generate connected sets at the beginning of the level, and then I use those connected sets to determine connectivity on the fly later. Basically, the generating algorithm starts from left-to-right top-to-bottom. It skips wall nodes and marks them as visited. Whenever it reaches a walkable node, it recursively checks in all four cardinal directions for connected walkable nodes. Every node that gets checked is marked as visited so they aren't handled twice. After checking a node, it is added to either a walls set, a doors set, or one of multiple walkable nodes sets. Once it fills that area, it continues the original ltr ttb loop skipping already-visited nodes. I've also looked into flood-fill algorithms, but I can't make sense of the sequential algorithms and how to adapt them. Can anyone suggest a better way to accomplish this without causing a stack overflow? The only way I can think of is to do the left-to-right top-to-bottom loop generating connected sets on a row basis. Then check the previous row to see if any of the connected sets are connected and then join the sets that are. I haven't decided on the best data structures to use for that though. I also just thought about having the connected sets pre-generated outside the game, but I wouldn't know where to start with creating a tool for that. Any help is appreciated. Thanks!

    Read the article

  • How display path ball will bounce?

    - by boolean
    I'm trying to figure out a way to show the path a ball will travel, so that the player can line up a shot before they fire the ball. I can't think of a way to calculate this path in advance and show it to the player, especially if it involves collision detection. At first I thought I would run the game at a super high speed for one update, plot the path with some dotted lines where the ball bounced, and then in the next frame hide the 'tracer' ball. This seems to have two issues - Calculating collision detection without actually updating the frames and collision detection getting less reliable at high speeds. If they were straight lines I think I could figure this out in a while loop, but trying to take into account the speed of the ball, the curve of the path, the reflecting from other objects..it all seems a bit much. I'm not looking for any code and this isn't a platform specific question, more just help trying to figure out conceptually how this would work. Can this be done? Are there techniques to achieve this?

    Read the article

  • Detecting if an object is following a path

    - by justin.m.chase
    I am attempting to take GPS data and track it on a map and see if it follows a given path. I have the path as a set of points and the GPS data streams in as a similar set of points. I am attempting to track the progression of the current position across the path and I am wondering if there are any well known algorithms for this. I have come up with my own that works ok but it is a complex enough problem that I would like to minimize the amount of re-inventing of the wheel that I do. What approach or algorithm would you recommend taking for this problem?

    Read the article

  • Seek Steering Behavior with Target Direction for Group of Fighters

    - by SebastianStehle
    I am implementing steering algorithms with group management for spaceships (fighters). I select a leader and assign the target positions for the other spaceships based on the target position of the leader and an offset. This works well. But when my spaceships arrive they all have a different direction. I want them to keep to look in the same direction (target - start). I also want to combine this behavior with a minimum turning radius that is based on the speed. The only idea I have is to calculate a path for each spaceship with an point before the target position, so the ships have some time left to turn into the right position. But I dont know if this is a good idea. I guess there will be a lot of rare cases where this can cause a problem. So the question is, if anybody knows how to solve this problem and has some (simple code) or pseudocode for me or at least some good explanation.

    Read the article

  • A*, Tile costs and heuristic; How to approach

    - by Kevin Toet
    I'm doing exercises in tile games and AI to improve my programming. I've written a highly unoptimised pathfinder that does the trick and a simple tile class. The first problem i ran into was that the heuristic was rounded to int's which resulted in very straight paths. Resorting a Euclidian Heuristic seemed to fixed it as opposed to use the Manhattan approach. The 2nd problem I ran into was when i tried added tile costs. I was hoping to use the value's of the flags that i set on the tiles but the value's were too small to make the pathfinder consider them a huge obstacle so i increased their value's but that breaks the flags a certain way and no paths were found anymore. So my questions, before posting the code, are: What am I doing wrong that the Manhatten heuristic isnt working? What ways can I store the tile costs? I was hoping to (ab)use the enum flags for this The path finder isnt considering the chance that no path is available, how do i check this? Any code optimisations are welcome as I'd love to improve my coding. public static List<Tile> FindPath( Tile startTile, Tile endTile, Tile[,] map ) { return FindPath( startTile, endTile, map, TileFlags.WALKABLE ); } public static List<Tile> FindPath( Tile startTile, Tile endTile, Tile[,] map, TileFlags acceptedFlags ) { List<Tile> open = new List<Tile>(); List<Tile> closed = new List<Tile>(); open.Add( startTile ); Tile tileToCheck; do { tileToCheck = open[0]; closed.Add( tileToCheck ); open.Remove( tileToCheck ); for( int i = 0; i < tileToCheck.neighbors.Count; i++ ) { Tile tile = tileToCheck.neighbors[ i ]; //has the node been processed if( !closed.Contains( tile ) && ( tile.flags & acceptedFlags ) != 0 ) { //Not in the open list? if( !open.Contains( tile ) ) { //Set G int G = 10; G += tileToCheck.G; //Set Parent tile.parentX = tileToCheck.x; tile.parentY = tileToCheck.y; tile.G = G; //tile.H = Math.Abs(endTile.x - tile.x ) + Math.Abs( endTile.y - tile.y ) * 10; //TODO omg wtf and other incredible stories tile.H = Vector2.Distance( new Vector2( tile.x, tile.y ), new Vector2(endTile.x, endTile.y) ); tile.Cost = tile.G + tile.H + (int)tile.flags; //Calculate H; Manhattan style open.Add( tile ); } //Update the cost if it is else { int G = 10;//cost of going to non-diagonal tiles G += map[ tile.parentX, tile.parentY ].G; //If this path is shorter (G cost is lower) then change //the parent cell, G cost and F cost. if ( G < tile.G ) //if G cost is less, { tile.parentX = tileToCheck.x; //change the square's parent tile.parentY = tileToCheck.y; tile.G = G;//change the G cost tile.Cost = tile.G + tile.H + (int)tile.flags; // add terrain cost } } } } //Sort costs open = open.OrderBy( o => o.Cost).ToList(); } while( tileToCheck != endTile ); closed.Reverse(); List<Tile> validRoute = new List<Tile>(); Tile currentTile = closed[ 0 ]; validRoute.Add( currentTile ); do { //Look up the parent of the current cell. currentTile = map[ currentTile.parentX, currentTile.parentY ]; currentTile.renderer.material.color = Color.green; //Add tile to list validRoute.Add( currentTile ); } while ( currentTile != startTile ); validRoute.Reverse(); return validRoute; } And my Tile class: [Flags] public enum TileFlags: int { NONE = 0, DIRT = 1, STONE = 2, WATER = 4, BUILDING = 8, //handy WALKABLE = DIRT | STONE | NONE, endofenum } public class Tile : MonoBehaviour { //Tile Properties public int x, y; public TileFlags flags = TileFlags.DIRT; public Transform cachedTransform; //A* properties public int parentX, parentY; public int G; public float Cost; public float H; public List<Tile> neighbors = new List<Tile>(); void Awake() { cachedTransform = transform; } }

    Read the article

  • How to proceed on the waypoint path?

    - by Alpha Carinae
    I'm using Dijkstra algorithm to find shortest path and I'm drawing this path on the screen. As the character object moves on, path updates itself(shortens as the object approaches the target and gets longer as the object moves away from it.) I tried to visualize my problem. This is the beginning state. 'A' node is the target, path is the blue and the object is the green one. I draw this path, from object to the closest node. In this case my problem occurs. Because 'D' node is more closer to the object than 'C' node, something like this happens: So, how can i decide that the object passed the 'D' node? Path should be look like this: One thing comes to my mind is that I use some distance variables between the two closest nodes in the route path. (In this example these are 'C' and 'D' nodes.) As the object approaches 'C' and moves away from the 'D' node at the same time, this means character passed the 'D'. However, I think there are some standardized and easy ways to solve this. What approach should I take?

    Read the article

  • Displaying possible movement tiles

    - by Ash Blue
    What's the fastest way to highlight all possible movement tiles for a player on a square grid? Players can only move up, down, left, right. Tiles can cost more than one movement, multiple levels are available to move, and players can be larger than one tile. Think of games like Fire Emblem, Front Mission, and XCOM. My first thought was to recursively search for connecting tiles. This quickly demonstrated many shortcomings when blockers, movement costs, and other features were added into the mix. My second thought was to use an A* pathfinding algorithm to check all tiles presumed valid. Presumed valid tiles would come from an algorithm that generates a diamond of tiles from the player's speed (see example here http://jsfiddle.net/truefreestyle/Suww8/9/). Problem is this seems a little slow and expensive. Is there a faster way? Edit: In Lua for Corona SDK, I integrated the following movement generation controller. I've linked to a Gist here because the solution is around 90 lines of code. https://gist.github.com/ashblue/5546009

    Read the article

  • How to create a thread in XNA for pathfinding?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work? Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • How to follow object on CatmullRomSplines at constant speed (e.g. train and train carriage)?

    - by Simon
    I have a CatmullRomSpline, and using the very good example at https://github.com/libgdx/libgdx/wiki/Path-interface-%26-Splines I have my object moving at an even pace over the spline. Using a simple train and carriage example, I now want to have the carriage follow the train at the same speed as the train (not jolting along as it does with my code below). This leads into my main questions: How can I make the carriage have the same constant speed as the train and make it non jerky (it has something to do with the derivative I think, I don't understand how that part works)? Why do I need to divide by the line length to convert to metres per second, and is that correct? It wasn't done in the linked examples? I have used the example I linked to above, and modified for my specific example: private void process(CatmullRomSpline catmullRomSpline) { // Render path with precision of 1000 points renderPath(catmullRomSpline, 1000); float length = catmullRomSpline.approxLength(catmullRomSpline.spanCount * 1000); // Render the "train" Vector2 trainDerivative = new Vector2(); Vector2 trainLocation = new Vector2(); catmullRomSpline.derivativeAt(trainDerivative, current); // For some reason need to divide by length to convert from pixel speed to metres per second but I do not // really understand why I need it, it wasn't done in the examples??????? current += (Gdx.graphics.getDeltaTime() * speed / length) / trainDerivative.len(); catmullRomSpline.valueAt(trainLocation, current); renderCircleAtLocation(trainLocation); if (current >= 1) { current -= 1; } // Render the "carriage" Vector2 carriageLocation = new Vector2(); float carriagePercentageCovered = (((current * length) - 1f) / length); // I would like it to follow at 1 metre behind carriagePercentageCovered = Math.max(carriagePercentageCovered, 0); catmullRomSpline.valueAt(carriageLocation, carriagePercentageCovered); renderCircleAtLocation(carriageLocation); } private void renderPath(CatmullRomSpline catmullRomSpline, int k) { // catMulPoints would normally be cached when initialising, but for sake of example... Vector2[] catMulPoints = new Vector2[k]; for (int i = 0; i < k; ++i) { catMulPoints[i] = new Vector2(); catmullRomSpline.valueAt(catMulPoints[i], ((float) i) / ((float) k - 1)); } SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Line); SHAPE_RENDERER.setColor(Color.NAVY); for (int i = 0; i < k - 1; ++i) { SHAPE_RENDERER.line((Vector2) catMulPoints[i], (Vector2) catMulPoints[i + 1]); } SHAPE_RENDERER.end(); } private void renderCircleAtLocation(Vector2 location) { SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Filled); SHAPE_RENDERER.setColor(Color.YELLOW); SHAPE_RENDERER.circle(location.x, location.y, .5f); SHAPE_RENDERER.end(); } To create a decent sized CatmullRomSpline for testing this out: Vector2[] controlPoints = makeControlPointsArray(); CatmullRomSpline myCatmull = new CatmullRomSpline(controlPoints, false); .... private Vector2[] makeControlPointsArray() { Vector2[] pointsArray = new Vector2[78]; pointsArray[0] = new Vector2(1.681817f, 10.379999f); pointsArray[1] = new Vector2(2.045455f, 10.379999f); pointsArray[2] = new Vector2(2.663636f, 10.479999f); pointsArray[3] = new Vector2(3.027272f, 10.700000f); pointsArray[4] = new Vector2(3.663636f, 10.939999f); pointsArray[5] = new Vector2(4.245455f, 10.899999f); pointsArray[6] = new Vector2(4.736363f, 10.720000f); pointsArray[7] = new Vector2(4.754545f, 10.339999f); pointsArray[8] = new Vector2(4.518181f, 9.860000f); pointsArray[9] = new Vector2(3.790908f, 9.340000f); pointsArray[10] = new Vector2(3.172727f, 8.739999f); pointsArray[11] = new Vector2(3.300000f, 8.340000f); pointsArray[12] = new Vector2(3.700000f, 8.159999f); pointsArray[13] = new Vector2(4.227272f, 8.520000f); pointsArray[14] = new Vector2(4.681818f, 8.819999f); pointsArray[15] = new Vector2(5.081817f, 9.200000f); pointsArray[16] = new Vector2(5.463636f, 9.460000f); pointsArray[17] = new Vector2(5.972727f, 9.300000f); pointsArray[18] = new Vector2(6.063636f, 8.780000f); pointsArray[19] = new Vector2(6.027272f, 8.259999f); pointsArray[20] = new Vector2(5.700000f, 7.739999f); pointsArray[21] = new Vector2(5.300000f, 7.440000f); pointsArray[22] = new Vector2(4.645454f, 7.179999f); pointsArray[23] = new Vector2(4.136363f, 6.940000f); pointsArray[24] = new Vector2(3.427272f, 6.720000f); pointsArray[25] = new Vector2(2.572727f, 6.559999f); pointsArray[26] = new Vector2(1.900000f, 7.100000f); pointsArray[27] = new Vector2(2.336362f, 7.440000f); pointsArray[28] = new Vector2(2.590908f, 7.940000f); pointsArray[29] = new Vector2(2.318181f, 8.500000f); pointsArray[30] = new Vector2(1.663636f, 8.599999f); pointsArray[31] = new Vector2(1.209090f, 8.299999f); pointsArray[32] = new Vector2(1.118181f, 7.700000f); pointsArray[33] = new Vector2(1.045455f, 6.880000f); pointsArray[34] = new Vector2(1.154545f, 6.100000f); pointsArray[35] = new Vector2(1.281817f, 5.580000f); pointsArray[36] = new Vector2(1.700000f, 5.320000f); pointsArray[37] = new Vector2(2.190908f, 5.199999f); pointsArray[38] = new Vector2(2.900000f, 5.100000f); pointsArray[39] = new Vector2(3.700000f, 5.100000f); pointsArray[40] = new Vector2(4.372727f, 5.220000f); pointsArray[41] = new Vector2(4.827272f, 5.220000f); pointsArray[42] = new Vector2(5.463636f, 5.160000f); pointsArray[43] = new Vector2(5.554545f, 4.700000f); pointsArray[44] = new Vector2(5.245453f, 4.340000f); pointsArray[45] = new Vector2(4.445455f, 4.280000f); pointsArray[46] = new Vector2(3.609091f, 4.260000f); pointsArray[47] = new Vector2(2.718181f, 4.160000f); pointsArray[48] = new Vector2(1.990908f, 4.140000f); pointsArray[49] = new Vector2(1.427272f, 3.980000f); pointsArray[50] = new Vector2(1.609090f, 3.580000f); pointsArray[51] = new Vector2(2.136363f, 3.440000f); pointsArray[52] = new Vector2(3.227272f, 3.280000f); pointsArray[53] = new Vector2(3.972727f, 3.340000f); pointsArray[54] = new Vector2(5.027272f, 3.360000f); pointsArray[55] = new Vector2(5.718181f, 3.460000f); pointsArray[56] = new Vector2(6.100000f, 4.240000f); pointsArray[57] = new Vector2(6.209091f, 4.500000f); pointsArray[58] = new Vector2(6.118181f, 5.320000f); pointsArray[59] = new Vector2(5.772727f, 5.920000f); pointsArray[60] = new Vector2(4.881817f, 6.140000f); pointsArray[61] = new Vector2(5.318181f, 6.580000f); pointsArray[62] = new Vector2(6.263636f, 7.020000f); pointsArray[63] = new Vector2(6.645453f, 7.420000f); pointsArray[64] = new Vector2(6.681817f, 8.179999f); pointsArray[65] = new Vector2(6.627272f, 9.080000f); pointsArray[66] = new Vector2(6.572727f, 9.699999f); pointsArray[67] = new Vector2(6.263636f, 10.820000f); pointsArray[68] = new Vector2(5.754546f, 11.479999f); pointsArray[69] = new Vector2(4.536363f, 11.599998f); pointsArray[70] = new Vector2(3.572727f, 11.700000f); pointsArray[71] = new Vector2(2.809090f, 11.660000f); pointsArray[72] = new Vector2(1.445455f, 11.559999f); pointsArray[73] = new Vector2(0.936363f, 11.280000f); pointsArray[74] = new Vector2(0.754545f, 10.879999f); pointsArray[75] = new Vector2(0.700000f, 9.939999f); pointsArray[76] = new Vector2(0.918181f, 9.620000f); pointsArray[77] = new Vector2(1.463636f, 9.600000f); return pointsArray; } Disclaimer: My math is very rusty, so please explain in lay mans terms....

    Read the article

  • Complexity of defense AI

    - by Fredrik Johansson
    I have a non-released game, and currently it's only possible to play with another human being. As the game rules are made up by me, I think it would be great if new players could learn basic game play by playing against an AI opponent. I mean it's not like Tennis, where the majority knows at least the fundamental rules. On the other hand, I'm a bit concerned that this AI implementation can be quite complex. I hope you can help me with an complexity estimation. I've tried to summarize the gameplay below. Is this defense AI very hard to do? Basic Defense Game Play Player Defender can move within his land, i.e. inside a random, non-convex, polygon. This land will also contain obstacles modeled as polygons, that Defender has to move around. Player Attacker has also a land, modeled as another such polygon. Assume that Defender shall defend against Attacker. Attacker will then throw a thingy towards Defender's land. To be rewarded, Attacker wants to hit Defender's land, and Defender will want to strike away the thingy from his land before it stops to prevent Attacker from scoring. To feint Defender, Attacker might run around within his land before the throw, and based on these attacker movements Defender shall then continuously move to the best defense position within his land.

    Read the article

  • Algorithm to map an area [on hold]

    - by user37843
    I want to create a crawler that starts in a room and from that room to move North,East,West and South until there aren't any new rooms to visit. I don't want to have duplicates and the output format per line to be something like this: current room, neighbour 1, neighbour 2 ... and in the end to apply BFS algorithm to find the shortest path between 2 rooms. Can anyone offer me some suggestion what to use? Thanks

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >