Search Results

Search found 4934 results on 198 pages for 'finding'.

Page 1/198 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • A* Start path finding in HTML5 Canvas

    - by gyhgowvi
    I'm trying implement A* Start path finding in my games(which are written with JavaScript, HTML5 Canvas). Library for A* Start found this - http://46dogs.blogspot.com/2009/10/star-pathroute-finding-javascript-code.html and now I'm using this library for path finding. And with this library, I'm trying write a simple test, but stuck with one problem. I'm now done when in HTML5 canvas screen click with mouse show path until my mouse.x and mouse.y. Here is a screenshot - http://oi46.tinypic.com/14qxrl.jpg (Pink square: Player, Orange squares: path until my mouse.x/mouse.y) Code how I'm drawing the orange squares until my mouse.x/mouse.y is: 'http://pastebin.com/bfq74ybc (Sorry I do not understand how upload code in my post) My problem is I do not understand how to move my player until path goal. I've tried: 'http://pastebin.com/nVW3mhUM But with this code my player is not beung drawn.(When I run the code, player.x and player.y are equals to 0 and when I click with the mouse I get the path player blink and disappear) Maybe anyone know how to solve this problem? And I'm very very very sorry for my bad English language. :)

    Read the article

  • Finding shortest path on a hexagonal grid

    - by Timothy Mayes
    I'm writing a turn based game that has some simulation elements. One task i'm hung up on currently is with path finding. What I want to do is, each turn, move an ai adventurer one tile closer to his target using his current x,y and his target x,y. In trying to figure this out myself I can determine 4 directions no problem by using dx = currentX - targetY dy = currentY - targetY but I'm not sure how to determine which of the 6 directions is actually the "best" or "shortest" route. For example the way its setup currently I use East, West, NE, NW, SE, SW but to get to the NE tile i move East then NW instead of just moving NW. I hope this wasn't all rambling. Even just a link or two to get me started would be nice. Most of the info i've found is on drawing the grids and groking the wierd coordinate system needed. Thanks in advance Tim

    Read the article

  • Javascript A* path finding

    - by Veyha
    I am trying to learn A* path finding. I am using this library - https://github.com/qiao/PathFinding.js But there is one thing I don't understand how to do. To find a path from player.x/player.y (player.x and player.y are both 0) to 10/10 I use this code var path = finder.findPath(player.x, player.y, 10, 10, grid); This gives an array of where I need to move, but how do I apply this array to my player.x and player.y? The path structure looks like this path = [[0, 0], [1, 0], [1, 1], ..., [10, 10]]

    Read the article

  • HTML5 Canvas A* Star Path finding

    - by Veyha
    I am trying to learn A* Star Path finding. Library I am using this - https://github.com/qiao/PathFinding.js But I am don't understand one thing how to do. I am need find path from player.x/player.y (player.x and player.y is both 0) to 10/10 This code return array of where I am need to move - var path = finder.findPath(player.x, player.y, 10, 10, grid); I am get array where I am need to move, but how to apply this array to my player.x and player.y? Array structure like - 0: 0 1: 0 length: 2, 0: 1 1: 0 length: 2, ... I am very sorry for my bad English language. Thanks.

    Read the article

  • A* navigational mesh path finding

    - by theguywholikeslinux
    So I've been making this top down 2D java game in this framework called Greenfoot [1] and I've been working on the AI for the guys you are gonna fight. I want them to be able to move around the world realistically so I soon realized, amongst a couple of other things, I would need some kind of pathfinding. I have made two A* prototypes. One is grid based and then I made one that works with waypoints so now I need to work out a way to get from a 2d "map" of the obstacles/buildings to a graph of nodes that I can make a path from. The actual pathfinding seems fine, just my open and closed lists could use a more efficient data structure, but I'll get to that if and when I need to. I intend to use a navigational mesh for all the reasons out lined in this post on ai-blog.net [2]. However, the problem I have faced is that what A* thinks is the shortest path from the polygon centres/edges is not necessarily the shortest path if you travel through any part of the node. To get a better idea you can see the question I asked on stackoverflow [3]. I got a good answer concerning a visibility graph. I have since purchased the book (Computational Geometry: Algorithms and Applications [4]) and read further into the topic, however I am still in favour of a navigational mesh (See "Managing Complexity" [5] from Amit’s Notes about Path-Finding [6]). (As a side note, maybe I could possibly use Theta* to convert multiple waypoints into one straight line if the first and last are not obscured. Or each time I move back check to the waypoint before last to see if I can go straight from that to this) So basically what I want is a navigational mesh where once I have put it through a funnel algorithm (e.g. this one from Digesting Duck [7]) I will get the true shortest path, rather than get one that is the shortest path following node to node only, but not the actual shortest given that you can go through some polygons and skip nodes/edges. Oh and I also want to know how you suggest storing the information concerning the polygons. For the waypoint prototype example I made I just had each node as an object and stored a list of all the other nodes you could travel to from that node, I'm guessing that won't work with polygons? and how to I tell if a polygon is open/traversable or if it is a solid object? How do I store which nodes make up the polygon? Finally, for the record: I do want to programme this by myself from scratch even though there are already other solutions available and I don't intend to be (re) using this code in anything other than this game so it does not matter that it will inevitably be poor quality. http://greenfoot.org http://www.ai-blog.net/archives/000152.html http://stackoverflow.com/q/7585515/ http://www.cs.uu.nl/geobook/ http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html http://theory.stanford.edu/~amitp/GameProgramming/ http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html

    Read the article

  • Correct way to handle path-finding collision matrix

    - by Xander Lamkins
    Here is an example of me utilizing path finding. The red grid represents the grid utilized by my A* library to locate a distance. This picture is only an example, currently it is all calculated on the 1x1 pixel level (pretty darn laggy). I want to make it so that the farther I click, the less accurate it will be (split the map into larger grid pieces). Edit: as mentioned by Eric, this is not a required game mechanic. I am perfectly fine with any method that allows me to make this accurate while still fast. This isn't the really the topic of this question though. The problem I have is, my current library uses a two dimensional grid of integers. The higher the number in a cell, the more resistance for that grid tile. Currently I'm setting all unwalkable spots to Integer Max. Here is an example of what I want: I'm just not sure how I should set up the arrays of integers of the grid. Every time an element is added/removed to/from the game, it's collision details are updated in the table. Here is a picture of what the map looks like on my collision layer: I probably shouldn't be creating new arrays every time I have to do a path find because my game needs to support tons of PF at the same time. Should I have multiple arrays that are all updated when the dynamic elements are updated (a building is built/a building is destroyed). The problem I see with this is that it will probably make the creation and destruction of buildings a little more laggy than I would want because it would be setting the collision grid for each built in accuracy level. I would also have to add more/remove some arrays if I ever in the future changed the map size. Should I generate the new array based on an accuracy value every time I need to PF? The problem I see with this is that it will probably make any form of PF just as laggy because it will have to search through a MapWidth x MapHeight number of cells to shrink it all down. Or is there a better way? I'm certainly not the best at optimizing really anything. I've just started dealing with XNA so I'm not used to having optimization code really doing much of an affect until now... :( If you need code examples, please ask. I'll add it as an edit. EDIT: While this doesn't directly relate to the question, I figure the more information I provide, the better. To keep your units from moving as accurately to the players desired position, I've decided that once the unit PFs over to the less accurate grid piece, it will then PF on a more accurate level to the exact position requested.

    Read the article

  • Do I need path finding to make AI avoid obstacles?

    - by yannicuLar
    How do you know when a path-finding algorithm is really needed? There are contexts, where you just want to improve AI navigation to avoid an object, like a space -ship that won't crash on a planet or a car that already knows where to steer, but needs small corrections to avoid a road bump. As I've seen on similar posts, the obvious solution is to implement some path-finding algorithm, most likely like A*, and let your AI-controlled object to navigate through the path. Now, I have the necessary skills to implement a path-finding algorithm, and I'm not being lazy here, but I'm still a bit skeptical on if this is really needed. I have the impression that path-finding is appropriate to navigate through a maze, or picking a path when there are many alternatives. But in obstacle avoidance, when you do know the path, but need to make slight corrections, is path finding really necessary? Even when the obstacles are too sparse or small ? I mean, in real life, when you're driving and notice a bump on the road, you will just have to pick between steering a bit on the left (and have the bump on your right side) or the other way around. You will not consider stopping, or going backwards. A path finding would be appropriate when you need to pick a route through the city, right ? So, are there any other methods to help AI navigation, except path-finding? And if there are, how do you know when path-fining is the appropriate algorithm ? Thanks for any thoughts

    Read the article

  • 2D pathfinding - finding smooth paths

    - by Kooi Nam Ng
    I was trying to implement a simple pathfinding, but the outcome is less satisfactory than what I intended to achieve. The thing is units in games like Starcraft 2 move in all directions whereas units in my case only move in at most 8 directions (Warcraft 1 style) as these 8 directions direct to next available nodes (they move from a tile to next neighboring tile). What should I do in order to achieve the result as in Starcraft 2? Shrink the tile size? On the picture you can see a horizontal line of rock tiles being obstacles, and the found path marked as green tiles. The red line is the path I want to achieve.

    Read the article

  • creating the nodes for path finding during run time - more like path making and more

    - by bigbadbabybear
    i'm making my 1st game. i'm using javascript as i currently want to learn to make games without needing to learn another language but this is more of a general game dev question its a 2d turn-based tile/grid game. you can check it here http://www.patinterotest.tk/ it creates a movable area when you hover a player and it implements the A* algo for moving the player. The Problem: i want to make the 'dynamic movable area creation' already implement a limited number of steps for a player. The Questions: what is a good way to do this? is there another algorithm to use for this? the A* algorithm needs a start and destination, with what i want to do i don't have a destination or should i just limit the iteration of the A* algo to the steps variable? hopefully you understand the problem & questions easily

    Read the article

  • Javascript A* path finding ENEMY MOVEMENT in 3D environment

    - by faiz
    iam trying to implement pathfinding algorithm using PATHFINDING.JS in 3D world using webgl. iam have made a matrix of 200x200. and placed my enemy(swat) in it .iam confused in implmenting the path. i have tried implementing the path by compparing the value of each array value with swat's position . it works ! but ** THE ENEMY KEEPS GOING FROM THE UNWALKABLE AREA OF MY MATRIX....like the enemy should not move from 119,100(x=119,z=100) but its moving from that co-ordinate too ..... can any one help me out in this regard .. *prob facing :* enemy (swat character keeps moving from the wall /unwalkable area) wanted solution : enemy does not move from the unwalkable path.. ** function draw() { grid = new PF.Grid(200, 200); grid.setWalkableAt( 119,100, false); grid.setWalkableAt( 107,100, false); grid.setWalkableAt( 103,104, false); grid.setWalkableAt( 103,100, false); grid.setWalkableAt( 135,100, false); grid.setWalkableAt( 103,120, false); grid.setWalkableAt( 103,112, false); grid.setWalkableAt( 127,100, false); grid.setWalkableAt( 123,100, false); grid.setWalkableAt( 139,100, false); grid.setWalkableAt( 103,124, false); grid.setWalkableAt( 103,128, false); grid.setWalkableAt( 115,100, false); grid.setWalkableAt( 131,100, false); grid.setWalkableAt( 103,116, false); grid.setWalkableAt( 103,108, false); grid.setWalkableAt( 111,100, false); grid.setWalkableAt( 103,132, false); finder = new PF.AStarFinder(); f1=Math.abs(first_person_controller.position.x); f2=Math.abs(first_person_controller.position.z); ff1=Math.round(f1); ff2=Math.round(f2); s1=Math.abs(swat.position.x); s2=Math.abs(swat.position.z); ss1=Math.round(s1); ss2=Math.round(s1); path = finder.findPath(ss1,ss2,ff1,ff2, grid); size=path.length-1; Ai(); } function Ai(){ if (i<size) { if (swat.position.x >= path[i][0]) { swat.position.x -= 0.3; if(Math.floor(swat.position.x) == path[i][0]) { i=i+1; } } else if(swat.position.x <= path[i][0]) { swat.position.x += 0.3; if(Math.floor(swat.position.x) == path[i][0]) { i=i+1; } } } if (j<size) { if((Math.abs(swat.position.z)) >= path[j][1]) { swat.position.z -= 0.3; if(Math.floor(Math.abs(swat.position.z)) == path[j][1]) { j=j+1; } } else if((Math.abs(swat.position.z)) <= path[j][1]) { swat.position.z += 0.3; if(Math.floor(Math.abs(swat.position.z)) == path[j][1]) { j=j+1; } } } }

    Read the article

  • A Star Path finding endless loop

    - by PoeHaH
    I have implemented A* algorithm. Sometimes it works, sometimes it doesn't, and it goes through an endless loop. After days of debugging and googling, I hope you can come to the rescue. This is my code: The algorythm: public ArrayList<Coordinate> findClosestPathTo(Coordinate start, Coordinate goal) { ArrayList<Coordinate> closed = new ArrayList<Coordinate>(); ArrayList<Coordinate> open = new ArrayList<Coordinate>(); ArrayList<Coordinate> travelpath = new ArrayList<Coordinate>(); open.add(start); while(open.size()>0) { Coordinate current = searchCoordinateWithLowestF(open); if(current.equals(goal)) { return travelpath; } travelpath.add(current); open.remove(current); closed.add(current); ArrayList<Coordinate> neighbors = current.calculateCoordAdjacencies(true, rowbound, colbound); for(Coordinate n:neighbors) { if(closed.contains(n) || map.isWalkeable(n)) { continue; } int gScore = current.getGvalue() + 1; boolean gScoreIsBest = false; if(!open.contains(n)) { gScoreIsBest = true; n.setHvalue(manhattanHeuristic(n,goal)); open.add(n); } else { if(gScore<n.getGvalue()) { gScoreIsBest = true; } } if(gScoreIsBest) { n.setGvalue(gScore); n.setFvalue(n.getGvalue()+n.getHvalue()); } } } return null; } What I have found out is that it always fails whenever there's an obstacle in the path. If I'm running it on 'open terrain', it seems to work. It seems to be affected by this part: || map.isWalkeable(n) Though, the isWalkeable function seems to work fine. If additional code is needed, I will provide it. Your help is greatly appreciated, Thanks :)

    Read the article

  • Path Finding for an Arena based map in 3D using NavMesh

    - by Happybirthday
    I have a 3D arena map (consider a small island surrounded by water on all sides) for a multiplayer Tank fight game. The moveable areas are marked using a Navigation Mesh made by the Arena designer. My question is what would be the best way for navigation in such an environment ? Specially considering the case when there is a Bridge at the center of the arena and you could walk under it or even above it ? If suppose the enemy is standing at the top of the Bridge and my AI is at one of the edges of the map ? How can it know whether the enemy is above or below the bridge and how can it navigate till it ?

    Read the article

  • Efficient path-finding in free space

    - by DeadMG
    I've got a game situated in space, and I'd like to issue movement orders, which requires pathfinding. Now, it's my understanding that A* and such mostly apply to trees, and not empty space which does not have pathfinding nodes. I have some obstacles, which are currently expressed as fixed AABBs- that is, there is no unbounded "terrain" obstacle. In addition, I expect most obstacles to be reasonably approximable as cubes or spheres. So I've been thinking of applying a much simpler pathfinding algorithm- that is, simply cast a ray from the current position to the target position, and then I can get a list of obstacles using spatial partitioning relatively quickly. What I'm not so sure about is how to determine the part where the ordered unit manoeuvres around the obstacles. What I've been thinking so far is that I will simply use potential fields- that is, all units will feel a strong repulsive force away from each other and a moderate force towards the desired point. This also has the advantage that to issue group orders, I can simply order a mid-level force towards another entity. But this obviously won't achieve the optimal solution. Will potential fields achieve a reasonable approximation given my parameters, or do I need another solution?

    Read the article

  • What alternatives exist of how an agent can follow the path calculated by a path-finding algorithm?

    - by momboco
    What alternatives exist of how an agent can follow the path calculated by a path-finding algorithm? I've seen that the most easy form is go to one point and when the agent has reached this point, discard it and go to the next point. I think that this approach has problems when the game has physics with dynamic objects that can block the travel between point A and point B, then the agent is taken from his original trayectory and sometimes go to the last destiny point is not the most natural behavior. In the literature always I have read that the path is only a suggestion of where the agent has to go, but I don't know how this suggested path must be followed. Thanks.

    Read the article

  • Is finding graph minors without single node pinch points possible?

    - by Alturis
    Is it possible to robustly find all the graph minors within an arbitrary node graph where the pinch points are generally not single nodes? I have read some other posts on here about how to break up your graph into a Hamiltonian cycle and then from that find the graph minors but it seems to be such an algorithm would require that each "room" had "doorways" consisting of single nodes. To explain a bit more a visual aid is necessary. Lets say the nodes below are an example of the typical node graph. What I am looking for is a way to automatically find the different colored regions of the graph (or graph minors)

    Read the article

  • 8-direction path finding algorithm

    - by frinkz
    I'm having trouble finding the right pathfinding algorithm for some AI I'm working on. I have players on a pitch, moving around freely (not stuck to a grid), but they are confined to moving in 8 directions (N NE E etc.) I was working on using A*, and a graph for this. But I realised, every node on the graph is equally far apart, and all the edges have the same weight - since the pitch is rectangular. And the number of nodes is enormous (being a large pitch, with them able to move between 1 pixel and another) I figured there must be another algorithm, optimised for this sort of thing?

    Read the article

  • Find Adjacent Nodes A Star Path-Finding C++

    - by Infinity James
    Is there a better way to handle my FindAdjacent() function for my A Star algorithm? It's awfully messy, and it doesn't set the parent node correctly. When it tries to find the path, it loops infinitely because the parent of the node has a pent of the node and the parents are always each other. Any help would be amazing. This is my function: void AStarImpl::FindAdjacent(Node* pNode) { for (int i = -1; i <= 1; i++) { for (int j = -1; j <= 1; j++) { if (pNode->mX != Map::GetInstance()->mMap[pNode->mX + i][pNode->mY + j].mX || pNode->mY != Map::GetInstance()->mMap[pNode->mX + i][pNode->mY + j].mY) { if (pNode->mX + i <= 14 && pNode->mY + j <= 14) { if (pNode->mX + i >= 0 && pNode->mY + j >= 0) { if (Map::GetInstance()->mMap[pNode->mX + i][pNode->mY + j].mTypeID != NODE_TYPE_SOLID) { if (find(mOpenList.begin(), mOpenList.end(), &Map::GetInstance()->mMap[pNode->mX + i][pNode->mY + j]) == mOpenList.end()) { Map::GetInstance()->mMap[pNode->mX+i][pNode->mY+j].mParent = &Map::GetInstance()->mMap[pNode->mX][pNode->mY]; mOpenList.push_back(&Map::GetInstance()->mMap[pNode->mX+i][pNode->mY+j]); } } } } } } } mClosedList.push_back(&Map::GetInstance()->mMap[pNode->mX][pNode->mY]); } If you'd like any more code, just ask and I can post it.

    Read the article

  • How can I generate a 2d navigation mesh in a dynamic environment at runtime?

    - by Stephen
    So I've grasped how to use A* for path-finding, and I am able to use it on a grid. However, my game world is huge and I have many enemies moving toward the player, which is a moving target, so a grid system is too slow for path-finding. I need to simplify my node graph by using a navigational mesh. I grasp the concept of "how" a mesh works (finding a path through nodes on the vertices and/or the centers of the edges of polygons). My game uses dynamic obstacles that are procedurally generated at run-time. I can't quite wrap my head around how to take a plane that has multiple obstacles in it and programatically divide the walkable area up into polygons for the navigation mesh, like the following image. Where do I start? How do I know when a segment of walk-able area is already defined, or worse, when I realize I need to subdivide a previously defined walk-able area as the algorithm "walks" through the map? I'm using javascript in nodejs, if it matters.

    Read the article

  • How can I better implement A star algorithm with a very large set of nodes?

    - by Stephen
    I'm making a game with nodejs in which many enemies must converge on the player as the player moves around a relatively open space (right now it is an open field with few obstacles, but eventually there may be some small buildings in the field with 1 or 2 rooms). It's a multiplayer game using websockets, so the server needs to keep track of enemies and players. I found this javascript A* library which I've modified to be used on the server as a nodejs module. The library utilizes a Binary Heap to track the nodes for the algorithm, so it should be pretty fast (and indeed, with a small grid, say 100x100 it is lightning fast). The problem is that my game is not really tile-based. As the player moves around the map, he is moving on a more or less 1-to-1 per-pixel coordinate system (the player can move in 8 directions, 1 or 2 pixels at a time). In preliminary tests, on an 800x600 field, the path-finding can take anywhere from 400 to 1000 ms. Multiply that by 10 enemies and the game starts to get pretty choppy. I have already set it up so that each enemy will only do a path-finding call once per second or even as slow as once every 2 seconds (they have to keep updating their path because the players can move freely). But even with this long interval, there are noticeable lag spikes or chops every couple of seconds as the enemies update their paths. I'm willing to approach the problem of path-finding differently, if there's another option. I'm assuming that the real problem is the enormous grid (800x600). It also occurs to me that maybe the large arrays are to blame, as I've read that V8 has trouble with large arrays.

    Read the article

  • Pathfinding Java library

    - by Shivan Dragon
    I'm an amateur game developer and somewhat amateur Java developer as well. I'm trying to find a way to have path finding for my game(s). I've first googled for some existing Java libraries that have various path-finding implementations, but I've failed to find any. It seems to me that the only way to get pathfinding code is to use it via a game engine (like Unity). But I'd just like to have a library that I can use and make the game loop and other stuff on my own. Failing to find such a library I've tried implementing some algorithms myself. I've managed to make a running AStar in Java, but for fancier stuff like DStar I find it hard to do it by hand. So then, my question is, are there any Java libraries that contain at least some basic pathfinding algorithms implementations?

    Read the article

  • Pathfinding library

    - by Shivan Dragon
    I'm an amateur game developer and somewhat amateur Java developer as well. I'm trying to find a way to have path finding for my game(s). I've first Googled for some existing Java libraries that have various path-finding implementations, but I've failed to find any. It seems to me that the only way to get pathfinding code is to use it via a game engine (like Unity). But I'd just like to have a library that I can use and make the game loop and other stuff on my own. Failing to find such a library I've tried implementing some algorithms myself. I've managed to make a running A* in Java, but for fancier stuff like D* I find it hard to do it by hand. So then, my question is, are there any Java libraries that contain at least some basic pathfinding algorithms implementations?

    Read the article

  • Dynamic obstacles avoidance in navigation mesh system

    - by Variable
    I've built my path finding system with unreal engine, somehow the path finding part works just fine while i can't find a proper way to solve dynamic obstacles avoidance problem. My characters are walking allover the map and collide with each other while they moving. I try to steering them when collision occurs, but this doesn't work well. For example, two characters block on the road while the third one's path is right in the middle of them and he'll get stuck. Can someone tell me the most popular way of doing dynamic avoidance? Thanks a lot.

    Read the article

  • Best way to implement mouse-based movement in MMOG

    - by fiftyeight
    I want to design an MMO where players click the destination they want to walk to with their mouse and the character moves there, similar to Runescape in this manner. I think it should be easier than keyboard movement since the client can simply send the server the destination each time the player clicks on a destination. The main thing I'm trying to decide is what to do when there are obstacles in the way. It's no problem to implement a simple path-finding solution on the client, the question is if the server will do path-finding as well, since it'll probably take too much Computation power from the server. What I though is that when there is an obstacle the client will send only the first coordinate it plans to go to and then when he gets there he'll send the next coordinate automatically. For example if there is a rock in the way the character will decide on a route that is made of two destinations so it goes around the rock and when it arrives at the first destination it sends the next coordinate. That way if the player changes destination is the middle he won't send unnecessary information. Is this a good way to implement it and is there a standard way MMOGs usually do it? EDIT: I should also mention that the server will make sure all movements are legal and there aren't any walls in the way etc. In the way I wrote it should be quite easy since all movements will be sent in straight lines so the server will just check there aren't any obstacles along that line.

    Read the article

  • Coordinate based travel through multi-line path over elapsed time

    - by Chris
    I have implemented A* Path finding to decide the course of a sprite through multiple waypoints. I have done this for point A to point B locations but am having trouble with multiple waypoints, because on slower devices when the FPS slows and the sprite travels PAST a waypoint I am lost as to the math to switch directions at the proper place. EDIT: To clarify my path finding code is separate in a game thread, this onUpdate method lives in a sprite like class which happens in the UI thread for sprite updating. To be even more clear the path is only updated when objects block the map, at any given point the current path could change but that should not affect the design of the algorithm if I am not mistaken. I do believe all components involved are well designed and accurate, aside from this piece :- ) Here is the scenario: public void onUpdate(float pSecondsElapsed) { // this could be 4x speed, so on slow devices the travel moved between // frames could be very large. What happens with my original algorithm // is it will start actually doing circles around the next waypoint.. pSecondsElapsed *= SomeSpeedModificationValue; final int spriteCurrentX = this.getX(); final int spriteCurrentY = this.getY(); // getCoords contains a large array of the coordinates to each waypoint. // A waypoint is a destination on the map, defined by tile column/row. The // path finder converts these waypoints to X,Y coords. // // I.E: // Given a set of waypoints of 0,0 to 12,23 to 23, 0 on a 23x23 tile map, each tile // being 32x32 pixels. This would translate in the path finder to this: // -> 0,0 to 12,23 // Coord : x=16 y=16 // Coord : x=16 y=48 // Coord : x=16 y=80 // ... // Coord : x=336 y=688 // Coord : x=336 y=720 // Coord : x=368 y=720 // // -> 12,23 to 23,0 -NOTE This direction change gives me trouble specifically // Coord : x=400 y=752 // Coord : x=400 y=720 // Coord : x=400 y=688 // ... // Coord : x=688 y=16 // Coord : x=688 y=0 // Coord : x=720 y=0 // // The current update index, the index specifies the coordinate that you see above // I.E. final int[] coords = getCoords( 2 ); -> x=16 y=80 final int[] coords = getCoords( ... ); // now I have the coords, how do I detect where to set the position? The tricky part // for me is when a direction changes, how do I calculate based on the elapsed time // how far to go up the new direction... I just can't wrap my head around this. this.setPosition(newX, newY); }

    Read the article

  • Tweaking AStar to find closest location to unreachable destination

    - by Shivan Dragon
    I've implemented AStar in Java and it works ok for an area with obstacles where the chosen destination is reachable. However, when the destination is unreachable, the calculated "path" is in no way to the closest location (to the unreachable location) but is instead some random path. Is there a feasible way to tweak AStar into finding the path to the closest location to an unreachable destination?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >