Search Results

Search found 90607 results on 3625 pages for 'new features'.

Page 3/3625 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • New Oracle E-Business Suite R12 OS and Tools Requirements on IBM AIX on Power Systems

    - by John Abraham
    IBM has announced May 1st, 2011 as the end of Support for Version 8 of the IBM XL C/C++ compiler currently used for Release 12 builds and patching. The target date of the switchover -- May 1st 2011 -- corresponds to when this older compiler will no longer be supported by IBM. Beginning on May 1st 2011, Oracle E-Business Suite patches for Release 12 (12.0, 12.1) on the IBM AIX on Power Systems platform will be built with Version 9 of the IBM XL C/C++ compiler.  Customers who plan to patch or upgrade their E-Business Suite R12 environments after May 1st, 2011 must meet all the new requirements prior to applying new patches or upgrades.Please review the documents below for all new requirements pertaining to the new runtime and utilities packages on IBM AIX on Power Systems.

    Read the article

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • Several New Hints

    - by Ondrej Brejla
    Hi all! Today we would like to introduce you some of our new experimental hints for NetBeans 7.2. They are called: Unused Use Statement and Immutable Variables. Unused Use Statement This hint is quite simple. It highlights (underlines) your use statements, which are not used. Typical use case is after some refactoring, when you forgot to remove some obsolete use statements. This hint warns you on them and allows you to remove them easily. Just click on the hint bulb in the gutter and select Remove Unused Use Statement. And of course, it works in multiple use statements combined too. Immutable Variables The next one is the hint which checks too many assignments into a variable. And why? That's simple. Mostly you should use just one assignment into one variable. But sometimes you are lazy and you do something like: But it's quite wrong, because what you really do is: And that's exactly the case, when our new hint warns you, that Too many assignments (2) into variable $foo occured. Nothing more. Yes, we know that there are some cases, where could be more assignments and no warning should occur, e.g.: Because maybe one likes longer increment syntax more than the short one. So we tried to handle these cases to don't bother you if it's not a need. Note: We are almost sure that this hint doesn't cover all your use cases, because there are a lot of them. So if you find something strange, write it into our bugzilla so we can handle it better for you. Thanks for your patience! And the last thing is, that you can set the number of allowed assignments in Tools -> Options -> Editor -> Hints -> PHP: Immutable Variables. Note: This hint works just for a common variables, not for fields. We have an enhancement request for that and it should be implemented in next version of NetBeans (probably 7.3). And that's all for today and as usual, please test it and if you find something strange, don't hesitate to file a new issue (product php, component Editor). Thanks.

    Read the article

  • Open Different Types of New Google Documents Directly with These 7 New Chrome Apps

    - by Asian Angel
    Every time you want to open a new document of one kind or another in Google Drive you have to go through the whole ‘menu’ and ‘type selection’ process to do so. Now you can open the desired type directly from the New Tab Page using these terrific new Chrome apps from Google! The best part about this new set of apps is the ability to choose only the ones you want and/or need, then be able to start working on those new documents quickly without all the ‘selection’ hassle. How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • New Oracle.com global navigation

    - by tim.bonnemann
    This is a guest post by Michal Kopec, Senior User Experience Architect her at Oracle Marketing Brand and Creative. We have just refreshed the Oracle.com global navigation to serve you better with Oracle related information and news. Highlights 1. Updated, user-oriented and business information balanced navigational categories. Say hello to the new categories: Downloads, Education and Oracle Technology Network. Oracle Partner Network navigation received a facelift too. 2. Brand new flyout based navigation - mouse over Partners for instance - providing both a high level content overview as well as shortcut links for most popular website destinations 3. Introducing audience based - I'm a... - and - I want to... - task-based navigation. Now you can navigate based on who you are or what is you want to accomplish. Please note this is an initial step - we want to build out those based on your opinions and feedback. 4. Adjusted Oracle Technology Network horizontal navigation to match Oracle.com. Oracle Technology Network users can now benefit from OTN content being accessible from anywhere during their Oracle.com and OTN visits of course :) 5. Last but not least - we applied the same refreshed global navigation to a couple of country sites - starting with Oracle Brazil and Oracle China. More to come. The project internal code name is Mosaic. It is an effort to provide you with unified user and brand experience during your Oracle websites visit. Every time you hear Mosaic expect great things to happen. With that - please let us know what you think. We value your opinion.

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • Improving the Industry’s Best Cloud Project Portfolio Management (PPM) Solution – New Release of Instantis EnterpriseTrack

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} By Yasser Mahmud, Vice President of Product Strategy & Industry Marketing, Oracle Primavera We know that in today’s rapidly changing world, organizations and leaders must adapt to fierce competition, business climate change and customers consistently demanding more for less. And project portfolio management (PPM) initiatives are a key component to help organizations thrive and stand out among competitors. That’s why I’m excited to announce Instantis EnterpriseTrack 8.5. Since Oracle’s acquisition of Instantis late last year, we’ve been busy working to enhance the leading cloud PPM solution. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Here’s what’s new: Perform more precise resource planning and management  Gain more precise capacity visibility for resource planning and project execution with resource calendars that capture vacation, LOA and part-time resource availability Ensure compliance and governance processes  with activity labor cost capitalization Improve project labor cost estimation, tracking and administration with variable resource rates Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Optimize Project Demand Management And Execution Enhance productivity and analysis with project request flexible staffing plan and simplified finance estimation Improve project status communication and execution with estimated time to complete (ETC) in timesheets and projects Achieve audit compliance and governance with field change history for key project and project request fields Enforce proper financial accounting processes with the new strict finance lock/close period option Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Improve Reporting and the User Experience Enhance user productivity and analysis with improved listing pages Improve program reporting with new program filters in listing pages and reports Run large data volume user defined Excel reports with MS Excel 2010 support Accelerate user productivity and satisfaction with an improved user interface for project issues, risks, and scope changes Enjoy faster system response and improved user experience with  optimized listing pages, resource planning, and application cache Deliver user self-service training on demand with UPK support And if that wasn’t enough, we’ve also made additional improvements to timesheets, field change history and finance lock/close period. Learn more about Instantis EnterpriseTrack 8.5.

    Read the article

  • Amazon’s New Kindle Fire Tablet: the How-To Geek Review

    - by The Geek
    We got our Kindle Fire a few days ago, and since then we’ve been poking, prodding, and generally trying to figure out how to break it. Before you go out and buy your own, check out our in-depth review. Note: This review is extremely long, so we’ve split it up between multiple pages. You can use the navigation links or buttons at the bottom to flip between pages. Amazon’s New Kindle Fire Tablet: the How-To Geek Review HTG Explains: How Hackers Take Over Web Sites with SQL Injection / DDoS Use Your Android Phone to Comparison Shop: 4 Scanner Apps Reviewed

    Read the article

  • UPK 3.6.1 New Feature - Publish Presentation

    - by peter.maravelias
    UPK includes numerous options for deploying the content you have created. Most UPK users are familiar with the UPK Player and the various document outputs that have been available as publishing formats for some time now. In addition UPK provides the content developer the ability to publish content for use in specific environments, LMS, Test Director are two examples. UPK 3.6.1 adds the Presentation publishing type. The Presentation publishing type produces a slideshow presentation of screenshots and text of each topic as a separate Microsoft PowerPoint file. To publish to the presentation option just select the type under the documents category in the publishing wizard. Give this new publishing type a try and let us know what you think by posting a comment. The Presentation publishing type feature came from a customer request and given the ever growing methods and channels for communication we'd like to know what other output types or methods of using existing outputs you would like to see in a future release of UPK.

    Read the article

  • Proposal for a new position at work

    - by Seth P.
    I have an idea at work for a new Product Manager position at our office. I work with several developers, and it would be helpful to have someone working in a type of "Scrum Master" capacity, dividing out assignments and making sure they get complete. This position does not currently exist, however I feel that I have enough evidence to indicate that it be very helpful for our business. What is the best way to present this proposal to my boss? Is there a specific template that you know of for new position? It should be able to describe the qualification for the position, their responsibilities, and what metrics we would use to measure them. Thanks. UPDATE++++ With Anna's suggestion, I gave more details about this specific position. However, I would ideally like the most generic way to present a new position to my boss.

    Read the article

  • how do we clear new programming concept

    - by Sarang
    In IT world, new latest technologies are generated daily. Every time, every programmer need to learn something & then clear it conceptually to implement. All new technologies are built on some basic concepts. But, these technologies have their own area of development & a developer is supposed to grasp it from very basic. This seems like starting from very beginning to reach till current. What is the best & fast way to learn and grasp a new developed technology ?

    Read the article

  • Hidden features of PL/SQL

    - by Adam Paynter
    In light of the "Hidden features of..." series of questions, what little-known features of PL/SQL have become useful to you? Edit: Features specific to PL/SQL are preferred over features of Oracle's SQL syntax. However, because PL/SQL can use most of Oracle's SQL constructs, they may be included if they make programming in PL/SQL easier.

    Read the article

  • Server 2008R2 Server Manager Roles and Features won't refresh or allow addition of new roles or features

    - by MattChorba
    I have a standalone DC in an isolated lab. I have installed the SUR tool and found no errors. I ran SFC and found no errors. I have attempted to install Windows Backup feature using Powershell, but received the same error about the computer needing to be restarted. Powershell cmdlets will list all of the installed roles and features. The rest of Server Manager works without problems. What can I do to get Server Manager Roles and Features working properly again? Picture of Error: CheckSUR.log: ================================= Checking System Update Readiness. Binary Version 6.1.7601.21645 Package Version 13.0 2011-11-28 13:20 Checking Windows Servicing Packages Checking Package Manifests and Catalogs Checking Package Watchlist Checking Component Watchlist Checking Packages Checking Component Store Summary: Seconds executed: 413 No errors detected (w) Unable to get system disk properties 0x0000045D IOCTL_STORAGE_QUERY_PROPERTY Disk Cache CheckSUR.persist.log: ================================= Checking System Update Readiness. Binary Version 6.1.7601.21645 Package Version 13.0 2011-11-28 13:20 Checking Windows Servicing Packages Checking Package Manifests and Catalogs Checking Package Watchlist Checking Component Watchlist Checking Packages Checking Component Store Summary: Seconds executed: 413 No errors detected (w) Unable to get system disk properties 0x0000045D IOCTL_STORAGE_QUERY_PROPERTY Disk Cache

    Read the article

  • ORAchk 2.2.5 – New Tool Features & New Health Checks for the Oracle Stack

    - by SamanthaF-Oracle
    ORAchk version 2.2.5 is now available for download, new features in 2.2.5: Running checks for multiple databases in parallel Ability to schedule multiple automated runs via ORAchk daemon New "scratch area" for ORAchk temporary files moved from /tmp to a configurable $HOME directory location System health score calculation now ignores skipped checks Checks the health of pluggable databases using OS authentication New report section to report top 10 time consuming checks to be used for optimizing runtime in the future More readable report output for clusterwide checks Includes over 50 new Health Checks for the Oracle Stack Provides a single dashboard to view collections across your entire enterprise using the Collection Manager, now pre-bundled Expands coverage of pre and post upgrade checks to include standalone databases, with new profile options to run only these checks Expands to additional product areas in E-Business Suite of Workflow & Oracle Purchasing and in Enterprise Manager Cloud Control ORAchk has replaced the popular RACcheck tool, extending the coverage based on prioritization of top issues reported by users, to proactively scan for known problems within the area of: Oracle Database Standalone Database Grid Infrastructure & RAC Maximum Availability Architecture (MAA) Validation Upgrade Readiness Validation Golden Gate Enterprise Manager Cloud Control Repository E-Business Suite Oracle Payables (R12 only) Oracle Workflow Oracle Purchasing (R12 only) Oracle Sun Systems Oracle Solaris ORAchk features: Proactively scans for the most impactful problems across the various layers of your stack Streamlines how to investigate and analyze which known issues present a risk to you Executes lightweight checks in your environment, providing immediate results with no configuration data sent to Oracle Local reporting capability showing specific problems and their resolutions Ability to configure email notifications when problems are detected Provides a single dashboard to view collections across your entire enterprise using the Collection Manager ORAchk will expand in the future with high impact checks in existing and additional product areas. If you have particular checks or product areas you would like to see covered, please post suggestions in the ORAchk subspace in My Oracle Support Community. For more details about ORAchk see Document 1268927.2

    Read the article

  • Critical Patch Update for April 2010 Now Available

    - by Steven Chan
    The Critical Patch Update (CPU) for April 2010 was released on April 13, 2010. Oracle strongly recommends applying the patches as soon as possible.The Critical Patch Update Advisory is the starting point for relevant information. It includes a list of products affected, pointers to obtain the patches, a summary of the security vulnerabilities, and links to other important documents.Supported Products that are not listed in the "Supported Products and Components Affected" Section of the advisory do not require new patches to be applied.Also, it is essential to review the Critical Patch Update supporting documentation referenced in the Advisory before applying patches, as this is where you can find important pertinent information.The Critical Patch Update Advisory is available at the following location:Oracle Technology NetworkThe next four Critical Patch Update release dates are:July 13, 2010October 12, 2010January 18, 2011April 19, 2011

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • New User of UPK?

    - by [email protected]
    The UPK Developer comes with a variety of manuals to help support your organization in the development and deployment of content. The Developer manuals can be found in the \Documentation\Language Code\Reference folder where the Developer has been installed. As of 3.5.x the documentation can also be accessed via the Start menu, Start\Programs\User Productivity Kit\Documentation\Reference. Content Deployment.pdf: This manual provides information on how to deploy content to your audience. Content Development.pdf: This manual provides information on how to create, maintain, and publish content using the Developer. The content of this manual also appears in the Developer help system. Content Player.pdf: This manual provides instructions on how to view content using the Player. The content of this manual also appears in the Player help system. In-Application Support Guide.pdf: This manual provides information on how implement content-sensitive, in-application support for enterprise applications using Player content. Installation & Administration.pdf: This manual provides instructions for installing the Developer in a single-user or multi-user environment as well as information on how to add and manage users and content in a multi-user installation. An Administration help system also appears in the Developer for authors configured as administrators. This manual also provides instructions for installing and configuring Usage Tracking. Upgrade.pdf: This manual provides information on how to upgrade from a previous version to the current version. Usage Tracking Administration & Reporting.pdf: This manual provides instructions on how to manage users and usage tracking reports. - Kathryn Lustenberger, Oracle UPK Outbound Product Management

    Read the article

  • What’s Outt Showcases What’s New in Theaters, TV, Music, Books, Games, and More

    - by Jason Fitzpatrick
    It’s tough to keep on top of all the new media that comes out; What’s Outt gathers current and future releases for everything from in-theater movies to console games. You can check out the current week, up to two weeks into the future, and–if you’re a bit behind the new release wave–you can page your way back through the archives to catch up. In addition to the web interface, What’s Outt has a simple once-a-week mailing list to keep you updated on the newest releases across all the categories they tracks. What’s Outt [via MakeUseOf] How to Own Your Own Website (Even If You Can’t Build One) Pt 2 How to Own Your Own Website (Even If You Can’t Build One) Pt 1 What’s the Difference Between Sleep and Hibernate in Windows?

    Read the article

  • Ransomware: Why This New Malware is So Dangerous and How to Protect Yourself

    - by Chris Hoffman
    Ransomware is a type of malware that tries to extort money from you. One of the nastiest examples, CryptoLocker, takes your files hostage and holds them for ransom, forcing you to pay hundreds of dollars to regain access. Most malware is no longer created by bored teenagers looking to cause some chaos. Much of the current malware is now produced by organized crime for profit and is becoming increasingly sophisticated. How Ransomware Works Not all ransomware is identical. The key thing that makes a piece of malware “ransomware” is that it attempts to extort a direct payment from you. Some ransomware may be disguised. It may function as “scareware,” displaying a pop-up that says something like “Your computer is infected, purchase this product to fix the infection” or “Your computer has been used to download illegal files, pay a fine to continue using your computer.” In other situations, ransomware may be more up-front. It may hook deep into your system, displaying a message saying that it will only go away when you pay money to the ransomware’s creators. This type of malware could be bypassed via malware removal tools or just by reinstalling Windows. Unfortunately, Ransomware is becoming more and more sophisticated. One of the latest examples, CryptoLocker, starts encrypting your personal files as soon as it gains access to your system, preventing access to the files without knowing the encryption key. CryptoLocker then displays a message informing you that your files have been locked with encryption and that you have just a few days to pay up. If you pay them $300, they’ll hand you the encryption key and you can recover your files. CryptoLocker helpfully walks you through choosing a payment method and, after paying, the criminals seem to actually give you a key that you can use to restore your files. You can never be sure that the criminals will keep their end of the deal, of course. It’s not a good idea to pay up when you’re extorted by criminals. On the other hand, businesses that lose their only copy of business-critical data may be tempted to take the risk — and it’s hard to blame them. Protecting Your Files From Ransomware This type of malware is another good example of why backups are essential. You should regularly back up files to an external hard drive or a remote file storage server. If all your copies of your files are on your computer, malware that infects your computer could encrypt them all and restrict access — or even delete them entirely. When backing up files, be sure to back up your personal files to a location where they can’t be written to or erased. For example, place them on a removable hard drive or upload them to a remote backup service like CrashPlan that would allow you to revert to previous versions of files. Don’t just store your backups on an internal hard drive or network share you have write access to. The ransomware could encrypt the files on your connected backup drive or on your network share if you have full write access. Frequent backups are also important. You wouldn’t want to lose a week’s worth of work because you only back up your files every week. This is part of the reason why automated back-up solutions are so convenient. If your files do become locked by ransomware and you don’t have the appropriate backups, you can try recovering them with ShadowExplorer. This tool accesses “Shadow Copies,” which Windows uses for System Restore — they will often contain some personal files. How to Avoid Ransomware Aside from using a proper backup strategy, you can avoid ransomware in the same way you avoid other forms of malware. CryptoLocker has been verified to arrive through email attachments, via the Java plug-in, and installed on computers that are part of the Zeus botnet. Use a good antivirus product that will attempt to stop ransomware in its tracks. Antivirus programs are never perfect and you could be infected even if you run one, but it’s an important layer of defense. Avoid running suspicious files. Ransomware can arrive in .exe files attached to emails, from illicit websites containing pirated software, or anywhere else that malware comes from. Be alert and exercise caution over the files you download and run. Keep your software updated. Using an old version of your web browser, operating system, or a browser plugin can allow malware in through open security holes. If you have Java installed, you should probably uninstall it. For more tips, read our list of important security practices you should be following. Ransomware — CryptoLocker in particular — is brutally efficient and smart. It just wants to get down to business and take your money. Holding your files hostage is an effective way to prevent removal by antivirus programs after it’s taken root, but CryptoLocker is much less scary if you have good backups. This sort of malware demonstrates the importance of backups as well as proper security practices. Unfortunately, CryptoLocker is probably a sign of things to come — it’s the kind of malware we’ll likely be seeing more of in the future.     

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >