Search Results

Search found 1848 results on 74 pages for 'algorithms'.

Page 37/74 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Avoiding QoS degradation for video streaming clients

    - by aarege31
    Suppose I have two routers connected via a 1Gbit connection. A client behind router 1 streams to a client behind router 2 while other clients behind router 1 transmit data to other clients behind router 2. Are there any best practice policing, scheduling or queue management algorithms available that help a beginner understand what is necessary to prevent QoS degration in simple cases as above as well as in real world environments?

    Read the article

  • Technical details for Server 2012 de-duplication feature

    - by syneticon-dj
    Now that Windows Server 2012 comes with de-duplication features for NTFS volumes I am having a hard time finding technical details about it. I can deduce from the TechNet documentation that the de-duplication action itself is an asynchronous process - not unlike how the SIS Groveler used to work - but there is virtually no detail about the implementation (algorithms used, resources needed, even the info on performance considerations is nothing but a bunch rule-of-thumb-style recommendations). Insights and pointers are greatly appreciated, a comparison to Solaris' ZFS de-duplication efficiency for a set of scenarios would be wonderful.

    Read the article

  • Fast block placement algorithm, advice needed?

    - by James Morris
    I need to emulate the window placement strategy of the Fluxbox window manager. As a rough guide, visualize randomly sized windows filling up the screen one at a time, where the rough size of each results in an average of 80 windows on screen without any window overlapping another. It is important to note that windows will close and the space that closed windows previously occupied becomes available once more for the placement of new windows. The window placement strategy has three binary options: Windows build horizontal rows or vertical columns (potentially) Windows are placed from left to right or right to left Windows are placed from top to bottom or bottom to top Why is the algorithm a problem? It needs to operate to the deadlines of a real time thread in an audio application. At this moment I am only concerned with getting a fast algorithm, don't concern yourself over the implications of real time threads and all the hurdles in programming that that brings. So far I have two choices which I have built loose prototypes for: 1) A port of the Fluxbox placement algorithm into my code. The problem with this is, the client (my program) gets kicked out of the audio server (JACK) when I try placing the worst case scenario of 256 blocks using the algorithm. This algorithm performs over 14000 full (linear) scans of the list of blocks already placed when placing the 256th window. 2) My alternative approach. Only partially implemented, this approach uses a data structure for each area of rectangular free unused space (the list of windows can be entirely separate, and is not required for testing of this algorithm). The data structure acts as a node in a doubly linked list (with sorted insertion), as well as containing the coordinates of the top-left corner, and the width and height. Furthermore, each block data structure also contains four links which connect to each immediately adjacent (touching) block on each of the four sides. IMPORTANT RULE: Each block may only touch with one block per side. The problem with this approach is, it's very complex. I have implemented the straightforward cases where 1) space is removed from one corner of a block, 2) splitting neighbouring blocks so that the IMPORTANT RULE is adhered to. The less straightforward case, where the space to be removed can only be found within a column or row of boxes, is only partially implemented - if one of the blocks to be removed is an exact fit for width (ie column) or height (ie row) then problems occur. And don't even mention the fact this only checks columns one box wide, and rows one box tall. I've implemented this algorithm in C - the language I am using for this project (I've not used C++ for a few years and am uncomfortable using it after having focused all my attention to C development, it's a hobby). The implementation is 700+ lines of code (including plenty of blank lines, brace lines, comments etc). The implementation only works for the horizontal-rows + left-right + top-bottom placement strategy. So I've either got to add some way of making this +700 lines of code work for the other 7 placement strategy options, or I'm going to have to duplicate those +700 lines of code for the other seven options. Neither of these is attractive, the first, because the existing code is complex enough, the second, because of bloat. The algorithm is not even at a stage where I can use it in the real time worst case scenario, because of missing functionality, so I still don't know if it actually performs better or worse than the first approach. What else is there? I've skimmed over and discounted: Bin Packing algorithms: their emphasis on optimal fit does not match the requirements of this algorithm. Recursive Bisection Placement algorithms: sounds promising, but these are for circuit design. Their emphasis is optimal wire length. Both of these, especially the latter, all elements to be placed/packs are known before the algorithm begins. I need an algorithm which works accumulatively with what it is given to do when it is told to do it. What are your thoughts on this? How would you approach it? What other algorithms should I look at? Or even what concepts should I research seeing as I've not studied computer science/software engineering? Please ask questions in comments if further information is needed. [edit] If it makes any difference, the units for the coordinates will not be pixels. The units are unimportant, but the grid where windows/blocks/whatever can be placed will be 127 x 127 units.

    Read the article

  • C# graph library to be used from Unity3D

    - by Heisenbug
    I'm looking for a C# graph library to be used inside Unity3D script. I'm not looking for pathfinding libraries (I know there are good one available). I could consider using a path finding library only if it gives me direct access to underlying graph classes (I need nodes and edges, and classic graph algorithms) The only product I've seen that seems intersting is QuickGraph. I have the following question: Is it possible to use QuickGraph inside Unity3d? If yes. Is this a good idea? Does it have any drawbacks? Is it a quite fast and well written/supported library? Does anyone has ever used it? Are available other C# graph library that can be easily integrated in Unity3d?

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Is the “jQuery programming style” a kind of Reactive programming?

    - by Peter Krauss
    jQuery is a Javascript library and framework, but when we are programming with jQuery into DOM problems/solutions, we can practice a style quite different of programming... We can read about jQuery at Wikipedia, The set of jQuery core features — DOM element selections, traversal and manipulation —, enabled by its selector engine (...), created a new "programming style", fusing algorithms and DOM-data-structures This question is similar to the "subquestion-3" of this question but not so generic. The focus here is about this new kind of "programming style"... So, the question: Is the "jQuery programming style in DOM context" a new paradign? Or it is more one example of reactive programming (not "cell-oriented" but "DOM-node oriented") or another one? We have no "standard taxonomy of paradigms", so, please, in your answer, indicate also your "best choice for Wikipedia Paradign". Example: if you understand that "jQuery programming DOM" is like "awk filtering data", your choice can be event-driven.

    Read the article

  • ETPM/OUAF 2.3.1 Framework Overview - Session 1

    - by MHundal
    A number of sessions are planned to review the ETPM (OUAF) 2.3.1 Framework.  These sessions will include an overview of the Navigation, Portals, Zones, Business Objects, Business Services, Algorithms, Scripts, etc.. Session 1 includes an overview of the standards in ETPM 2.3.1 Navigation and changes in the configuration and options for Portals and Zones.  Session 1 starts to look at the configuration of Business Objects.  The next session will provide an in-depth explanation for the configuration of Business Objects.  Click on the link below for Session 1 (45 minutes) that provides an overview of the changes in Navigation, general standards, changes in Portals/Zones configuration and a high-level overview of Business Objects. To stream the recording:   https://oracletalk.webex.com/oracletalk/ldr.php?AT=pb&SP=MC&rID=70387157&rKey=f791a7285affeb25 To download the recording: https://oracletalk.webex.com/oracletalk/lsr.php?AT=dw&SP=MC&rID=70387157&rKey=0be61590fd72d20e For additional questions, please contact [email protected].

    Read the article

  • NET Math Libraries

    - by JoshReuben
    NET Mathematical Libraries   .NET Builder for Matlab The MathWorks Inc. - http://www.mathworks.com/products/netbuilder/ MATLAB Builder NE generates MATLAB based .NET and COM components royalty-free deployment creates the components by encrypting MATLAB functions and generating either a .NET or COM wrapper around them. .NET/Link for Mathematica www.wolfram.com a product that 2-way integrates Mathematica and Microsoft's .NET platform call .NET from Mathematica - use arbitrary .NET types directly from the Mathematica language. use and control the Mathematica kernel from a .NET program. turns Mathematica into a scripting shell to leverage the computational services of Mathematica. write custom front ends for Mathematica or use Mathematica as a computational engine for another program comes with full source code. Leverages MathLink - a Wolfram Research's protocol for sending data and commands back and forth between Mathematica and other programs. .NET/Link abstracts the low-level details of the MathLink C API. Extreme Optimization http://www.extremeoptimization.com/ a collection of general-purpose mathematical and statistical classes built for the.NET framework. It combines a math library, a vector and matrix library, and a statistics library in one package. download the trial of version 4.0 to try it out. Multi-core ready - Full support for Task Parallel Library features including cancellation. Broad base of algorithms covering a wide range of numerical techniques, including: linear algebra (BLAS and LAPACK routines), numerical analysis (integration and differentiation), equation solvers. Mathematics leverages parallelism using .NET 4.0's Task Parallel Library. Basic math: Complex numbers, 'special functions' like Gamma and Bessel functions, numerical differentiation. Solving equations: Solve equations in one variable, or solve systems of linear or nonlinear equations. Curve fitting: Linear and nonlinear curve fitting, cubic splines, polynomials, orthogonal polynomials. Optimization: find the minimum or maximum of a function in one or more variables, linear programming and mixed integer programming. Numerical integration: Compute integrals over finite or infinite intervals, over 2D and higher dimensional regions. Integrate systems of ordinary differential equations (ODE's). Fast Fourier Transforms: 1D and 2D FFT's using managed or fast native code (32 and 64 bit) BigInteger, BigRational, and BigFloat: Perform operations with arbitrary precision. Vector and Matrix Library Real and complex vectors and matrices. Single and double precision for elements. Structured matrix types: including triangular, symmetrical and band matrices. Sparse matrices. Matrix factorizations: LU decomposition, QR decomposition, singular value decomposition, Cholesky decomposition, eigenvalue decomposition. Portability and performance: Calculations can be done in 100% managed code, or in hand-optimized processor-specific native code (32 and 64 bit). Statistics Data manipulation: Sort and filter data, process missing values, remove outliers, etc. Supports .NET data binding. Statistical Models: Simple, multiple, nonlinear, logistic, Poisson regression. Generalized Linear Models. One and two-way ANOVA. Hypothesis Tests: 12 14 hypothesis tests, including the z-test, t-test, F-test, runs test, and more advanced tests, such as the Anderson-Darling test for normality, one and two-sample Kolmogorov-Smirnov test, and Levene's test for homogeneity of variances. Multivariate Statistics: K-means cluster analysis, hierarchical cluster analysis, principal component analysis (PCA), multivariate probability distributions. Statistical Distributions: 25 29 continuous and discrete statistical distributions, including uniform, Poisson, normal, lognormal, Weibull and Gumbel (extreme value) distributions. Random numbers: Random variates from any distribution, 4 high-quality random number generators, low discrepancy sequences, shufflers. New in version 4.0 (November, 2010) Support for .NET Framework Version 4.0 and Visual Studio 2010 TPL Parallellized – multicore ready sparse linear program solver - can solve problems with more than 1 million variables. Mixed integer linear programming using a branch and bound algorithm. special functions: hypergeometric, Riemann zeta, elliptic integrals, Frensel functions, Dawson's integral. Full set of window functions for FFT's. Product  Price Update subscription Single Developer License $999  $399  Team License (3 developers) $1999  $799  Department License (8 developers) $3999  $1599  Site License (Unlimited developers in one physical location) $7999  $3199    NMath http://www.centerspace.net .NET math and statistics libraries matrix and vector classes random number generators Fast Fourier Transforms (FFTs) numerical integration linear programming linear regression curve and surface fitting optimization hypothesis tests analysis of variance (ANOVA) probability distributions principal component analysis cluster analysis built on the Intel Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). Product  Price Update subscription Single Developer License $1295 $388 Team License (5 developers) $5180 $1554   DotNumerics http://www.dotnumerics.com/NumericalLibraries/Default.aspx free DotNumerics is a website dedicated to numerical computing for .NET that includes a C# Numerical Library for .NET containing algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, ports from Fortran to C# of LAPACK, BLAS and EISPACK, respectively. Linear Algebra (CSLapack, CSBlas and CSEispack). Systems of linear equations, eigenvalue problems, least-squares solutions of linear systems and singular value problems. Differential Equations. Initial-value problem for nonstiff and stiff ordinary differential equations ODEs (explicit Runge-Kutta, implicit Runge-Kutta, Gear's BDF and Adams-Moulton). Optimization. Unconstrained and bounded constrained optimization of multivariate functions (L-BFGS-B, Truncated Newton and Simplex methods).   Math.NET Numerics http://numerics.mathdotnet.com/ free an open source numerical library - includes special functions, linear algebra, probability models, random numbers, interpolation, integral transforms. A merger of dnAnalytics with Math.NET Iridium in addition to a purely managed implementation will also support native hardware optimization. constants & special functions complex type support real and complex, dense and sparse linear algebra (with LU, QR, eigenvalues, ... decompositions) non-uniform probability distributions, multivariate distributions, sample generation alternative uniform random number generators descriptive statistics, including order statistics various interpolation methods, including barycentric approaches and splines numerical function integration (quadrature) routines integral transforms, like fourier transform (FFT) with arbitrary lengths support, and hartley spectral-space aware sequence manipulation (signal processing) combinatorics, polynomials, quaternions, basic number theory. parallelized where appropriate, to leverage multi-core and multi-processor systems fully managed or (if available) using native libraries (Intel MKL, ACMS, CUDA, FFTW) provides a native facade for F# developers

    Read the article

  • Checking out systems programming, what should I learn, using what resources?

    - by Anto
    I have done some hobby application development, but now I'm interested in checking out systems programming (mainly operating systems, Linux kernel etc.). I know low-level languages like C, and I know minimal amounts of x86 Assembly (should I improve on it?). What resources/books/websites/projects etc. do you recommend for one to get started with systems programming and what topics are important? Note that I know close to nothing about the subject, so whatever resources you suggest should be introductory resources. I still know what the subject is and what it includes etc., but I have not done systems programming before (but some application development, as previously noted, and I'm familiar with a bunch of programming languages as well as software engineering in general and algorithms, data structures etc.).

    Read the article

  • Best practices when creating/modeling databases?

    - by Oscar Mederos
    I learned at the University some steps to model a database: Model the problem using the Extended Entity-Relationship Model. Extract the functional dependencies Apply some algorithms to normalize the database (3NF or Boyce-Codd) Create the database I'm studying Computer Science and since I received that course I'm wondering if I always need to do those steps when creating a complex database for an specified problem. For example, do PHP / .NET / .. programmers always do that? or there are some tools to simplify that process, maybe using another way of represent the problem instead of the EERM?

    Read the article

  • What to do if you're burnt out?

    - by rsteckly
    Hi, I'm starting to get really frustrated with ASP.NET. It seems as if much of my time is spent learning abstractions over problems, then having to kick into overdrive when those abstractions (surprise!) have unexpected behavior. It seems as if I spend so much time just fixing those issues because they usually are UI related and therefore require integration testing that I spend very little time programming any kind of meaningful logic. I don't know if it is ASP or if it is programming. I just feel as if I'm getting paid, doing the work but really wasting time. On the other hand, I have fantasies about console programs and actually using algorithms. What is wrong with me? Why can't I force myself to churn through this ASP stuff more?

    Read the article

  • Data Mining Resources

    - by Dejan Sarka
    There are many different types of analyses, each one with its own pros and cons. Relational reports have a predefined structure, and end users cannot change it. They are simple to use for end users. Reports can use real-time data and snapshots of data to show the state of a report at specific points in time. One of the drawbacks is that report authoring is limited to IT pros and advanced users. Any kind of dynamic restructuring is very limited. If real-time data is used for a report, the report has a negative impact on the performance of the source system. Processing of the reports might be slow because the data comes from relational database management systems, which are not optimized for reporting only. If you create a semantic model of your data, your end users can create ad-hoc report structures. However, the development is more complex because a developer is needed to create these semantic models. For OLAP, you typically use specialized database management systems. You get lightning speed of analyses. End users can use rich and thin clients to interactively change the structure of the report. Typically, they do it graphically. However, the development of an OLAP system is many times quite complex. It involves the preparation and maintenance of an enterprise data warehouse and OLAP cubes. In order to exploit the possibility of real-time restructuring of reports, the users must be both active and educated. The data is usually stale, as it is loaded into data warehouses and OLAP cubes with a scheduled process. With data mining, a structure is not selected in advance; it searches for the structure. As a result, data mining can give you the most valuable results because you can discover patterns you did not expect. A data mining model structure is limited only by the attributes that you use to train the model. One of the drawbacks is that a lot of knowledge is needed for a successful data mining project. End users have to understand the results. Subject matter experts and IT professionals need to understand business problem thoroughly. The development might be sometimes even more complex than the development of OLAP cubes. Each type of analysis has its own place in an enterprise system. SQL Server has tools for all kinds of analyses. However, data mining is the most advanced way of analyzing the data; this is the “I” in BI. In order to get the most out of it, you need to learn quite a lot. In this blog post, I am gathering together resources for learning, including forthcoming events. Books Multiple authors: SQL Server MVP Deep Dives – I wrote an introductory data mining chapter there. Erik Veerman, Teo Lachev and Dejan Sarka: MCTS Self-Paced Training Kit (Exam 70-448): Microsoft SQL Server 2008 - Business Intelligence Development and Maintenance – you can find a good overview of a complete BI solution, including data mining, in this book. Jamie MacLennan, ZhaoHui Tang, and Bogdan Crivat: Data Mining with Microsoft SQL Server 2008 – can’t miss this book if you want to mine your data with SQL Server tools. Michael Berry, Gordon Linoff: Mastering Data Mining: The Art and Science of Customer Relationship Management – data mining from both, business and technical perspective. Dorian Pyle: Data Preparation for Data Mining – an in-depth book about data preparation. Thomas and Ronald Wonnacott: Introductory Statistics – if you thought that you could get away without statistics, then you are not serious about data mining. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques – in-depth explanation of the most popular data mining algorithms. Michael Berry and Gordon Linoff: Data Mining Techniques – another book that explains data mining algorithms, more fro a business perspective. Paolo Guidici: Applied Data Mining – very mathematical book, only if you enjoy statistics and mathematics in general. Forthcoming presentations I am presenting two data mining related sessions during the PASS Summit in Charlotte, NC: Wednesday, October 16th, 2013 - Fraud Detection: Notes from the Field – I am showing how to use data mining for a specific business problem. The presentation is based on real-life projects. Friday, October 18th: Excel 2013 Advanced Analytics – I am focusing on Excel Data Mining Add-ins, and how to use them together with Power Pivot and other add-ins. This is the most you can get out of Excel. Sinergija 2013, Belgrade, Serbia Tuesday, October 22nd: Excel 2013 Analytics to the Max – another presentation focusing on the most advanced analytics you can get in Excel. SQL Rally Amsterdam, Netherlands Thursday, November 7th: Advanced Analytics in Excel 2013 – and again I am presenting about data mining in Excel. Why three different titles for the same presentation? I don’t know, I guess I forgot the name I proposed every time right after I sent the proposal. Courses Data Mining with SQL Server 2012 – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. OK, now you know: no more excuses, start learning data mining, get the most out of your data

    Read the article

  • gpgpu vs. physX for physics simulation

    - by notabene
    Hello First theoretical question. What is better (faster)? Develop your own gpgpu techniques for physics simulation (cloth, fluids, colisions...) or to use PhysX? (If i say develop i mean implement existing algorithms like navier-strokes...) I don't care about what will take more time to develop. What will be faster for end user? As i understand that physx are accelerated through PPU units in gpu, does it mean that physical simulation can run in paralel with rastarization? Are PPUs different units than unified shader units used as vertex/geometry/pixel/gpgpu shader units? And little non-theoretical question: Is physx able to do sofisticated simulation equal to lets say Autodesk's Maya fluid solver? Are there any c++ gpu accelerated physics frameworks to try? (I am interested in both physx and gpgpu, commercial engines are ok too).

    Read the article

  • What should web programmers know about cryptography?

    - by davidhaskins
    Should programmers who build websites/web applications understand cryptography? I have no idea how most crypographic algorithms work, and I really don't understand the differences between md5/des/aes/etc. Have any of you found any need for an in-depth understanding of cryptography? I haven't needed it, but I wonder if perhaps I'm missing something. I've used salt + md5 hash to encrypt passwords, and I tell webservers to use SSL. Beyond that, I can't say I've used much else, nor can I say with any certainty how secure these methods are. I only use them because other people claim they are safe. Have you ever found a need to use cryptography in web programming aside from these two simple examples?

    Read the article

  • Best practices when creating/modeling databases?

    - by Oscar Mederos
    Hello, I learned at the University some steps to model a database: Model the problem using the Extended Entity-Relationship Model. Extract the functional dependencies Apply some algorithms to normalize the database (3NF or Boyce-Codd) Create the database I'm studying Computer Science and since I received that course I'm wondering if I always need to do those steps when creating a complex database for an specified problem. For example, do PHP / .NET / .. programmers always do that? or there are some tools to simplify that process, maybe using another way of represent the problem instead of the EERM?

    Read the article

  • Are there advantages for using recursion over iteration - other than sometimes readability and elegance?

    - by Prog
    I am about to make two assumptions. Please correct me if they're wrong: There isn't a recursive algorithm without an iterative equivalent. Iteration is always cheaper performance-wise than recursion (at least in general purpose languages such as Java, C++, Python etc.). If it's true that recursion is always more costly than iteration, and that it can always be replaced with an iterative algorithm (in languages that allow it) - than I think that the two remaining reasons to use recursion are: elegance and readability. Some algorithms are expressed more elegantly with recursion. E.g. scanning a binary tree. However apart from that, are there any reasons to use recursion over iteration? Does recursion have advantages over iteration other than sometimes elegance and readability?

    Read the article

  • Collision library for bullet hell in Python

    - by darkfeline
    I am making a bullet hell game in Python and am looking for a suitable collision library, taking the following into consideration: The library should do 2D polygon collision. It should be very fast. As a bullet hell game, I expect to do collision checks between hundreds, likely thousands of objects every frame at a consistent 60fps. Good documentation Permissive license (like MIT, not GPL) I am also considering writing my own library in C/C++ and wrapping with python ctypes in the event that no such library exists, though I do not have experience with collision detection algorithms, so I am not sure if this would be more trouble than it's worth. Could someone provide some guidance on this matter?

    Read the article

  • ETPM/OUAF 2.3.1 Framework Overview - Session 2

    - by Rick Finley
    A number of sessions are planned to review the ETPM (OUAF) 2.3.1 Framework.  These sessions will include an overview of the Navigation, Portals, Zones, Business Objects, Business Services, Algorithms, Scripts, etc.. Session 2 includes a more in depth discusion of Business Objects (BO).  Session 2 specifically covers BO Schema, BO Options, and BO inheritance in more depth.  Click on the link below for Session 2 (52 minutes). To stream the recording:   https://oracletalk.webex.com/oracletalk/ldr.php?AT=pb&SP=MC&rID=70624122&rKey=8a16e59ed3736f1c To download the recording: https://oracletalk.webex.com/oracletalk/lsr.php?AT=dw&SP=MC&rID=70624122&rKey=140a83f63b8fa22a For additional questions, please contact [email protected].

    Read the article

  • Is running "milli"-benchmarks a good idea?

    - by Konstantin Weitz
    I just came across the Caliper project and it looks very nice. Reading the introduction to microbenchmarks, one gets the feeling that the developers would not suggest to use the framework if the benchmark takes longer than a second or so. I looked at the code and it looks like a RuntimeOutOfRangeException is actually thrown if a scenario takes longer than 10s to execute. Could you explain to me what the problems are with running larger benchmarks? My motivation for using Caliper was to compare two join-algorithm implementations. Those will definitely run for quite some time and will do some disk IO, yet running the entire database would make it hard to do the comparison, because the configuration of the algorithms and the visualization of the results would be a pain.

    Read the article

  • How will Quantum computing affect us?

    - by CiscoIPPhone
    I am interested in quantum computing, but have not studied it in depth. Things like Shor's algorithm intrigue me. My question is: If quantum computing took off in a big way (i.e. functional quantum home computers were available) how would it affect us programmers and software developers? Would we have to learn how to make use of superposition and entanglement - would it change how we write algorithms? Would more mathematical programmers be required/would we need new skills? Would it change nothing at all from our perspective (i.e. would it be abstracted)? Your opinion is welcome.

    Read the article

  • How are Programing Language Designed?

    - by Anteater7171
    After doing a bit of programing, I've become quite curious on language design itself. I'm still a novice (I've been doing it for about a year), so the majority of my code pertains to only two fields (GUI design in Python and basic algorithms in C/C++). I have become intrigued with how the actual languages themselves are written. I mean this in both senses. Such as how it was literally written (ie, what language the language was written in). As well as various features like white spacing (Python) or object orientation (C++ and Python). Where would one start learning how to write a language? What are some of the fundamentals of language design, things that would make it a "complete" language?

    Read the article

  • What technologies are used for Game development now days?

    - by Monika Michael
    Whenever I ask a question about game development in an online forum I always get suggestions like learning line drawing algorithms, bit level image manipulation and video decompression etc. However looking at games like God of War 3, I find it hard to believe that these games could be developed using such low level techniques. The sheer awesomeness of such games defy any comprehensible(for me) programming methodology. Besides the gaming hardware is really a monster now days. So it stands to reason that the developers would work at a higher level of abstraction. What is the latest development methodology in the gaming industry? How is it that a team of 30-35 developers (of which most is management and marketing fluff) able to make such mind boggling games? If the question seems too general could you explain the architecture of God of War 3? Or how you would go about producing a clone? That I think should be objectively answerable.

    Read the article

  • AI Game Programming : Bayesian Networks, how to make efficient?

    - by Mahbubur R Aaman
    We know that AI is one of the most important part of Game Programming. Bayesian networks is one of the core part of AI at Game Programming. Bayesian networks are graphs that compactly represent the relationship between random variables for a given problem. These graphs aid in performing reasoning or decision making in the face of uncertainty. Here me, utilizing the monte carlo method and genetic algorithms. But tooks much time and sometimes crashes due to memory. Is there any way to implement efficiently?

    Read the article

  • Design pattern for isomorphic trees

    - by Peregring-lk
    I want to create a data structure to work with isomorphic tree. I don't search for a "algorithms" or methods to check if two or more trees are isomorphic each other. Just to create various trees with the same structure. Example: 2 - - - - - - - 'a' - - - - - - - 3.5 / \ / \ / \ 3 3 'f' 'y' 1.0 3.1 / \ / \ / \ 4 7 'e' 'f' 2.3 7.7 The first "layer" or tree is the "natural tree" (a tree with natural numbers), the second layer is the "character tree" and the third one is the "float tree". The data structure has a method or iterator to traverse the tree and to make diferent operations with its values. These operations could change the value of nodes, but never its structure (first I create the structure and then I configure the tree with its diferent layers). In case of that I add a new node, this would be applied to each layer. Which known design pattern fits with this description or is related with it?

    Read the article

  • How to prepare for the GRE Computer Science Subject Test?

    - by Maddy.Shik
    How do I prepare for the GRE Computer Science subject test? Are there any standard text books I should follow? I want to score as competitively as possible. What are some good references? Is there anything that top schools like CMU, MIT, and Standford would expect? For example, Cormen et al is considered very good for algorithms. Please tell me standard text books for each subject covered by the test, like Computer Architecture, Database Design, Operating Systems, Discrete Maths etc.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >