Search Results

Search found 22499 results on 900 pages for 'game level'.

Page 319/900 | < Previous Page | 315 316 317 318 319 320 321 322 323 324 325 326  | Next Page >

  • What is the format of DXGI_FORMAT_D24_UNORM_S8_UINT?

    - by bobobobo
    I'm trying to read the values in a depth texture of type DXGI_FORMAT_D24_UNORM_S8_UINT. I know this means "24 bits for depth, 8 bits for stencil" "A 32-bit z-buffer format that supports 24 bits for depth and 8 bits for stencil.", but how do you interpret those 24 bits? It's clearly not going to be a 32-bit int, and it's not going to be a 32-bit float. If it is an integer value, how "far away" is a value of "1" in the depth texture?

    Read the article

  • Cool examples of procedural pixel shader effects?

    - by Robert Fraser
    What are some good examples of procedural/screen-space pixel shader effects? No code necessary; just looking for inspiration. In particular, I'm looking for effects that are not dependent on geometry or the rest of the scene (would look okay rendered alone on a quad) and are not image processing (don't require a "base image", though they can incorporate textures). Multi-pass or single-pass is fine. Screenshots or videos would be ideal, but ideas work too. Here are a few examples of what I'm looking for (all from the RenderMonkey samples): PS - I'm aware of this question; I'm not asking for a source of actual shader implementations but instead for some inspirational ideas -- and the ones at the NVIDIA Shader Library mostly require a scene or are image processing effects. EDIT: this is an open-ended question and I wish there was a good way to split the bounty. I'll award the rep to the best answer on the last day.

    Read the article

  • Maya .IFF plugins for Gimp

    - by Kara Marfia
    Maya's preferred format for saving off a UV Snapshot is its own .IFF format, so I was hoping to find a plugin allowing Gimp 2 (Windows) to read it. I've found plenty of plugins for different linux distros, but none are win-friendly (that I can discern - admittedly I'm no whiz with Gimp). Does anyone know of one? Alternately, .tiff seems to work just fine, so if there's no good reason to bother fiddling with IFFs, I'd appreciate the input there, too. (sorry if this isn't on-topic)

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • My grid based collision detection is slow

    - by Fibericon
    Something about my implementation of a basic 2x4 grid for collision detection is slow - so slow in fact, that it's actually faster to simply check every bullet from every enemy to see if the BoundingSphere intersects with that of my ship. It becomes noticeably slow when I have approximately 1000 bullets on the screen (36 enemies shooting 3 bullets every .5 seconds). By commenting it out bit by bit, I've determined that the code used to add them to the grid is what's slowest. Here's how I add them to the grid: for (int i = 0; i < enemy[x].gun.NumBullets; i++) { if (enemy[x].gun.bulletList[i].isActive) { enemy[x].gun.bulletList[i].Update(timeDelta); int bulletPosition = 0; if (enemy[x].gun.bulletList[i].position.Y < 0) { bulletPosition = (int)Math.Floor((enemy[x].gun.bulletList[i].position.X + 900) / 450); } else { bulletPosition = (int)Math.Floor((enemy[x].gun.bulletList[i].position.X + 900) / 450) + 4; } GridItem bulletItem = new GridItem(); bulletItem.index = i; bulletItem.type = 5; bulletItem.parentIndex = x; if (bulletPosition > -1 && bulletPosition < 8) { if (!grid[bulletPosition].Contains(bulletItem)) { for (int j = 0; j < grid.Length; j++) { grid[j].Remove(bulletItem); } grid[bulletPosition].Add(bulletItem); } } } } And here's how I check if it collides with the ship: if (ship.isActive && !ship.invincible) { BoundingSphere shipSphere = new BoundingSphere( ship.Position, ship.Model.Meshes[0].BoundingSphere.Radius * 9.0f); for (int i = 0; i < grid.Length; i++) { if (grid[i].Contains(shipItem)) { for (int j = 0; j < grid[i].Count; j++) { //Other collision types omitted else if (grid[i][j].type == 5) { if (enemy[grid[i][j].parentIndex].gun.bulletList[grid[i][j].index].isActive) { BoundingSphere bulletSphere = new BoundingSphere(enemy[grid[i][j].parentIndex].gun.bulletList[grid[i][j].index].position, enemy[grid[i][j].parentIndex].gun.bulletModel.Meshes[0].BoundingSphere.Radius); if (shipSphere.Intersects(bulletSphere)) { ship.health -= enemy[grid[i][j].parentIndex].gun.damage; enemy[grid[i][j].parentIndex].gun.bulletList[grid[i][j].index].isActive = false; grid[i].RemoveAt(j); break; //no need to check other bullets } } else { grid[i].RemoveAt(j); } } What am I doing wrong here? I thought a grid implementation would be faster than checking each one.

    Read the article

  • Calculating instantaneous speed and acceleration for a simple Car software model

    - by Dylan
    I am trying to model a speedometer and tachometer for a simple software model of a car dashboard. I want this to be relatively simple, so for my purposes I won't likely simulate variables such as drag (or, assume that drag is a constant). But I would like to know the general formulas for: 1) Calculating the RPM, depending on a position of a graphical slider representing the accelerator. 2) Using this information to find the instantaneous speed (or, magnitude of instantaneous velocity?). I am not sure, in the case of 2), what other independent variables I need to consider. Do I need to consider the frequency of rotation of the wheels (assuming a fixed radius), in addition to the RPM? If anyone can give me a rough explanation plus relevant formulas, or alternatively direct me to other trusted resources online (I have had a hard time sifting through info and determining the accuracy), it would be much appreciated.

    Read the article

  • Why am I not getting an sRGB default framebuffer?

    - by Aaron Rotenberg
    I'm trying to make my OpenGL Haskell program gamma correct by making appropriate use of sRGB framebuffers and textures, but I'm running into issues making the default framebuffer sRGB. Consider the following Haskell program, compiled for 32-bit Windows using GHC and linked against 32-bit freeglut: import Foreign.Marshal.Alloc(alloca) import Foreign.Ptr(Ptr) import Foreign.Storable(Storable, peek) import Graphics.Rendering.OpenGL.Raw import qualified Graphics.UI.GLUT as GLUT import Graphics.UI.GLUT(($=)) main :: IO () main = do (_progName, _args) <- GLUT.getArgsAndInitialize GLUT.initialDisplayMode $= [GLUT.SRGBMode] _window <- GLUT.createWindow "sRGB Test" -- To prove that I actually have freeglut working correctly. -- This will fail at runtime under classic GLUT. GLUT.closeCallback $= Just (return ()) glEnable gl_FRAMEBUFFER_SRGB colorEncoding <- allocaOut $ glGetFramebufferAttachmentParameteriv gl_FRAMEBUFFER gl_FRONT_LEFT gl_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING print colorEncoding allocaOut :: Storable a => (Ptr a -> IO b) -> IO a allocaOut f = alloca $ \ptr -> do f ptr peek ptr On my desktop (Windows 8 64-bit with a GeForce GTX 760 graphics card) this program outputs 9729, a.k.a. gl_LINEAR, indicating that the default framebuffer is using linear color space, even though I explicitly requested an sRGB window. This is reflected in the rendering results of the actual program I'm trying to write - everything looks washed out because my linear color values aren't being converted to sRGB before being written to the framebuffer. On the other hand, on my laptop (Windows 7 64-bit with an Intel graphics chip), the program prints 0 (huh?) and I get an sRGB default framebuffer by default whether I request one or not! And on both machines, if I manually create a non-default framebuffer bound to an sRGB texture, the program correctly prints 35904, a.k.a. gl_SRGB. Why am I getting different results on different hardware? Am I doing something wrong? How can I get an sRGB framebuffer consistently on all hardware and target OSes?

    Read the article

  • Does Unity's "Transparent Bumped Specular" translate to "semi-shiny must be semi-transparent"?

    - by Shivan Dragon
    Unity's documentation for the "Transparent Bumped Specular" shader/material-type is simply a concatenation of each of the descriptions for its Transparent and Specular Shaders (and also Bumped, but that doesn't apply to the question): Transparent Properties This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha channel, the object will appear completely opaque. (...) Specular Properties (...) Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas will be full specular reflection. To me this translates to: I have a mesh representig a car tire The texture need to be very shiny on the rims parts, and almost not shiny at all for the rubber parts Also since the rim is really complex, (with like cut-out decoretions and such), I will not build that into the mesh, but fake it with transparency in the texture I can't do all this using Unity's "Transparent Bumped Specular" shader, because the "rubber" part of the texture will become semi transparent due to me painting the alpha channel dark-grey (because I want it to also be less shiny). Is this correct? If not, how can I make this work?

    Read the article

  • Corona SDK: Animation takes a long time to play after "prepare" step

    - by Michael Taufen
    First off, I'm using the current publicly available build, version 2011.704 I'm building a platformer, and have a character that runs along and jumps when the screen is tapped. While jumping, the animation code has him assume a svelte jumping pose, and upon the detection of a collision with the ground, he returns to running. All of this happens. The problem is that there is this strange gap of time, about 1/2 a second by the feel of it, where my character sits on the first frame of the run animation after landing, before it actually starts playing. This leads me to believe that the problem is somewhere between the "prepare" step of loading up a sprite set's animation sequence and the "play" step. Thanks in advance for any help :). My code for when my character lands is as follows: local function collisionHandler ( event ) if (event.object1.myName == "character") and (event.object2.type == "terrain") then inAir = false characterInstance:prepare( "run" ) -- TODO: time between prepare and play is curiously long... characterInstance:play() end end

    Read the article

  • Implementing Light Volume Front Faces

    - by cubrman
    I recently read an article about light indexed deferred rendering from here: http://code.google.com/p/lightindexed-deferredrender/ It explains its ideas in a clear way, but there was one point that I failed to understand. It in fact is one of the most interesting ones, as it explains how to implement transparency with this approach: Typically when rendering light volumes in deferred rendering, only surfaces that intersect the light volume are marked and lit. This is generally accomplished by a “shadow volume like” technique of rendering back faces – incrementing stencil where depth is greater than – then rendering front faces and only accepting when depth is less than and stencil is not zero. By only rendering front faces where depth is less than, all future lookups by fragments in the forward rendering pass will get all possible lights that could hit the fragment. Can anyone explain how exactly you need to render only front faces? Another question is why do you need the front faces at all? Why can't we simply render all the lights and store the ones that overlap at this pixel in a texture? Does this approach serves as a cut-off plane to discard lights blocked by opaque geometry?

    Read the article

  • GLM Velocity Vectors - Basic Maths to Simulate Steering

    - by Reanimation
    UPDATE - Code updated below but still need help adjusting my math. I have a cube rendered on the screen which represents a car (or similar). Using Projection/Model matrices and Glm I am able to move it back and fourth along the axes and rotate it left or right. I'm having trouble with the vector mathematics to make the cube move forwards no matter which direction it's current orientation is. (ie. if I would like, if it's rotated right 30degrees, when it's move forwards, it travels along the 30degree angle on a new axes). I hope I've explained that correctly. This is what I've managed to do so far in terms of using glm to move the cube: glm::vec3 vel; //velocity vector void renderMovingCube(){ glUseProgram(movingCubeShader.handle()); GLuint matrixLoc4MovingCube = glGetUniformLocation(movingCubeShader.handle(), "ProjectionMatrix"); glUniformMatrix4fv(matrixLoc4MovingCube, 1, GL_FALSE, &ProjectionMatrix[0][0]); glm::mat4 viewMatrixMovingCube; viewMatrixMovingCube = glm::lookAt(camOrigin, camLookingAt, camNormalXYZ); vel.x = cos(rotX); vel.y=sin(rotX); vel*=moveCube; //move cube ModelViewMatrix = glm::translate(viewMatrixMovingCube,globalPos*vel); //bring ground and cube to bottom of screen ModelViewMatrix = glm::translate(ModelViewMatrix, glm::vec3(0,-48,0)); ModelViewMatrix = glm::rotate(ModelViewMatrix, rotX, glm::vec3(0,1,0)); //manually turn glUniformMatrix4fv(glGetUniformLocation(movingCubeShader.handle(), "ModelViewMatrix"), 1, GL_FALSE, &ModelViewMatrix[0][0]); //pass matrix to shader movingCube.render(); //draw glUseProgram(0); } keyboard input: void keyboard() { char BACKWARD = keys['S']; char FORWARD = keys['W']; char ROT_LEFT = keys['A']; char ROT_RIGHT = keys['D']; if (FORWARD) //W - move forwards { globalPos += vel; //globalPos.z -= moveCube; BACKWARD = false; } if (BACKWARD)//S - move backwards { globalPos.z += moveCube; FORWARD = false; } if (ROT_LEFT)//A - turn left { rotX +=0.01f; ROT_LEFT = false; } if (ROT_RIGHT)//D - turn right { rotX -=0.01f; ROT_RIGHT = false; } Where am I going wrong with my vectors? I would like change the direction of the cube (which it does) but then move forwards in that direction.

    Read the article

  • Open GL stars are not rendering

    - by Darestium
    I doing Nehe's Open GL Lesson 9. I'm using SFML for windowing, the strange thing is no stars are rendering. #include <SFML/System.hpp> #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <iostream> void processEvents(sf::Window *app); void processInput(sf::Window *app); void renderGlScene(sf::Window *app); void init(); int loadResources(); const int NUM_OF_STARS = 50; float triRot = 0.0f; float quadRot = 0.0f; bool twinkle = false; bool tKey = false; float zoom = 15.0f; float tilt = 90.0f; float spin = 0.0f; unsigned int loop; unsigned int texture_handle[1]; typedef struct { int r, g, b; float distance; float angle; } stars; stars star[NUM_OF_STARS]; int main() { sf::Window app(sf::VideoMode(800, 600, 32), "Nehe Lesson 9"); app.UseVerticalSync(false); init(); if (loadResources() == -1) { return EXIT_FAILURE; } while (app.IsOpened()) { processEvents(&app); processInput(&app); renderGlScene(&app); app.Display(); } return EXIT_SUCCESS; } int loadResources() { sf::Image img_data; // Load Texture if (!img_data.LoadFromFile("data/images/star.bmp")) { std::cout << "Could not load data/images/star.bmp"; return -1; } // Generate 1 texture glGenTextures(1, &texture_handle[0]); // Linear filtering glBindTexture(GL_TEXTURE_2D, texture_handle[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img_data.GetWidth(), img_data.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data.GetPixelsPtr()); return 0; } void processInput(sf::Window *app) { const sf::Input& input = app->GetInput(); if (input.IsKeyDown(sf::Key::T) && !tKey) { tKey = true; twinkle = !twinkle; } if (!input.IsKeyDown(sf::Key::T)) { tKey = false; } if (input.IsKeyDown(sf::Key::Up)) { tilt -= 0.05f; } if (input.IsKeyDown(sf::Key::Down)) { tilt += 0.05f; } if (input.IsKeyDown(sf::Key::PageUp)) { zoom -= 0.02f; } if (input.IsKeyDown(sf::Key::Up)) { zoom += 0.02f; } } void init() { glClearDepth(1.f); glClearColor(0.f, 0.f, 0.f, 0.f); // Enable texturing glEnable(GL_TEXTURE_2D); //glDepthMask(GL_TRUE); // Setup a perpective projection glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.f, 1.f, 1.f, 500.f); glShadeModel(GL_SMOOTH); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glEnable(GL_BLEND); for (loop = 0; loop < NUM_OF_STARS; loop++) { star[loop].distance = (float)loop / NUM_OF_STARS * 5.0f; // Calculate distance from the centre // Give stars random rgb value star[loop].r = rand() % 256; star[loop].g = rand() % 256; star[loop].b = rand() % 256; } } void processEvents(sf::Window *app) { sf::Event event; while (app->GetEvent(event)) { if (event.Type == sf::Event::Closed) { app->Close(); } if (event.Type == sf::Event::KeyPressed && event.Key.Code == sf::Key::Escape) { app->Close(); } } } void renderGlScene(sf::Window *app) { app->SetActive(); // Clear color depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // Select texture glBindTexture(GL_TEXTURE_2D, texture_handle[0]); for (loop = 0; loop < NUM_OF_STARS; loop++) { glLoadIdentity(); // Reset The View Before We Draw Each Star glTranslatef(0.0f, 0.0f, zoom); // Zoom Into The Screen (Using The Value In 'zoom') glRotatef(tilt, 1.0f, 0.0f, 0.0f); // Tilt The View (Using The Value In 'tilt') glRotatef(star[loop].angle, 0.0f, 1.0f, 0.0f); // Rotate To The Current Stars Angle glTranslatef(star[loop].distance, 0.0f, 0.0f); // Move Forward On The X Plane glRotatef(-star[loop].angle,0.0f,1.0f,0.0f); // Cancel The Current Stars Angle glRotatef(-tilt,1.0f,0.0f,0.0f); // Cancel The Screen Tilt if (twinkle) { glColor4ub(star[(NUM_OF_STARS - loop) - 1].r, star[(NUM_OF_STARS - loop)-1].g, star[(NUM_OF_STARS - loop) - 1].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad } glRotatef(spin,0.0f,0.0f,1.0f); // Rotate The Star On The Z Axis // Assign A Color Using Bytes glColor4ub(star[loop].r, star[loop].g, star[loop].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad spin += 0.01f; // Used To Spin The Stars star[loop].angle += (float)loop / NUM_OF_STARS; // Changes The Angle Of A Star star[loop].distance -= 0.01f; // Changes The Distance Of A Star if (star[loop].distance < 0.0f) { star[loop].distance += 5.0f; // Move The Star 5 Units From The Center star[loop].r = rand() % 256; // Give It A New Red Value star[loop].g = rand() % 256; // Give It A New Green Value star[loop].b = rand() % 256; // Give It A New Blue Value } } } I've looked over the code atleast 10 times now and I can't figure out the problem. Any help would be much appreciated.

    Read the article

  • runtime error: invalid memory address or nil pointer dereference

    - by Klink
    I want to learn OpenGL 3.0 with golang. But when i try to compile some code, i get many errors. package main import ( "os" //"errors" "fmt" //gl "github.com/chsc/gogl/gl33" //"github.com/jteeuwen/glfw" "github.com/go-gl/gl" "github.com/go-gl/glfw" "runtime" "time" ) var ( width int = 640 height int = 480 ) var ( points = []float32{0.0, 0.8, -0.8, -0.8, 0.8, -0.8} ) func initScene() { gl.Init() gl.ClearColor(0.0, 0.5, 1.0, 1.0) gl.Enable(gl.CULL_FACE) gl.Viewport(0, 0, 800, 600) } func glfwInitWindowContext() { if err := glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "glfw_Init: %s\n", err) glfw.Terminate() } glfw.OpenWindowHint(glfw.FsaaSamples, 1) glfw.OpenWindowHint(glfw.WindowNoResize, 1) if err := glfw.OpenWindow(width, height, 0, 0, 0, 0, 32, 0, glfw.Windowed); err != nil { fmt.Fprintf(os.Stderr, "glfw_Window: %s\n", err) glfw.CloseWindow() } glfw.SetSwapInterval(1) glfw.SetWindowTitle("Title") } func drawScene() { for glfw.WindowParam(glfw.Opened) == 1 { gl.Clear(gl.COLOR_BUFFER_BIT) vertexShaderSrc := `#version 120 attribute vec2 coord2d; void main(void) { gl_Position = vec4(coord2d, 0.0, 1.0); }` vertexShader := gl.CreateShader(gl.VERTEX_SHADER) vertexShader.Source(vertexShaderSrc) vertexShader.Compile() fragmentShaderSrc := `#version 120 void main(void) { gl_FragColor[0] = 0.0; gl_FragColor[1] = 0.0; gl_FragColor[2] = 1.0; }` fragmentShader := gl.CreateShader(gl.FRAGMENT_SHADER) fragmentShader.Source(fragmentShaderSrc) fragmentShader.Compile() program := gl.CreateProgram() program.AttachShader(vertexShader) program.AttachShader(fragmentShader) program.Link() attribute_coord2d := program.GetAttribLocation("coord2d") program.Use() //attribute_coord2d.AttribPointer(size, typ, normalized, stride, pointer) attribute_coord2d.EnableArray() attribute_coord2d.AttribPointer(0, 3, false, 0, &(points[0])) //gl.DrawArrays(gl.TRIANGLES, 0, len(points)) gl.DrawArrays(gl.TRIANGLES, 0, 3) glfw.SwapBuffers() inputHandler() time.Sleep(100 * time.Millisecond) } } func inputHandler() { glfw.Enable(glfw.StickyKeys) if glfw.Key(glfw.KeyEsc) == glfw.KeyPress { //gl.DeleteBuffers(2, &uiVBO[0]) glfw.Terminate() } if glfw.Key(glfw.KeyF2) == glfw.KeyPress { glfw.SetWindowTitle("Title2") fmt.Println("Changed to 'Title2'") fmt.Println(len(points)) } if glfw.Key(glfw.KeyF1) == glfw.KeyPress { glfw.SetWindowTitle("Title1") fmt.Println("Changed to 'Title1'") } } func main() { runtime.LockOSThread() glfwInitWindowContext() initScene() drawScene() } And after that: panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x41bc6f74] goroutine 1 [syscall]: github.com/go-gl/gl._Cfunc_glDrawArrays(0x4, 0x7f8500000003) /tmp/go-build463568685/github.com/go-gl/gl/_obj/_cgo_defun.c:610 +0x2f github.com/go-gl/gl.DrawArrays(0x4, 0x3, 0x0, 0x45bd70) /tmp/go-build463568685/github.com/go-gl/gl/_obj/gl.cgo1.go:1922 +0x33 main.drawScene() /home/klink/Dev/Go/gogl/gopher/exper.go:85 +0x1e6 main.main() /home/klink/Dev/Go/gogl/gopher/exper.go:116 +0x27 goroutine 2 [syscall]: created by runtime.main /build/buildd/golang-1/src/pkg/runtime/proc.c:221 exit status 2

    Read the article

  • What light attenuation function does UDK use?

    - by ananamas
    I'm a big fan of the light attenuation in UDK. Traditionally I've always used the constant-linear-quadratic falloff function to control how "soft" the falloff is, which gives three values to play with. In UDK you can get similar results, but you only need to tweak one value: FalloffExponent. I'm interested in what the actual mathematical function here is. The UDK lighting reference describes it as follows: FalloffExponent: This allows you to modify the falloff of a light. The default falloff is 2. The smaller the number, the sharper the falloff and the more the brightness is maintained until the radius is reached. Does anyone know what it's doing behind the scenes?

    Read the article

  • Realistic planetary terrain generation with weights

    - by Programmdude
    I need terrain generation for a planet. The planet will be divided up into several hundred hexes, and I need it to be realistic and based on weights. I have dabbled in terrain generation before, but nothing like this. So I figure it would be a good idea to ask the community for answers, recommended articles or the like. By realistic, I mean not just random hexes, but continent shaped things with a few islands. More desert around the equator and more ice around the poles. I also have two weights I need to base it around: ice percentage and water percentage. That means that around XX% of the planet will need to be water. Does anyone have any advice or places to start? Generating arbitrary terrain is easy, but something a bit more "organic" like this seems rather difficult. It also needs to be seamless. Should be obvious since it's a planet, but no harm in pointing it out.

    Read the article

  • Lighting get darker when texture is aplied

    - by noah
    Im using OpenGL ES 1.1 for iPhone. I'm attempting to implement a skybox in my 3d world and started out by following one of Jeff Lamarches tutorials on creating textures. Heres the tutorial: iphonedevelopment.blogspot.com/2009/05/opengl-es-from-ground-up-part-6_25.html Ive successfully added the image to my 3d world but am not sure why the lighting on the other shapes has changed so much. I want the shapes to be the original color and have the image in the background. Before: https://www.dropbox.com/s/ojmb8793vj514h0/Screen%20Shot%202012-10-01%20at%205.34.44%20PM.png After: https://www.dropbox.com/s/8v6yvur8amgudia/Screen%20Shot%202012-10-01%20at%205.35.31%20PM.png Heres the init OpenGL: - (void)initOpenGLES1 { glShadeModel(GL_SMOOTH); // Enable lighting glEnable(GL_LIGHTING); // Turn the first light on glEnable(GL_LIGHT0); const GLfloat lightAmbient[] = {0.2, 0.2, 0.2, 1.0}; const GLfloat lightDiffuse[] = {0.8, 0.8, 0.8, 1.0}; const GLfloat matAmbient[] = {0.3, 0.3, 0.3, 0.5}; const GLfloat matDiffuse[] = {1.0, 1.0, 1.0, 1.0}; const GLfloat matSpecular[] = {1.0, 1.0, 1.0, 1.0}; const GLfloat lightPosition[] = {0.0, 0.0, 1.0, 0.0}; const GLfloat lightShininess = 100.0; //Configure OpenGL lighting glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, matAmbient); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, matDiffuse); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, matSpecular); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, lightShininess); glLightfv(GL_LIGHT0, GL_AMBIENT, lightAmbient); glLightfv(GL_LIGHT0, GL_DIFFUSE, lightDiffuse); glLightfv(GL_LIGHT0, GL_POSITION, lightPosition); // Define a cutoff angle glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 40.0); // Set the clear color glClearColor(0, 0, 0, 1.0f); // Projection Matrix config glMatrixMode(GL_PROJECTION); glLoadIdentity(); CGSize layerSize = self.view.layer.frame.size; // Swapped height and width for landscape mode gluPerspective(45.0f, (GLfloat)layerSize.height / (GLfloat)layerSize.width, 0.1f, 750.0f); [self initSkyBox]; // Modelview Matrix config glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // This next line is not really needed as it is the default for OpenGL ES glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_BLEND); // Enable depth testing glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDepthMask(GL_TRUE); } Heres the drawSkybox that gets called in the drawFrame method: -(void)drawSkyBox { glDisable(GL_LIGHTING); glDisable(GL_DEPTH_TEST); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); static const SSVertex3D vertices[] = { {-1.0, 1.0, -0.0}, { 1.0, 1.0, -0.0}, {-1.0, -1.0, -0.0}, { 1.0, -1.0, -0.0} }; static const SSVertex3D normals[] = { {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0} }; static const GLfloat texCoords[] = { 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.5, 0.0 }; glLoadIdentity(); glTranslatef(0.0, 0.0, -3.0); glBindTexture(GL_TEXTURE_2D, texture[0]); glVertexPointer(3, GL_FLOAT, 0, vertices); glNormalPointer(GL_FLOAT, 0, normals); glTexCoordPointer(2, GL_FLOAT, 0, texCoords); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glEnable(GL_LIGHTING); glEnable(GL_DEPTH_TEST); } Heres the init Skybox: -(void)initSkyBox { // Turn necessary features on glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_SRC_COLOR); // Bind the number of textures we need, in this case one. glGenTextures(1, &texture[0]); // create a texture obj, give unique ID glBindTexture(GL_TEXTURE_2D, texture[0]); // load our new texture name into the current texture glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); NSString *path = [[NSBundle mainBundle] pathForResource:@"space" ofType:@"jpg"]; NSData *texData = [[NSData alloc] initWithContentsOfFile:path]; UIImage *image = [[UIImage alloc] initWithData:texData]; GLuint width = CGImageGetWidth(image.CGImage); GLuint height = CGImageGetHeight(image.CGImage); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); void *imageData = malloc( height * width * 4 ); // times 4 because will write one byte for rgb and alpha CGContextRef cgContext = CGBitmapContextCreate( imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big ); // Flip the Y-axis CGContextTranslateCTM (cgContext, 0, height); CGContextScaleCTM (cgContext, 1.0, -1.0); CGColorSpaceRelease( colorSpace ); CGContextClearRect( cgContext, CGRectMake( 0, 0, width, height ) ); CGContextDrawImage( cgContext, CGRectMake( 0, 0, width, height ), image.CGImage ); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); CGContextRelease(cgContext); free(imageData); [image release]; [texData release]; } Any help is greatly appreciated.

    Read the article

  • (Quaternion based) Trouble moving foward based on model rotation

    - by ChocoMan
    Using quaternions, I'm having trouble moving my model in its facing direction. Currently the model moves can move in all cardinal directions with no problems. The problem comes when I rotate the move as it still travelling in the direction of world space. Meaning, if I'm moving forward, backward or any other direction while rotating the model, the model acts like its a figure skater spinning while traveling in the same direction. How do I update the direction of travel proper with the facing direction of the model? Rotates model on Y-axis: Yaw = pController.ThumbSticks.Right.X * MathHelper.ToRadians(speedAngleMAX); AddRotation = Quaternion.CreateFromYawPitchRoll(yaw, 0, 0); ModelLoad.MRotation *= AddRotation; MOrientation = Matrix.CreateFromQuaternion(ModelLoad.MRotation); Moves model forward: // Move Forward if (pController.IsButtonDown(Buttons.LeftThumbstickUp)) { SpeedX = (float)(Math.Sin(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; SpeedZ = (float)(Math.Cos(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; // Update model position ModelLoad._modelPos += Vector3.Forward * SpeedZ; ModelLoad._modelPos += Vector3.Left * SpeedX; }

    Read the article

  • how to implement motion blur effect?

    - by PlayerOne
    I wanted to know how one would implement this motion blur or fade effect behind the soccer ball . Here is what I was thinking . You have the balls current position and you also keep its previous position(couple of sec back). and you draw a "streak" sprite between the 2 points. I have seen this effect lots of time implemented for projects in various 2d games and wanted to know if there is a standard technique. http://i45.tinypic.com/2n24j7r.png

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • 3Ds Max is exporting model with more normals than vertices

    - by Delta
    I made a simple teapot with the "Create Standard Primitives" option and exported it as a collada file, ended up with this: < float_array id="Teapot001-POSITION-array" count="1590" < float_array id="Teapot001-Normal0-array" count="9216" For what I know there should be only one normal per vertex, am I wrong? What am I supposed to do with that much normals? Just put them on the normal buffer all at once normally?

    Read the article

  • Correct Rotation and Translation with a 4x4 matrix

    - by sFuller
    I am using a 4x4 matrix to transform verts in a shader. I multiply an identity matrix by a rotation matrix by a translation matrix. I am trying to first rotate the verts and then translate them, however in my result, it appears that the verts are being transformed and then rotated. My matrix looks something like this: m00 m01 m02 tx m10 m11 m12 ty m20 m21 m22 tz --- --- --- 1 I am not using OpenGL's fixed function pipeline, I am multiplying matrices on the client side, and uploading the matrix to a GLSL shader. If it helps, I am using my own matrix multiplication code, but I have recreated this problem using matrices on my graphing calculator, so I don't believe my matrix code has errors.. I'll include a visual aid if needed.

    Read the article

  • How to use the zoom gesture in libgdx?

    - by user3452725
    I found the example code for the GestureListener class, but I don't understand the zoom method: private float initialScale = 1; public boolean zoom (float originalDistance, float currentDistance) { float ratio = originalDistance / currentDistance; //I get this camera.zoom = initialScale * ratio; //This doesn't make sense to me because it seems like every time you pinch to zoom, it resets to the original zoom which is 1. So basically it wouldn't 'save' the zoom right? System.out.println(camera.zoom); //Prints the camera zoom return false; } Am I not interpreting this right?

    Read the article

  • Asset missing problem XNA

    - by ChocoMan
    I'm using VS2010 with XNA 4.0 and I'm trying to load an FBX model with texture on the screen. The problem I'm having is this error: Missing Asset: C:\Users\ChocoMan\Documents\Visual Studio 2010\Projects\XNAGame\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp but the actual path to the texture is C:\Users\ChocoMan\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp Also, when I linked the texture in Maya, I used the above address. Does anyone know why VS is looking for an incorrect address that doesnt exist?

    Read the article

  • XNA - Finding boundaries in isometric tilemap

    - by Yheeky
    I have an issue with my 2D isometric engine. I'm using my own 2D camera class which works with matrices and need to find the tilemaps boundaries so the user always sees the map. Currently my map size is 100x100 (with 128x128 tiles) so the calculation (e.g. for the right boundary) is: var maxX = (TileMap.MapWidth + 1) * (TileMap.TileWidth / 2) - ViewSize.X; var maxX = (100 + 1) * (128 / 2) - 1360; // = 5104 pixels. This works fine while having scale factor of 1.0f but not for any other zoom factor. When I zoom out to 0.9f the right border should be at approx. 4954. I´m using the following code for transformation but I always get a wrong value: var maxXVector = new Vector2(maxX, 0); var maxXTransformed = Vector2.Transform(maxXVector, tempTransform).X; The result is 4593. Does anyone of you have an idea what I´m during wrong? Thanks for your help! Yheeky

    Read the article

  • XNA 4: GetData from Texture2D and Set it into Texture3D with specific order

    - by cubrman
    I am trying to convert my color grading 2d lookup texture into 3d LUT. When I simply use: ColorAtlas.GetData(data); ColorAtlas3D.SetData(data); I get this: I tried building my 2d atlass horizontally but it did not helped - the data was messed up in a different way. So my question is how can I influence the order of the data I get from the 2d atlas and how can I properly pass it into my 3d atlas? Update: I know that I can GetData from a specific Rectangular area and put it into several arrays, but the result is still the same. This is what I tried: Color[] data2D = new Color[0]; for (int i = 0; i < 32; i++) { Color[] data = new Color[32 * 32]; GraphicsDevice.SetRenderTarget(null); ColorAtlas.GetData(0, new Rectangle(0, i*32, 32, 32), data, 0, data.Length); int oldLength = data2D.Length; Array.Resize<Color>(ref data2D, oldLength + data.Length); Array.Copy(data, 0, data2D, oldLength, data.Length); } ColorAtlas3D.SetData(data2D);

    Read the article

< Previous Page | 315 316 317 318 319 320 321 322 323 324 325 326  | Next Page >