Search Results

Search found 888 results on 36 pages for 'factors'.

Page 32/36 | < Previous Page | 28 29 30 31 32 33 34 35 36  | Next Page >

  • JavaOne 2012 Sunday Strategy Keynote

    - by Janice J. Heiss
    At the Sunday Strategy Keynote, held at the Masonic Auditorium, Hasan Rizvi, EVP, Middleware and Java Development, stated that the theme for this year's JavaOne is: “Make the future Java”-- meaning that Java continues in its role as the most popular, complete, productive, secure, and innovative development platform. But it also means, he qualified, the process by which we make the future Java -- an open, transparent, collaborative, and community-driven evolution. "Many of you have bet your businesses and your careers on Java, and we have bet our business on Java," he said.Rizvi detailed the three factors they consider critical to the success of Java--technology innovation, community participation, and Oracle's leadership/stewardship. He offered a scorecard in these three realms over the past year--with OS X and Linux ARM support on Java SE, open sourcing of JavaFX by the end of the year, the release of Java Embedded Suite 7.0 middleware platform, and multiple releases on the Java EE side. The JCP process continues, with new JSR activity, and JUGs show a 25% increase in participation since last year. Oracle, meanwhile, continues its commitment to both technology and community development/outreach--with four regional JavaOne conferences last year in various part of the world, as well as the release of Java Magazine, with over 120,000 current subscribers. Georges Saab, VP Development, Java SE, next reviewed features of Java SE 7--the first major revision to the platform under Oracle's stewardship, which has included near-monthly update releases offering hundreds of fixes, performance enhancements, and new features. Saab indicated that developers, ISVs, and hosting providers have all been rapid adopters of the platform. He also noted that Oracle's entire Fusion middleware stack is supported on SE 7. The supported platforms for SE 7 has also increased--from Windows, Linux, and Solaris, to OS X, Linux ARM, and the emerging ARM micro-server market. "In the last year, we've added as many new platforms for Java, as were added in the previous decade," said Saab.Saab also explored the upcoming JDK 8 release--including Project Lambda, Project Nashorn (a modern implementation of JavaScript running on the JVM), and others. He noted that Nashorn functionality had already been used internally in NetBeans 7.3, and announced that they were planning to contribute the implementation to OpenJDK. Nandini Ramani, VP Development, Java Client, ME and Card, discussed the latest news pertaining to JavaFX 2.0--releases on Windows, OS X, and Linux, release of the FX Scene Builder tool, the JavaFX WebView component in NetBeans 7.3, and an OpenJFX project in OpenJDK. Nandini announced, as of Sunday, the availability for download of JavaFX on Linux ARM (developer preview), as well as Scene Builder on Linux. She noted that for next year's JDK 8 release, JavaFX will offer 3D, as well as third-party component integration. Avinder Brar, Senior Software Engineer, Navis, and Dierk König, Canoo Fellow, next took the stage and demonstrated all that JavaFX offers, with a feature-rich, animation-rich, real-time cargo management application that employs Canoo's just open-sourced Dolphin technology.Saab also explored Java SE 9 and beyond--Jigsaw modularity, Penrose Project for interoperability with OSGi, improved multi-tenancy for Java in the cloud, and Project Sumatra. Phil Rogers, HSA Foundation President and AMD Corporate Fellow, explored heterogeneous computing platforms that combine the CPU and the parallel processor of the GPU into a single piece of silicon and shared memory—a hardware technology driven by such advanced functionalities as HD video, face recognition, and cloud workloads. Project Sumatra is an OpenJDK project targeted at bringing Java to such heterogeneous platforms--with hardware and software experts working together to modify the JVM for these advanced applications and platforms.Ramani next discussed the latest with Java in the embedded space--"the Internet of things" and M2M--declaring this to be "the next IT revolution," with Java as the ideal technology for the ecosystem. Last week, Oracle released Java ME Embedded 3.2 (for micro-contollers and low-power devices), and Java Embedded Suite 7.0 (a middleware stack based on Java SE 7). Axel Hansmann, VP Strategy and Marketing, Cinterion, explored his company's use of Java in M2M, and their new release of EHS5, the world's smallest 3G-capable M2M module, running Java ME Embedded. Hansmaan explained that Java offers them the ability to create a "simple to use, scalable, coherent, end-to-end layer" for such diverse edge devices.Marc Brule, Chief Financial Office, Royal Canadian Mint, also explored the fascinating use-case of JavaCard in his country's MintChip e-cash technology--deployable on smartphones, USB device, computer, tablet, or cloud. In parting, Ramani encouraged developers to download the latest releases of Java Embedded, and try them out.Cameron Purdy, VP, Fusion Middleware Development and Java EE, summarized the latest developments and announcements in the Enterprise space--greater developer productivity in Java EE6 (with more on the way in EE 7), portability between platforms, vendors, and even cloud-to-cloud portability. The earliest version of the Java EE 7 SDK is now available for download--in GlassFish 4--with WebSocket support, better JSON support, and more. The final release is scheduled for April of 2013. Nicole Otto, Senior Director, Consumer Digital Technology, Nike, explored her company's Java technology driven enterprise ecosystem for all things sports, including the NikeFuel accelerometer wrist band. Looking beyond Java EE 7, Purdy mentioned NoSQL database functionality for EE 8, the concurrency utilities (possibly in EE 7), some of the Avatar projects in EE 7, some in EE 8, multi-tenancy for the cloud, supporting SaaS applications, and more.Rizvi ended by introducing Dr. Robert Ballard, oceanographer and National Geographic Explorer in Residence--part of Oracle's philanthropic relationship with the National Geographic Society to fund K-12 education around ocean science and conservation. Ballard is best known for having discovered the wreckage of the Titanic. He offered a fascinating video and overview of the cutting edge technology used in such deep-sea explorations, noting that in his early days, high-bandwidth exploration meant that you’d go down in a submarine and "stick your face up against the window." Now, it's a remotely operated, technology telepresence--"I think of my Hercules vehicle as my equivalent of a Na'vi. When I go beneath the sea, I actually send my spirit." Using high bandwidth satellite links, such amazing explorations can now occur via smartphone, laptop, or whatever platform. Ballard’s team regularly offers live feeds and programming out to schools and the world, spanning 188 countries--with embedding educators as part of the expeditions. It's technology at its finest, inspiring the next-generation of scientists and explorers!

    Read the article

  • What Keeps You from Changing Your Public IP Address and Wreaking Havoc on the Internet?

    - by Jason Fitzpatrick
    What exactly is preventing you (or anyone else) from changing their IP address and causing all sorts of headaches for ISPs and other Internet users? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Whitemage is curious about what’s preventing him from wantonly changing his IP address and causing trouble: An interesting question was asked of me and I did not know what to answer. So I’ll ask here. Let’s say I subscribed to an ISP and I’m using cable internet access. The ISP gives me a public IP address of 60.61.62.63. What keeps me from changing this IP address to, let’s say, 60.61.62.75, and messing with another consumer’s internet access? For the sake of this argument, let’s say that this other IP address is also owned by the same ISP. Also, let’s assume that it’s possible for me to go into the cable modem settings and manually change the IP address. Under a business contract where you are allocated static addresses, you are also assigned a default gateway, a network address and a broadcast address. So that’s 3 addresses the ISP “loses” to you. That seems very wasteful for dynamically assigned IP addresses, which the majority of customers are. Could they simply be using static arps? ACLs? Other simple mechanisms? Two things to investigate here, why can’t we just go around changing our addresses, and is the assignment process as wasteful as it seems? The Answer SuperUser contributor Moses offers some insight: Cable modems aren’t like your home router (ie. they don’t have a web interface with simple point-and-click buttons that any kid can “hack” into). Cable modems are “looked up” and located by their MAC address by the ISP, and are typically accessed by technicians using proprietary software that only they have access to, that only runs on their servers, and therefore can’t really be stolen. Cable modems also authenticate and cross-check settings with the ISPs servers. The server has to tell the modem whether it’s settings (and location on the cable network) are valid, and simply sets it to what the ISP has it set it for (bandwidth, DHCP allocations, etc). For instance, when you tell your ISP “I would like a static IP, please.”, they allocate one to the modem through their servers, and the modem allows you to use that IP. Same with bandwidth changes, for instance. To do what you are suggesting, you would likely have to break into the servers at the ISP and change what it has set up for your modem. Could they simply be using static arps? ACLs? Other simple mechanisms? Every ISP is different, both in practice and how close they are with the larger network that is providing service to them. Depending on those factors, they could be using a combination of ACL and static ARP. It also depends on the technology in the cable network itself. The ISP I worked for used some form of ACL, but that knowledge was a little beyond my paygrade. I only got to work with the technician’s interface and do routine maintenance and service changes. What keeps me from changing this IP address to, let’s say, 60.61.62.75 and mess with another consumer’s internet access? Given the above, what keeps you from changing your IP to one that your ISP hasn’t specifically given to you is a server that is instructing your modem what it can and can’t do. Even if you somehow broke into the modem, if 60.61.62.75 is already allocated to another customer, then the server will simply tell your modem that it can’t have it. David Schwartz offers some additional insight with a link to a white paper for the really curious: Most modern ISPs (last 13 years or so) will not accept traffic from a customer connection with a source IP address they would not route to that customer were it the destination IP address. This is called “reverse path forwarding”. See BCP 38. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • Thought Oracle Usability Advisory Board Was Stuffy? Wrong. Justification for Attending OUAB: ROI

    - by ultan o'broin
    Looking for reasons tell your boss why your organization needs to join the Oracle Usability Advisory Board or why you need approval to attend one of its meetings (see the requirements)? Try phrases such as "Continued Return on Investment (ROI)", "Increased Productivity" or "Happy Workers". With OUAB your participation is about realizing and sustaining ROI across the entire applications life-cycle from input to designs to implementation choices and integration, usage and performance and on measuring and improving the onboarding and support experience. If you think this is a boring meeting of middle-aged people sitting around moaning about customizing desktop forms and why the BlackBerry is here to stay, think again! How about this for a rich agenda, all designed to engage the audience in a thought-provoking and feedback-illiciting day of swirling interactions, contextual usage, global delivery, mobility, consumerizationm, gamification and tailoring your implementation to reflect real users doing real work in real environments.  Foldable, rollable ereader devices provide a newspaper-like UK for electronic news. Or a way to wrap silicon chips, perhaps. Explored at the OUAB Europe Meeting (photograph from Terrace Restaurant in TVP. Nom.) At the 7 December 2012 OUAB Europe meeting in Oracle Thames Valley Park, UK, Oracle partners and customers stepped up to the mic and PPT decks with a range of facts and examples to astound any UX conference C-level sceptic. Over the course of the day we covered much ground, but it was all related in a contextual, flexibile, simplication, engagement way aout delivering results for business: that means solving problems. This means being about the user and their tasks and how to make design and technology transforms work into a productive activity that users and bean counters will be excited by. The sessions really gelled for me: 1. Mobile design patterns and the powerful propositions for customers and partners offered by using the design guidance with Oracle ADF Mobile. Customers' and partners' developers existing ADF developers are now productive, efficient ADF Mobile developers applying proven UX guidance using ADF Mobile components and other Oracle Fusion Middleware in the development toolkit. You can find the Mobile UX Design Patterns and Guidance on Building Mobile Apps on OTN. 2. Oracle Voice and Apps. How this medium offers so much potentual in the enterprise and offers a window in Fusion Apps cloud webservices, Oracle RightNow NLP and Nuance technology. Exciting stuff, demoed live on a mobile phone. Stay tuned for more features and modalities and how you can tailor your own apps experience.  3. Oracle RightNow Natural Language Processing (NLP) Virtual Assistant technology (Ella): how contextual intervention and learning from users sessions delivers a great personalized UX for users interacting with Ella, a fifth generation VA to solve problems and seek knowledge. 4. BYOD Keynote: A balanced keynote address contrasting Fujitsu's explaining of the conceprt, challenges, and trends and setting the expectation that BYOD must be embraced in a flexible way,  with the resolute, crafted high security enterprise requirements that nuancing the BYOD concept and proposals with the realities of their world of water tight information and device sharing policies. Fascinating stuff, as well providing anecdotes to make us thing about out own DYOD Deployments. One size does not fit all. 5. Icon Cultural Surveys Results and Insights Arising: Ever wondered about the cultural appropriateness of icons used in software UIs and how these icons assessed for global use? Or considered that social media "Like" icons might be  unacceptable hand gestures in culture or enterprise? Or do the old world icons like Save floppy disk icons still find acceptable? Well the survey results told you. Challenges must be tested, over time, and context of use is critical now, including external factors such as the internet and social media adoption. Indeed the fears about global rejection of the face and hand icons was not borne out, and some of the more anachronistic icons (checkbooks, microphones, real-to-real tape decks, 3.5" floppies for "save") have become accepted metaphors for current actions. More importantly the findings brought into focus the reason for OUAB - engage with and illicit feedback though working groups before we build anything. 6. EReaders and Oracle iBook: What is the uptake and trends of ereaders? And how about a demo of an iBook with enterprise apps content?  Well received by the audience, the session included a live running poll of ereader usage. 7. Gamification Design Jam: Fun, hands on event for teams of Oracle staff, partners and customers, actually building gamified flows, a practice that can be applied right away by customers and partners.  8. UX Direct: A new offering of usability best practices, coming to an external website for you in 2013. FInd a real user, observe their tasks, design and approve, build and measure. Simple stuff to improve apps implications no end. 9. FUSE (an internal term only, basically Fusion Simplified Experience): demo of the new Face of Fusion Applications: inherently mobile, simple to use, social, personalizable and FAST, three great demos from the HCM, CRM and ICT world on how these UX designs can be used in different ways. So, a powerful breadth and depth of UX solutions and opporunities for customers and partners to engage with and explore how they can make their users happy and benefit their business reaping continued ROI from those apps investments. Find out more about the OUAB and how to get involved here ... 

    Read the article

  • Unexpected advantage of Engineered Systems

    - by user12244672
    It's not surprising that Engineered Systems accelerate the debugging and resolution of customer issues. But what has surprised me is just how much faster issue resolution is with Engineered Systems such as SPARC SuperCluster. These are powerful, complex, systems used by customers wanting extreme database performance, app performance, and cost saving server consolidation. A SPARC SuperCluster consists or 2 or 4 powerful T4-4 compute nodes, 3 or 6 extreme performance Exadata Storage Cells, a ZFS Storage Appliance 7320 for general purpose storage, and ultra fast Infiniband switches.  Each with its own firmware. It runs Solaris 11, Solaris 10, 11gR2, LDoms virtualization, and Zones virtualization on the T4-4 compute nodes, a modified version of Solaris 11 in the ZFS Storage Appliance, a modified and highly tuned version of Oracle Linux running Exadata software on the Storage Cells, another Linux derivative in the Infiniband switches, etc. It has an Infiniband data network between the components, a 10Gb data network to the outside world, and a 1Gb management network. And customers can run whatever middleware and apps they want on it, clustered in whatever way they want. In one word, powerful.  In another, complex. The system is highly Engineered.  But it's designed to run general purpose applications. That is, the physical components, configuration, cabling, virtualization technologies, switches, firmware, Operating System versions, network protocols, tunables, etc. are all preset for optimum performance and robustness. That improves the customer experience as what the customer runs leverages our technical know-how and best practices and is what we've tested intensely within Oracle. It should also make debugging easier by fixing a large number of variables which would otherwise be in play if a customer or Systems Integrator had assembled such a complex system themselves from the constituent components.  For example, there's myriad network protocols which could be used with Infiniband.  Myriad ways the components could be interconnected, myriad tunable settings, etc. But what has really surprised me - and I've been working in this area for 15 years now - is just how much easier and faster Engineered Systems have made debugging and issue resolution. All those error opportunities for sub-optimal cabling, unusual network protocols, sub-optimal deployment of virtualization technologies, issues with 3rd party storage, issues with 3rd party multi-pathing products, etc., are simply taken out of the equation. All those error opportunities for making an issue unique to a particular set-up, the "why aren't we seeing this on any other system ?" type questions, the doubts, just go away when we or a customer discover an issue on an Engineered System. It enables a really honed response, getting to the root cause much, much faster than would otherwise be the case. Here's a couple of examples from the last month, one found in-house by my team, one found by a customer: Example 1: We found a node eviction issue running 11gR2 with Solaris 11 SRU 12 under extreme load on what we call our ExaLego test system (mimics an Exadata / SuperCluster 11gR2 Exadata Storage Cell set-up).  We quickly established that an enhancement in SRU12 enabled an 11gR2 process to query Infiniband's Subnet Manager, replacing a fallback mechanism it had used previously.  Under abnormally heavy load, the query could return results which were misinterpreted resulting in node eviction.  In several daily joint debugging sessions between the Solaris, Infiniband, and 11gR2 teams, the issue was fully root caused, evaluated, and a fix agreed upon.  That fix went back into all Solaris releases the following Monday.  From initial issue discovery to the fix being put back into all Solaris releases was just 10 days. Example 2: A customer reported sporadic performance degradation.  The reasons were unclear and the information sparse.  The SPARC SuperCluster Engineered Systems support teams which comprises both SPARC/Solaris and Database/Exadata experts worked to root cause the issue.  A number of contributing factors were discovered, including tunable parameters.  An intense collaborative investigation between the engineering teams identified the root cause to a CPU bound networking thread which was being starved of CPU cycles under extreme load.  Workarounds were identified.  Modifications have been put back into 11gR2 to alleviate the issue and a development project already underway within Solaris has been sped up to provide the final resolution on the Solaris side.  The fixed SPARC SuperCluster configuration greatly aided issue reproduction and dramatically sped up root cause analysis, allowing the correct workarounds and fixes to be identified, prioritized, and implemented.  The customer is now extremely happy with performance and robustness.  Since the configuration is common to other customers, the lessons learned are being proactively rolled out to other customers and incorporated into the installation procedures for future customers.  This effectively acts as a turbo-boost to performance and reliability for all SPARC SuperCluster customers.  If this had occurred in a "home grown" system of this complexity, I expect it would have taken at least 6 months to get to the bottom of the issue.  But because it was an Engineered System, known, understood, and qualified by both the Solaris and Database teams, we were able to collaborate closely to identify cause and effect and expedite a solution for the customer.  That is a key advantage of Engineered Systems which should not be underestimated.  Indeed, the initial issue mitigation on the Database side followed by final fix on the Solaris side, highlights the high degree of collaboration and excellent teamwork between the Oracle engineering teams.  It's a compelling advantage of the integrated Oracle Red Stack in general and Engineered Systems in particular.

    Read the article

  • 24 Hours of PASS – first reflections

    - by Rob Farley
    A few days after the end of 24HOP, I find myself reflecting on it. I’m still waiting on most of the information. I want to be able to discover things like where the countries represented on each of the sessions, and things like that. So far, I have the feedback scores and the numbers of attendees. The data was provided in a PDF, so while I wait for it to appear in a more flexible format, I’ve pushed the 24 attendee numbers into Excel. This chart shows the numbers by time. Remember that we started at midnight GMT, which was 10:30am in my part of the world and 8pm in New York. It’s probably no surprise that numbers drooped a bit at the start, stayed comparatively low, and then grew as the larger populations of the English-speaking world woke up. I remember last time 24HOP ran for 24 hours straight, there were quite a few sessions with less than 100 attendees. None this time though. We got close, but even when it was 4am in New York, 8am in London and 7pm in Sydney (which would have to be the worst slot for attracting people), we still had over 100 people tuning in. As expected numbers grew as the UK woke up, and even more so as the US did, with numbers peaking at 755 for the “3pm in New York” session on SQL Server Data Tools. Kendra Little almost reached those numbers too, and certainly contributed the biggest ‘spike’ on the chart with her session five hours earlier. Of all the sessions, Kendra had the highest proportion of ‘Excellent’s for the “Overall Evaluation of the session” question, and those of you who saw her probably won’t be surprised by that. Kendra had one of the best ranked sessions from the 24HOP event this time last year (narrowly missing out on being top 3), and she has produced a lot of good video content since then. The reports indicate that there were nearly 8.5 thousand attendees across the 24 sessions, averaging over 350 at each one. I’m looking forward to seeing how many different people that was, although I do know that Wil Sisney managed to attend every single one (if you did too, please let me know). Wil even moderated one of the sessions, which made his feat even greater. Thanks Wil. I also want to send massive thanks to Dave Dustin. Dave probably would have attended all of the sessions, if it weren’t for a power outage that forced him to take a break. He was also a moderator, and it was during this session that he earned special praise. Part way into the session he was moderating, the speaker lost connectivity and couldn’t get back for about fifteen minutes. That’s an incredibly long time when you’re in a live presentation. There were over 200 people tuned in at the time, and I’m sure Dave was as stressed as I was to have a speaker disappear. I started chasing down a phone number for the speaker, while Dave spoke to the audience. And he did brilliantly. He started answering questions, and kept doing that until the speaker came back. Bear in mind that Dave hadn’t expected to give a presentation on that topic (or any other), and was simply drawing on his SQL expertise to get him through. Also consider that this was between midnight at 1am in Dave’s part of the world (Auckland, NZ). I would’ve been expecting just to welcome people, monitor questions, probably read some out, and in general, help make things run smoothly. He went far beyond the call of duty, and if I had a medal to give him, he’d definitely be getting one. On the whole, I think this 24HOP was a success. We tried a different platform, and I think for the most part it was a popular move. We didn’t ask the question “Was this better than LiveMeeting?”, but we did get a number of people telling us that they thought the platform was very good. Some people have told me I get a chance to put my feet up now that this is over. As I’m also co-ordinating a tour of SQLSaturday events across the Australia/New Zealand region, I don’t quite get to take that much of a break (plus, there’s the little thing of squeezing in seven SQL 2012 exams over the next 2.5 weeks). But I am pleased to be reflecting on this event rather than anticipating it. There were a number of factors that could have gone badly, but on the whole I’m pleased about how it went. A massive thanks to everyone involved. If you’re reading this and thinking you wish you could’ve tuned in more, don’t worry – they were all recorded and you’ll be able to watch them on demand very soon. But as well as that, PASS has a stream of content produced by the Virtual Chapters, so you can keep learning from the comfort of your desk all year round. More info on them at sqlpass.org, of course.

    Read the article

  • Provocative Tweets From the Dachis Social Business Summit

    - by Mike Stiles
    On June 20, all who follow social business and how social is changing how we do business and internal business structures, gathered in London for the Dachis Social Business Summit. In addition to Oracle SVP Product Development, Reggie Bradford, brands and thought leaders posed some thought-provoking ideas and figures. Here are some of the most oft-tweeted points, and our thoughts that they provoked. Tweet: The winners will be those who use data to improve performance.Thought: Everyone is dwelling on ROI. Why isn’t everyone dwelling on the opportunity to make their product or service better (as if that doesn’t have an effect on ROI)? Big data can improve you…let it. Tweet: High performance hinges on integrated teams that interact with each other.Thought: Team members may work well with each other, but does the team as a whole “get” what other teams are doing? That’s the key to an integrated, companywide workforce. (Internal social platforms can facilitate that by the way). Tweet: Performance improvements come from making the invisible visible.Thought: Many of the factors that drive customer behavior and decisions are invisible. Through social, customers are now showing us what we couldn’t see before…if we’re paying attention. Tweet: Games have continuous feedback, which is why they’re so engaging.  Apply that to business operations.Thought: You think your employees have an obligation to be 100% passionate and engaged at all times about making you richer. Think again. Like customers, they must be motivated. Visible insight that they’re advancing on their goals helps. Tweet: Who can add value to the data?  Data will tend to migrate to where it will be most effective.Thought: Not everybody needs all the data. One team will be able to make sense of, use, and add value to data that may be irrelevant to another team. Like a strategized football play, the data has to get sent to the spot on the field where it’s needed most. Tweet: The sale isn’t the light at the end of the tunnel, it’s the start of a new marketing cycle.Thought: Another reason the ROI question is fundamentally flawed. The sale is not the end of the potential return on investment. After-the-sale service and nurturing begins where the sales “victory” ends. Tweet: A dead sale is one that’s not shared.  People must be incentivized to share.Thought: Guess what, customers now know their value to you as marketers on your behalf. They’ll tell people about your product, but you’ve got to answer, “Why should I?” And you’ve got to answer it with something substantial, not lame trinkets. Tweet: Social user motivations are competition, affection, excellence and curiosity.Thought: Your followers will engage IF; they can get something for doing it, love your culture so much they want you to win, are consistently stunned at the perfection and coolness of your products, or have been stimulated enough to want to know more. Tweet: In Europe, 92% surveyed said they couldn’t care less about brands.Thought: Oh well, so much for loving you or being impressed enough with your products & service that they want you to win. We’ve got a long way to go. Tweet: A complaint is a gift.Thought: Our instinct where complaints are concerned is to a) not listen, b) dismiss the one who complains as a kook, c) make excuses, and d) reassure ourselves with internal group-think that they’re wrong and we’re right. It’s the perfect recipe for how to never, ever grow or get better. In a way, this customer cares more than you do. Tweet: 78% of consumers think peer recommendation is the best form of advertising.  Eventually, engagement is going to eat advertising.Thought: Why is peer recommendation best? Trust. If a friend tells me how great a movie was, I believe him. He has credibility with me. He’s seen it, and he could care less if I buy a ticket. He’s telling me it was awesome because he sincerely believes that it was.  That’s gold. Tweet: 86% of customers are willing to pay more for a better customer experience. Thought: This “how mad can we make our customers without losing them” strategy has to end. The customer experience has actual monetary value, money you’re probably leaving on the table. @mikestilesPhoto: stock.xchng

    Read the article

  • C# Open Source software that is useful for learning Design Patterns

    - by Fathom Savvy
    In college I took a class in Expert Systems. The language the book taught (CLIPS) was esoteric - Expert Systems: Principles and Programming, Fourth Edition. I remember having a tough time with it. So, after almost failing the class, I needed to create the most awesome Expert System for my final presentation. I chose to create an expert system that would calculate risk analysis for a person's retirement portfolio. In short, the system would provide the services normally performed by one's financial adviser. In other words, based on personality, age, state of the macro economy, and other factors, should one's portfolio be conservative, moderate, or aggressive? In the appendix of the book (or on the CD-ROM), there was this in-depth example program for something unrelated to my presentation. Over my break, I read and re-read every line of that program until I understood it to the letter. Even though it was unrelated, I learned more than I ever could by reading all of the chapters. My presentation turned out to be pretty damn good and I received praises from my professor and classmates. So, the moral of the story is..., by understanding other people's code, you can gain greater insight into a language/paradigm than by reading canonical examples. Still, to this day, I am having trouble with everyday design patterns such as the Factory Pattern. I would like to know if anyone could recommend open source software that would help me understand the Gang of Four design patterns, at the very least. I have read the books, but I'm having trouble writing code for the concepts in the real world. Perhaps, by studying code used in today's real world applications, it might just "click". I realize a piece of software may only implement one kind of design pattern. But, if the pattern is an implementation you think is good for learning, and you know what pattern to look for within the source, I'm hoping you can tell me about it. For example, the System.Linq.Expressions namespace has a good example of the Visitor Pattern. The client calls Expression.Accept(new ExpressionVisitor()), which calls ExpressionVisitor (VisitExtension), which calls back to Expression (VisitChildren), which then calls Expression (Accept) again - wooah, kinda convoluted. The point to note here is that VisitChildren is a virtual method. Both Expression and those classes derived from Expression can implement the VisitChildren method any way they want. This means that one type of Expression can run code that is completely different from another type of derived Expression, even though the ExpressionVisitor class is the same in the Accept method. (As a side note Expression.Accept is also virtual). In the end, the code provides a real world example that you won't get in any book because it's kinda confusing. To summarize, If you know of any open source software that uses a design pattern implementation you were impressed by, please list it here. I'm sure it will help many others besides just me. public class VisitorPatternTest { public void Main() { Expression normalExpr = new Expression(); normalExpr.Accept(new ExpressionVisitor()); Expression binExpr = new BinaryExpression(); binExpr.Accept(new ExpressionVisitor()); } } public class Expression { protected internal virtual Expression Accept(ExpressionVisitor visitor) { return visitor.VisitExtension(this); } protected internal virtual Expression VisitChildren(ExpressionVisitor visitor) { if (!this.CanReduce) { throw Error.MustBeReducible(); } return visitor.Visit(this.ReduceAndCheck()); } public virtual Expression Visit(Expression node) { if (node != null) { return node.Accept(this); } return null; } public Expression ReduceAndCheck() { if (!this.CanReduce) { throw Error.MustBeReducible(); } Expression expression = this.Reduce(); if ((expression == null) || (expression == this)) { throw Error.MustReduceToDifferent(); } if (!TypeUtils.AreReferenceAssignable(this.Type, expression.Type)) { throw Error.ReducedNotCompatible(); } return expression; } } public class BinaryExpression : Expression { protected internal override Expression Accept(ExpressionVisitor visitor) { return visitor.VisitBinary(this); } protected internal override Expression VisitChildren(ExpressionVisitor visitor) { return CreateDummyExpression(); } protected internal Expression CreateDummyExpression() { Expression dummy = new Expression(); return dummy; } } public class ExpressionVisitor { public virtual Expression Visit(Expression node) { if (node != null) { return node.Accept(this); } return null; } protected internal virtual Expression VisitExtension(Expression node) { return node.VisitChildren(this); } protected internal virtual Expression VisitBinary(BinaryExpression node) { return ValidateBinary(node, node.Update(this.Visit(node.Left), this.VisitAndConvert<LambdaExpression>(node.Conversion, "VisitBinary"), this.Visit(node.Right))); } }

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

  • Right-Time Retail Part 2

    - by David Dorf
    This is part two of the three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Integration Of course these real-time enabling technologies are only as good as the systems that utilize them, and it only takes one bottleneck to slow everyone else down. What good is an immediate stock-out notification if the supply chain can’t react until tomorrow? Since being formed in 2006, Oracle Retail has been not only adding more integrations between systems, but also modernizing integrations for appropriate speed. Notice I tossed in the word “appropriate.” Not everything needs to be real-time – again, we’re talking about Right-Time Retail. The speed of data capture, analysis, and execution must be synchronized or you’re wasting effort. Unfortunately, there isn’t an enterprise-wide dial that you can crank-up for your estate. You’ll need to improve things piecemeal, with people and processes as limiting factors while choosing the appropriate types of integrations. There are three integration styles we see in the retail industry. First is batch. I know, the word “batch” just sounds slow, but this pattern is less about velocity and more about volume. When there are large amounts of data to be moved, you’ll want to use batch processes. Our technology of choice here is Oracle Data Integrator (ODI), which provides a fast version of Extract-Transform-Load (ETL). Instead of the three-step process, the load and transform steps are combined to save time. ODI is a key technology for moving data into Retail Analytics where we can apply science. Performing analytics on each sale as it occurs doesn’t make any sense, so we batch up a statistically significant amount and submit all at once. The second style is fire-and-forget. For some types of data, we want the data to arrive ASAP but immediacy is not necessary. Speed is less important than guaranteed delivery, so we use message-oriented middleware available in both Weblogic and the Oracle database. For example, Point-of-Service transactions are queued for delivery to Central Office at corporate. If the network is offline, those transactions remain in the queue and will be delivered when the network returns. Transactions cannot be lost and they must be delivered in order. (Ever tried processing a return before the sale?) To enhance the standard queues, we offer the Retail Integration Bus (RIB) to help the management and monitoring of fire-and-forget messaging in the enterprise. The third style is request-response and is most commonly implemented as Web services. This is a synchronous message where the sender waits for a response. In this situation, the volume of data is small, guaranteed delivery is not necessary, but speed is very important. Examples include the website checking inventory, a price lookup, or processing a credit card authorization. The Oracle Service Bus (OSB) typically handles the routing of such messages, and we’ve enhanced its abilities with the Retail Service Backbone (RSB). To better understand these integration patterns and where they apply within the retail enterprise, we’re providing the Retail Reference Library (RRL) at no charge to Oracle Retail customers. The library is composed of a large number of industry business processes, including those necessary to support Commerce Anywhere, as well as detailed architectural diagrams. These diagrams allow implementers to understand the systems involved in integrations and the specific data payloads. Furthermore, with our upcoming release we’ll be providing a new tool called the Retail Integration Console (RIC) that allows IT to monitor and manage integrations from a single point. Using RIC, retailers can quickly discern where integration activity is occurring, volume statistics, average response times, and errors. The dashboards provide the ability to dive down into the architecture documentation to gather information all the way down to the specific payload. Retailers that want real-time integrations will also need real-time monitoring of those integrations to ensure service-level agreements are maintained. Part 3 looks at marketing.

    Read the article

  • Why Executives Need Enterprise Project Portfolio Management: 3 Key Considerations to Drive Value Across the Organization

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Cambria","serif";} By: Guy Barlow, Oracle Primavera Industry Strategy Director Over the last few years there has been a tremendous shift – some would say tectonic in nature – that has brought project management to the forefront of executive attention. Many factors have been driving this growing awareness, most notably, the global financial crisis, heightened regulatory environments and a need to more effectively operationalize corporate strategy. Executives in India are no exception. In fact, given the phenomenal rate of progress of the country, top of mind for all executives (whether in finance, operations, IT, etc.) is the need to build capacity, ramp-up production and ensure that the right resources are in place to capture growth opportunities. This applies across all industries from asset-intensive – like oil & gas, utilities and mining – to traditional manufacturing and the public sector, including services-based sectors such as the financial, telecom and life sciences segments are also part of the mix. However, compounding matters is a complex, interplay between projects – big and small, complex and simple – as companies expand and grow both domestically and internationally. So, having a standardized, enterprise wide solution for project portfolio management is natural. Failing to do so is akin to having two ERP systems, one to manage “large” invoices and one to manage “small” invoices. It makes no sense and provides no enterprise wide visibility. Therefore, it is imperative for executives to understand the full range of their business commitments, the benefit to the company, current performance and associated course corrections if needed. Irrespective of industry and regardless of the use case (e.g., building a power plant, launching a new financial service or developing a new automobile) company leaders need to approach the value of enterprise project portfolio management via 3 critical areas: Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Cambria","serif";} 1. Greater Financial Discipline – Improve financial rigor and results through better governance and control is an imperative given today’s financial uncertainty and greater investment scrutiny. For example, as India plans a US$1 trillion investment in the country’s infrastructure how do companies ensure costs are managed? How do you control cash flow? Can you easily report this to stakeholders? 2. Improved Operational Excellence – Increase efficiency and reduce costs through robust collaboration and integration. Upwards of 66% of cost variances are driven by poor supplier collaboration. As you execute initiatives do you have visibility into the performance of your supply base? How are they integrated into the broader program plan? 3. Enhanced Risk Mitigation – Manage and react to uncertainty through improved transparency and contingency planning. What happens if you’re faced with a skills shortage? How do you plan and account for geo-political or weather related events? In summary, projects are not just the delivery of a product or service to a customer inside a predetermined schedule; they often form a contractual and even moral obligation to shareholders and stakeholders alike. Hence the intimate connection between executives and projects, with the latter providing executives with the platform to demonstrate that their organization has the capabilities and competencies needed to meet and, whenever possible, exceed their customer commitments. Effectively developing and operationalizing corporate strategy is the hallmark of successful executives and enterprise project and portfolio management allows them to achieve this goal. Article was first published for Manage India, an e-newsletter, PMI India.

    Read the article

  • How can I estimate the entropy of a password?

    - by Wug
    Having read various resources about password strength I'm trying to create an algorithm that will provide a rough estimation of how much entropy a password has. I'm trying to create an algorithm that's as comprehensive as possible. At this point I only have pseudocode, but the algorithm covers the following: password length repeated characters patterns (logical) different character spaces (LC, UC, Numeric, Special, Extended) dictionary attacks It does NOT cover the following, and SHOULD cover it WELL (though not perfectly): ordering (passwords can be strictly ordered by output of this algorithm) patterns (spatial) Can anyone provide some insight on what this algorithm might be weak to? Specifically, can anyone think of situations where feeding a password to the algorithm would OVERESTIMATE its strength? Underestimations are less of an issue. The algorithm: // the password to test password = ? length = length(password) // unique character counts from password (duplicates discarded) uqlca = number of unique lowercase alphabetic characters in password uquca = number of uppercase alphabetic characters uqd = number of unique digits uqsp = number of unique special characters (anything with a key on the keyboard) uqxc = number of unique special special characters (alt codes, extended-ascii stuff) // algorithm parameters, total sizes of alphabet spaces Nlca = total possible number of lowercase letters (26) Nuca = total uppercase letters (26) Nd = total digits (10) Nsp = total special characters (32 or something) Nxc = total extended ascii characters that dont fit into other categorys (idk, 50?) // algorithm parameters, pw strength growth rates as percentages (per character) flca = entropy growth factor for lowercase letters (.25 is probably a good value) fuca = EGF for uppercase letters (.4 is probably good) fd = EGF for digits (.4 is probably good) fsp = EGF for special chars (.5 is probably good) fxc = EGF for extended ascii chars (.75 is probably good) // repetition factors. few unique letters == low factor, many unique == high rflca = (1 - (1 - flca) ^ uqlca) rfuca = (1 - (1 - fuca) ^ uquca) rfd = (1 - (1 - fd ) ^ uqd ) rfsp = (1 - (1 - fsp ) ^ uqsp ) rfxc = (1 - (1 - fxc ) ^ uqxc ) // digit strengths strength = ( rflca * Nlca + rfuca * Nuca + rfd * Nd + rfsp * Nsp + rfxc * Nxc ) ^ length entropybits = log_base_2(strength) A few inputs and their desired and actual entropy_bits outputs: INPUT DESIRED ACTUAL aaa very pathetic 8.1 aaaaaaaaa pathetic 24.7 abcdefghi weak 31.2 H0ley$Mol3y_ strong 72.2 s^fU¬5ü;y34G< wtf 88.9 [a^36]* pathetic 97.2 [a^20]A[a^15]* strong 146.8 xkcd1** medium 79.3 xkcd2** wtf 160.5 * these 2 passwords use shortened notation, where [a^N] expands to N a's. ** xkcd1 = "Tr0ub4dor&3", xkcd2 = "correct horse battery staple" The algorithm does realize (correctly) that increasing the alphabet size (even by one digit) vastly strengthens long passwords, as shown by the difference in entropy_bits for the 6th and 7th passwords, which both consist of 36 a's, but the second's 21st a is capitalized. However, they do not account for the fact that having a password of 36 a's is not a good idea, it's easily broken with a weak password cracker (and anyone who watches you type it will see it) and the algorithm doesn't reflect that. It does, however, reflect the fact that xkcd1 is a weak password compared to xkcd2, despite having greater complexity density (is this even a thing?). How can I improve this algorithm? Addendum 1 Dictionary attacks and pattern based attacks seem to be the big thing, so I'll take a stab at addressing those. I could perform a comprehensive search through the password for words from a word list and replace words with tokens unique to the words they represent. Word-tokens would then be treated as characters and have their own weight system, and would add their own weights to the password. I'd need a few new algorithm parameters (I'll call them lw, Nw ~= 2^11, fw ~= .5, and rfw) and I'd factor the weight into the password as I would any of the other weights. This word search could be specially modified to match both lowercase and uppercase letters as well as common character substitutions, like that of E with 3. If I didn't add extra weight to such matched words, the algorithm would underestimate their strength by a bit or two per word, which is OK. Otherwise, a general rule would be, for each non-perfect character match, give the word a bonus bit. I could then perform simple pattern checks, such as searches for runs of repeated characters and derivative tests (take the difference between each character), which would identify patterns such as 'aaaaa' and '12345', and replace each detected pattern with a pattern token, unique to the pattern and length. The algorithmic parameters (specifically, entropy per pattern) could be generated on the fly based on the pattern. At this point, I'd take the length of the password. Each word token and pattern token would count as one character; each token would replace the characters they symbolically represented. I made up some sort of pattern notation, but it includes the pattern length l, the pattern order o, and the base element b. This information could be used to compute some arbitrary weight for each pattern. I'd do something better in actual code. Modified Example: Password: 1234kitty$$$$$herpderp Tokenized: 1 2 3 4 k i t t y $ $ $ $ $ h e r p d e r p Words Filtered: 1 2 3 4 @W5783 $ $ $ $ $ @W9001 @W9002 Patterns Filtered: @P[l=4,o=1,b='1'] @W5783 @P[l=5,o=0,b='$'] @W9001 @W9002 Breakdown: 3 small, unique words and 2 patterns Entropy: about 45 bits, as per modified algorithm Password: correcthorsebatterystaple Tokenized: c o r r e c t h o r s e b a t t e r y s t a p l e Words Filtered: @W6783 @W7923 @W1535 @W2285 Breakdown: 4 small, unique words and no patterns Entropy: 43 bits, as per modified algorithm The exact semantics of how entropy is calculated from patterns is up for discussion. I was thinking something like: entropy(b) * l * (o + 1) // o will be either zero or one The modified algorithm would find flaws with and reduce the strength of each password in the original table, with the exception of s^fU¬5ü;y34G<, which contains no words or patterns.

    Read the article

  • Revisiting the Generations

    - by Row Henson
    I was asked earlier this year to contribute an article to the IHRIM publication – Workforce Solutions Review.  My topic focused on the reality of the Gen Y population 10 years after their entry into the workforce.  Below is an excerpt from that article: It seems like yesterday that we were all talking about the entry of the Gen Y'ers into the workforce and what a radical change that would have on how we attract, retain, motivate, reward, and engage this new, younger segment of the workforce.  We all heard and read that these youngsters would be more entrepreneurial than their predecessors – the Gen X'ers – who were said to be more loyal to their profession than their employer. And, we heard that these “youngsters” would certainly be far less loyal to their employers than the Baby Boomers or even earlier Traditionalists. It was also predicted that – at least for the developed parts of the world – they would be more interested in work/life balance than financial reward; they would need constant and immediate reinforcement and recognition and we would be lucky to have them in our employment for two to three years. And, to keep them longer than that we would need to promote them often so they would be continuously learning since their long-term (10-year) goal would be to own their own business or be an independent consultant.  Well, it occurred to me recently that the first of the Gen Y'ers are now in their early 30s and it is time to look back on some of these predictions. Many really believed the Gen Y'ers would enter the workforce with an attitude – expect everything to be easy for them – have their employers meet their demands or move to the next employer, and I believe that we can now say that, generally, has not been the case. Speaking from personal experience, I have mentored a number of Gen Y'ers and initially felt that with a 40-year career in Human Resources and Human Resources Technology – I could share a lot with them. I found out very quickly that I was learning at least as much from them! Some of the amazing attributes I found from these under-30s was their fearlessness, ease of which they were able to multi-task, amazing energy and great technical savvy. They were very comfortable with collaborating with colleagues from both inside the company and peers outside their organization to problem-solve quickly. Most were eager to learn and willing to work hard.  This brings me to the generation that will follow the Gen Y'ers – the Generation Z'ers – those born after 1998. We have come full circle. If we look at the Silent Generation or Traditionalists, we find a workforce that preceded the television and even very early telephones. We Baby Boomers (as I fall right squarely in this category) remembered the invention of the television and telephone – but laptop computers and personal digital assistants (PDAs) were a thing of “StarTrek” and other science fiction movies and publications. Certainly, the Gen X'ers and Gen Y'ers grew up with the comfort of these devices just as we did with calculators. But, what of those under the age of 10 – how will the workplace look in 15 more years and what type of workforce will be required to operate in the mobile, global, virtual world. I spoke to a friend recently who had her four-year-old granddaughter for a visit. She said she found her in the den in front of the TV trying to use her hand to get the screen to move! So, you see – we have come full circle. The under-70 Traditionalist grew up in a world without TV and the Generation Z'er may never remember the TV we knew just a few years ago. As with every generation – we spend much time generalizing on their characteristics. The most important thing to remember is every generation – just like every individual – is different. The important thing for those of us in Human Resources to remember is that one size doesn’t fit all. What motivates one employee to come to work for you and stay there and be productive is very different than what the next employee is looking for and the organization that can provide this fluidity and flexibility will be the survivor for generations to come. And, finally, just when we think we have it figured out, a multitude of external factors such as the economy, world politics, industries, and technologies we haven’t even thought about will come along and change those predictions. As I reach retirement age – I do so believing that our organizations are in good hands with the generations to follow – energetic, collaborative and capable of working hard while still understanding the need for balance at work, at home and in the community! Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • The architecture and technologies to use for a secure, fast, reliable and easily scalable web application

    - by DSoul
    ^ For actual questions, skip to the lists down below I understand, that his is a vague topic, but please, before you turn the other way and disregard me, hear me out. I am currently doing research for a web application(I don't know if application is the correct word for it, but I will proceed w/ that for now), that one day might need to be everything mentioned in the title. I am bound by nothing. That means that every language, OS and framework is acceptable, but only if it proves it's usefulness. And if you are going to say, that scalability and speed depend on the code I write for this application, then I agree, but I am just trying to find something, that wouldn't stand in my way later on. I have done quite a bit reading on this subject, but I still don't have a clear picture, to what suits my needs, so I come to you, StackOverflow, to give me directions. I know you all must be wondering what I'm building, but I assure you, that it doesn't matter. I have heard of 12 factor app though, if you have any similar guidelines or what is, to suggest the please, go ahead. For the sake of keeping your answers as open as possible, I'm not gonna provide you my experience regarding anything written in this question. ^ Skippers, start here First off - the weights of the requirements are probably something like that (on a scale of 10): Security - 10 Speed - 5 Reliability (concurrency) - 7.5 Scalability - 10 Speed and concurrency are not a top priority, in the sense, that the program can be CPU intensive, and therefore slow, and only accept a not-that-high number of concurrent users, but both of these factors must be improvable by scaling the system Anyway, here are my questions: How many layers should the application have, so it would be future-proof and could best fulfill the aforementioned requirements? For now, what I have in mind is the most common version: Completely separated front end, that might be a web page or an MMI application or even both. Some middle-ware handling communication between the front and the back end. This is probably a server that communicates w/ the front end via HTTP. How the communication w/ the back end should be handled is probably dependent on the back end. The back end. Something that handles data through resources like DB and etc. and does various computations w/ the data. This, as the highest priority part of the software, must be easily spread to multiple computers later on and have no known security holes. I think ideally the middle-ware should send a request to a queue from where one of the back end processes takes this request, chops it up to smaller parts and buts these parts of the request back onto the same queue as the initial request, after what these parts will be then handled by other back end processes. Something *map-reduce*y, so to say. What frameworks, languages and etc. should these layers use? The technologies used here are not that important at this moment, you can ignore this part for now I've been pointed to node.js for this part. Do you guys know any better alternatives, or have any reasons why I should (not) use node.js for this particular job. I actually have no good idea, what to use for this job, there are too many options out there, so please direct me. This part (and the 2. one also, I think) depend a lot on the OS, so suggest any OSs alongside w/ the technologies/frameworks. Initially, all computers (or 1 for starters) hosting the back end are going to be virtual machines. Please do give suggestions to any part of the question, that you feel you have comprehensive knowledge and/or experience of. And also, point out if you feel that any part of the current set-up means an instant (or even distant) failure or if I missed a very important aspect to consider. I'm not looking for a definitive answer for how to achieve my goals, because there certainly isn't one, for I haven't provided you w/ all the required information. I'm just looking for recommendations and directions on what to look into. Also, bare in mind, that this isn't something that I have to get done quickly, to sell and let it be re-written by the new owner (which, I've been told for multiple times, is what I should aim for). I have all the time in the world and I really just want to learn doing something really high-end. Also, excuse me if my language isn't the best, I'm not a native. Anyway. Thanks in advance to anyone, who takes the time to help me out here. PS. When I do seem to come up w/ a good architecture/design for this project, I will certainly make it an open project and keep you guys up to date w/ it's development. As in what you could have told me earlier and etc. For obvious reasons the very same question got closed on SO, but could you guys still help me?.

    Read the article

  • Exploring TCP throughput with DTrace (2)

    - by user12820842
    Last time, I described how we can use the overlap in distributions of unacknowledged byte counts and send window to determine whether the peer's receive window may be too small, limiting throughput. Let's combine that comparison with a comparison of congestion window and slow start threshold, all on a per-port/per-client basis. This will help us Identify whether the congestion window or the receive window are limiting factors on throughput by comparing the distributions of congestion window and send window values to the distribution of outstanding (unacked) bytes. This will allow us to get a visual sense for how often we are thwarted in our attempts to fill the pipe due to congestion control versus the peer not being able to receive any more data. Identify whether slow start or congestion avoidance predominate by comparing the overlap in the congestion window and slow start distributions. If the slow start threshold distribution overlaps with the congestion window, we know that we have switched between slow start and congestion avoidance, possibly multiple times. Identify whether the peer's receive window is too small by comparing the distribution of outstanding unacked bytes with the send window distribution (i.e. the peer's receive window). I discussed this here. # dtrace -s tcp_window.d dtrace: script 'tcp_window.d' matched 10 probes ^C cwnd 80 10.175.96.92 value ------------- Distribution ------------- count 1024 | 0 2048 | 4 4096 | 6 8192 | 18 16384 | 36 32768 |@ 79 65536 |@ 155 131072 |@ 199 262144 |@@@ 400 524288 |@@@@@@ 798 1048576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3848 2097152 | 0 ssthresh 80 10.175.96.92 value ------------- Distribution ------------- count 268435456 | 0 536870912 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 1073741824 | 0 unacked 80 10.175.96.92 value ------------- Distribution ------------- count -1 | 0 0 | 1 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 21 16384 | 36 32768 |@ 78 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5391 131072 | 0 swnd 80 10.175.96.92 value ------------- Distribution ------------- count 32768 | 0 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 131072 | 0 Here we are observing a large file transfer via http on the webserver. Comparing these distributions, we can observe: That slow start congestion control is in operation. The distribution of congestion window values lies below the range of slow start threshold values (which are in the 536870912+ range), so the connection is in slow start mode. Both the unacked byte count and the send window values peak in the 65536-131071 range, but the send window value distribution is narrower. This tells us that the peer TCP's receive window is not closing. The congestion window distribution peaks in the 1048576 - 2097152 range while the receive window distribution is confined to the 65536-131071 range. Since the cwnd distribution ranges as low as 2048-4095, we can see that for some of the time we have been observing the connection, congestion control has been a limiting factor on transfer, but for the majority of the time the receive window of the peer would more likely have been the limiting factor. However, we know the window has never closed as the distribution of swnd values stays within the 65536-131071 range. So all in all we have a connection that has been mildly constrained by congestion control, but for the bulk of the time we have been observing it neither congestion or peer receive window have limited throughput. Here's the script: #!/usr/sbin/dtrace -s tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @cwnd["cwnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd); @ssthresh["ssthresh", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd_ssthresh); @unacked["unacked", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); @swnd["swnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } One surprise here is that slow start is still in operation - one would assume that for a large file transfer, acknowledgements would push the congestion window up past the slow start threshold over time. The slow start threshold is in fact still close to it's initial (very high) value, so that would suggest we have not experienced any congestion (the slow start threshold is adjusted when congestion occurs). Also, the above measurements were taken early in the connection lifetime, so the congestion window did not get a changes to get bumped up to the level of the slow start threshold. A good strategy when examining these sorts of measurements for a given service (such as a webserver) would be start by examining the distributions above aggregated by port number only to get an overall feel for service performance, i.e. is congestion control or peer receive window size an issue, or are we unconstrained to fill the pipe? From there, the overlap of distributions will tell us whether to drill down into specific clients. For example if the send window distribution has multiple peaks, we may want to examine if particular clients show issues with their receive window.

    Read the article

  • Some questions about writing on ASP.NET response stream

    - by vtortola
    Hi, I'm making tests with ASP.NET HttpHandler for download a file writting directly on the response stream, and I'm not pretty sure about the way I'm doing it. This is a example method, in the future the file could be stored in a BLOB in the database: public void GetFile(HttpResponse response) { String fileName = "example.iso"; response.ClearHeaders(); response.ClearContent(); response.ContentType = "application/octet-stream"; response.AppendHeader("Content-Disposition", "attachment; filename=" + fileName); using (FileStream fs = new FileStream(Path.Combine(HttpContext.Current.Server.MapPath("~/App_Data"), fileName), FileMode.Open)) { Byte[] buffer = new Byte[4096]; Int32 readed = 0; while ((readed = fs.Read(buffer, 0, buffer.Length)) > 0) { response.OutputStream.Write(buffer, 0, readed); response.Flush(); } } } But, I'm not sure if this is correct or there is a better way to do it. My questions are: When I open the url with the browser, appears the "Save File" dialog... but it seems like the server has started already to push data into the stream before I click "Save", is that normal? If I remove the line"response.Flush()", when I open the url with the browser, ... I see how the web server is pushing data but the "Save File" dialog doesn't come up, (or at least not in a reasonable time fashion) why? When I open the url with a WebRequest object, I see that the HttpResponse.ContentLength is "-1", although I can read the stream and get the file. What is the meaning of -1? When is HttpResponse.ContentLength going to show the length of the response? For example, I have a method that retrieves a big xml compresed with deflate as a binary stream, but in that case... when I access it with a WebRequest, in the HttpResponse I can actually see the ContentLength with the length of the stream, why? What is the optimal length for the Byte[] array that I use as buffer for optimal performance in a web server? I've read that is between 4K and 8K... but which factors should I consider to make the correct decision. Does this method bloat the IIS or client memory usage? or is it actually buffering the transference correctly? Sorry for so many questions, I'm pretty new in web development :P Cheers.

    Read the article

  • How to better create stacked bar graphs with multiple variables from ggplot2?

    - by deoksu
    I often have to make stacked barplots to compare variables, and because I do all my stats in R, I prefer to do all my graphics in R with ggplot2. I would like to learn how to do two things: First, I would like to be able to add proper percentage tick marks for each variable rather than tick marks by count. Counts would be confusing, which is why I take out the axis labels completely. Second, there must be a simpler way to reorganize my data to make this happen. It seems like the sort of thing I should be able to do natively in ggplot2 with plyR, but the documentation for plyR is not very clear (and I have read both the ggplot2 book and the online plyR documentation. My best graph looks like this, the code to create it follows: the R code I use to get it is the following: library(epicalc) ### recode the variables to factors ### recode(c(int_newcoun, int_newneigh, int_neweur, int_newusa, int_neweco, int_newit, int_newen, int_newsp, int_newhr, int_newlit, int_newent, int_newrel, int_newhth, int_bapo, int_wopo, int_eupo, int_educ), c(1,2,3,4,5,6,7,8,9, NA), c('Very Interested','Somewhat Interested','Not Very Interested','Not At All interested',NA,NA,NA,NA,NA,NA)) ### Combine recoded variables to a common vector Interest1<-c(int_newcoun, int_newneigh, int_neweur, int_newusa, int_neweco, int_newit, int_newen, int_newsp, int_newhr, int_newlit, int_newent, int_newrel, int_newhth, int_bapo, int_wopo, int_eupo, int_educ) ### Create a second vector to label the first vector by original variable ### a1<-rep("News about Bangladesh", length(int_newcoun)) a2<-rep("Neighboring Countries", length(int_newneigh)) [...] a17<-rep("Education", length(int_educ)) Interest2<-c(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17) ### Create a Weighting vector of the proper length ### Interest.weight<-rep(weight, 17) ### Make and save a new data frame from the three vectors ### Interest.df<-cbind(Interest1, Interest2, Interest.weight) Interest.df<-as.data.frame(Interest.df) write.csv(Interest.df, 'C:\\Documents and Settings\\[name]\\Desktop\\Sweave\\InterestBangladesh.csv') ### Sort the factor levels to display properly ### Interest.df$Interest1<-relevel(Interest$Interest1, ref='Not Very Interested') Interest.df$Interest1<-relevel(Interest$Interest1, ref='Somewhat Interested') Interest.df$Interest1<-relevel(Interest$Interest1, ref='Very Interested') Interest.df$Interest2<-relevel(Interest$Interest2, ref='News about Bangladesh') Interest.df$Interest2<-relevel(Interest$Interest2, ref='Education') [...] Interest.df$Interest2<-relevel(Interest$Interest2, ref='European Politics') detach(Interest) attach(Interest) ### Finally create the graph in ggplot2 ### library(ggplot2) p<-ggplot(Interest, aes(Interest2, ..count..)) p<-p+geom_bar((aes(weight=Interest.weight, fill=Interest1))) p<-p+coord_flip() p<-p+scale_y_continuous("", breaks=NA) p<-p+scale_fill_manual(value = rev(brewer.pal(5, "Purples"))) p update_labels(p, list(fill='', x='', y='')) I'd very much appreciate any tips, tricks or hints. Thanks.

    Read the article

  • Modeling distribution of performance measurements

    - by peterchen
    How would you mathematically model the distribution of repeated real life performance measurements - "Real life" meaning you are not just looping over the code in question, but it is just a short snippet within a large application running in a typical user scenario? My experience shows that you usually have a peak around the average execution time that can be modeled adequately with a Gaussian distribution. In addition, there's a "long tail" containing outliers - often with a multiple of the average time. (The behavior is understandable considering the factors contributing to first execution penalty). My goal is to model aggregate values that reasonably reflect this, and can be calculated from aggregate values (like for the Gaussian, calculate mu and sigma from N, sum of values and sum of squares). In other terms, number of repetitions is unlimited, but memory and calculation requirements should be minimized. A normal Gaussian distribution can't model the long tail appropriately and will have the average biased strongly even by a very small percentage of outliers. I am looking for ideas, especially if this has been attempted/analysed before. I've checked various distributions models, and I think I could work out something, but my statistics is rusty and I might end up with an overblown solution. Oh, a complete shrink-wrapped solution would be fine, too ;) Other aspects / ideas: Sometimes you get "two humps" distributions, which would be acceptable in my scenario with a single mu/sigma covering both, but ideally would be identified separately. Extrapolating this, another approach would be a "floating probability density calculation" that uses only a limited buffer and adjusts automatically to the range (due to the long tail, bins may not be spaced evenly) - haven't found anything, but with some assumptions about the distribution it should be possible in principle. Why (since it was asked) - For a complex process we need to make guarantees such as "only 0.1% of runs exceed a limit of 3 seconds, and the average processing time is 2.8 seconds". The performance of an isolated piece of code can be very different from a normal run-time environment involving varying levels of disk and network access, background services, scheduled events that occur within a day, etc. This can be solved trivially by accumulating all data. However, to accumulate this data in production, the data produced needs to be limited. For analysis of isolated pieces of code, a gaussian deviation plus first run penalty is ok. That doesn't work anymore for the distributions found above. [edit] I've already got very good answers (and finally - maybe - some time to work on this). I'm starting a bounty to look for more input / ideas.

    Read the article

  • How to make efficient code emerge through unit testing

    - by Jean
    Hi, I participate in a TDD Coding Dojo, where we try to practice pure TDD on simple problems. It occured to me however that the code which emerges from the unit tests isn't the most efficient. Now this is fine most of the time, but what if the code usage grows so that efficiency becomes a problem. I love the way the code emerges from unit testing, but is it possible to make the efficiency property emerge through further tests ? Here is a trivial example in ruby: prime factorization. I followed a pure TDD approach making the tests pass one after the other validating my original acceptance test (commented at the bottom). What further steps could I take, if I wanted to make one of the generic prime factorization algorithms emerge ? To reduce the problem domain, let's say I want to get a quadratic sieve implementation ... Now in this precise case I know the "optimal algorithm, but in most cases, the client will simply add a requirement that the feature runs in less than "x" time for a given environment. require 'shoulda' require 'lib/prime' class MathTest < Test::Unit::TestCase context "The math module" do should "have a method to get primes" do assert Math.respond_to? 'primes' end end context "The primes method of Math" do should "return [] for 0" do assert_equal [], Math.primes(0) end should "return [1] for 1 " do assert_equal [1], Math.primes(1) end should "return [1,2] for 2" do assert_equal [1,2], Math.primes(2) end should "return [1,3] for 3" do assert_equal [1,3], Math.primes(3) end should "return [1,2] for 4" do assert_equal [1,2,2], Math.primes(4) end should "return [1,5] for 5" do assert_equal [1,5], Math.primes(5) end should "return [1,2,3] for 6" do assert_equal [1,2,3], Math.primes(6) end should "return [1,3] for 9" do assert_equal [1,3,3], Math.primes(9) end should "return [1,2,5] for 10" do assert_equal [1,2,5], Math.primes(10) end end # context "Functionnal Acceptance test 1" do # context "the prime factors of 14101980 are 1,2,2,3,5,61,3853"do # should "return [1,2,3,5,61,3853] for ${14101980*14101980}" do # assert_equal [1,2,2,3,5,61,3853], Math.primes(14101980*14101980) # end # end # end end and the naive algorithm I created by this approach module Math def self.primes(n) if n==0 return [] else primes=[1] for i in 2..n do if n%i==0 while(n%i==0) primes<<i n=n/i end end end primes end end end

    Read the article

  • Algorithm to retrieve every possible combination of sublists of a two lists

    - by sgmoore
    Suppose I have two lists, how do I iterate through every possible combination of every sublist, such that each item appears once and only once. I guess an example could be if you have employees and jobs and you want split them into teams, where each employee can only be in one team and each job can only be in one team. Eg List<string> employees = new List<string>() { "Adam", "Bob"} ; List<string> jobs = new List<string>() { "1", "2", "3"}; I want Adam : 1 Bob : 2 , 3 Adam : 1 , 2 Bob : 3 Adam : 1 , 3 Bob : 2 Adam : 2 Bob : 1 , 3 Adam : 2 , 3 Bob : 1 Adam : 3 Bob : 1 , 2 Adam, Bob : 1, 2, 3 I tried using the answer to this stackoverflow question to generate a list of every possible combination of employees and every possible combination of jobs and then select one item from each from each list, but that's about as far as I got. I don't know the maximum size of the lists, but it would be certainly be less than 100 and there may be other limiting factors (such as each team can have no more than 5 employees) Update Not sure whether this can be tidied up more and/or simplified, but this is what I have ended up with so far. It uses the Group algorithm supplied by Yorye (see his answer below), but I removed the orderby which I don't need and caused problems if the keys are not comparable. var employees = new List<string>() { "Adam", "Bob" } ; var jobs = new List<string>() { "1", "2", "3" }; int c= 0; foreach (int noOfTeams in Enumerable.Range(1, employees.Count)) { var hs = new HashSet<string>(); foreach( var grouping in Group(Enumerable.Range(1, noOfTeams).ToList(), employees)) { // Generate a unique key for each group to detect duplicates. var key = string.Join(":" , grouping.Select(sub => string.Join(",", sub))); if (!hs.Add(key)) continue; List<List<string>> teams = (from r in grouping select r.ToList()).ToList(); foreach (var group in Group(teams, jobs)) { foreach (var sub in group) { Console.WriteLine(String.Join(", " , sub.Key ) + " : " + string.Join(", ", sub)); } Console.WriteLine(); c++; } } } Console.WriteLine(String.Format("{0:n0} combinations for {1} employees and {2} jobs" , c , employees.Count, jobs.Count)); Since I'm not worried about the order of the results, this seems to give me what I need.

    Read the article

  • How to show percentage of 'memory used' in a win32 process?

    - by pj4533
    I know that memory usage is a very complex issue on Windows. I am trying to write a UI control for a large application that shows a 'percentage of memory used' number, in order to give the user an indication that it may be time to clear up some memory, or more likely restart the application. One implementation used ullAvailVirtual from MEMORYSTATUSEX as a base, then used HeapWalk() to walk the process heap looking for additional free memory. The HeapWalk() step was needed because we noticed that after a while of running the memory allocated and freed by the heap was never returned and reported by the ullAvailVirtual number. After hours of intensive working, the ullAvailVirtual number no longer would accurately report the amount of memory available. However, this method proved not ideal, due to occasional odd errors that HeapWalk() would return, even when the process heap was not corrupted. Further, since this is a UI control, the heap walking code was executing every 5-10 seconds. I tried contacting Microsoft about why HeapWalk() was failing, escalated a case via MSDN, but never got an answer other than "you probably shouldn't do that". So, as a second implementation, I used PagefileUsage from PROCESS_MEMORY_COUNTERS as a base. Then I used VirtualQueryEx to walk the virtual address space adding up all regions that weren't MEM_FREE and returned a value for GetMappedFileNameA(). My thinking was that the PageFileUsage was essentially 'private bytes' so if I added to that value the total size of the DLLs my process was using, it would be a good approximation of the amount of memory my process was using. This second method seems to (sorta) work, at least it doesn't cause crashes like the heap walker method. However, when both methods are enabled, the values are not the same. So one of the methods is wrong. So, StackOverflow world...how would you implement this? which method is more promising, or do you have a third, better method? should I go back to the original method, and further debug the odd errors? should I stay away from walking the heap every 5-10 seconds? Keep in mind the whole point is to indicate to the user that it is getting 'dangerous', and they should either free up memory or restart the application. Perhaps a 'percentage used' isn't the best solution to this problem? What is? Another idea I had was a color based system (red, yellow, green, which I could base on more factors than just a single number)

    Read the article

  • How to find relation between change in latitudes at centre of map and top/bottom

    - by Imran
    Hi, Im having little trouble finding a relation between the movement at centre and edge of a circle, Im doing for panning world map,my map extent is 180,89:-180,-89, my map pans by adding change(dx,dY) to its extents and not its centre. Now a situation has arrrised where I have to move the map to a specific centre, to calculate the change in longitudes is very easy and simple, but its the change in lattitudes that has caused problem. It seems the change in centreY of map is more than the change at edge of the mapY, or simply if I have to move the map centre from 0long,0lat to 73long,33lat, for dX I simply get 73, but for dY apparently it looks 33 but if i add 33 to top of map that is 89 , it will be 122 which is incorrect since Latitudes are between 90 and -90 . It seems a case a projection of a circle on 2D plane where the edge of circle since is moving backward due to angle expereinces less change and the centre expereinces more change, now is there a relation between these two factors? I tried converting the difference between OriginY and destinationY into radians and then add to Top and Bottom of Map, but it did'nt really work for me. Please note that the map is project on a virtual canvas whose width starts from 256 and increases by 256*2^z , z=0 is default and whole world is visible at that extent of canvas code: public void moveMapTo(double destinationLongitude,double destinationLattitude) // moves map to the new centre { double dXLong=destinationLongitude-centreLongitude; double atanhsinO = atanh(Math.sin(destinationLattitude * Math.PI / 180.00)); double atanhsinD = atanh(Math.sin(centreLatitude * Math.PI / 180.00)); double atanhCentre = (atanhsinD + atanhsinO) / 2; double latitudeSpan =destinationLattitude - centreLatitude; double radianOfCentreLatitude = Math.atan(Math.sinh(atanhCentre)); double dXLat=latitudeSpan / Math.cos(radianOfCentreLatitude); dXLat*=getLattitudeSpan()*(Math.PI/180); <--- HERE IS THE PORBLEM System.out.println("dxLong:"+dXLong+"_dxLat:"+dXLat); mapLeft+=dXLong; mapRight+=dXLong; mapTop+=dXLat; mapBottom+=dXLat; } ////latitude span function private double getLattitudeSpan() { double latitudeSpan = mapTop - mapBottom; latitudeSpan = latitudeSpan / Math.cos(radianOfCentreLatitude); return Math.abs(latitudeSpan); } //ht

    Read the article

  • how can we use AsynCallback method of web service in asp.net

    - by sameer
    Hi All, I was going through the proxy class which is generated using wsdl.exe found the asyncmethod like BeginAsynXXX() and EndAsyncXXX(). i understood how to utilize them on Windows application but i was wondering how can we use them in Web Application built using asp.net here is the code for web service client build as windows application.can any tell me how we can do this with web application. using System; using System.Runtime.Remoting.Messaging; using MyFactorize; class TestCallback { public static void Main(){ long factorizableNum = 12345; PrimeFactorizer pf = new PrimeFactorizer(); //Instantiate an AsyncCallback delegate to use as a parameter //in the BeginFactorize method. AsyncCallback cb = new AsyncCallback(TestCallback.FactorizeCallback); // Begin the Async call to Factorize, passing in our // AsyncCalback delegate and a reference // to our instance of PrimeFactorizer. IAsyncResult ar = pf.BeginFactorize(factorizableNum, cb, pf); // Keep track of the time it takes to complete the async call // as the call proceeds. int start = DateTime.Now.Second; int currentSecond = start; while (ar.IsCompleted == false){ if (currentSecond < DateTime.Now.Second) { currentSecond = DateTime.Now.Second; Console.WriteLine("Seconds Elapsed..." + (currentSecond - start).ToString() ); } } // Once the call has completed, you need a method to ensure the // thread executing this Main function // doesn't complete prior to the call-back function completing. Console.Write("Press Enter to quit"); int quitchar = Console.Read(); } // Set up a call-back function that is invoked by the proxy class // when the asynchronous operation completes. public static void FactorizeCallback(IAsyncResult ar) { // You passed in our instance of PrimeFactorizer in the third // parameter to BeginFactorize, which is accessible in the // AsyncState property. PrimeFactorizer pf = (PrimeFactorizer) ar.AsyncState; long[] results; // Get the completed results. results = pf.EndFactorize(ar); //Output the results. Console.Write("12345 factors into: "); int j; for (j = 0; j<results.Length;j++){ if (j == results.Length - 1) Console.WriteLine(results[j]); else Console.Write(results[j] + ", "); } } }

    Read the article

  • Can GPU capabilities impact virtual machine performance?

    - by Dave White
    While this many not seem like a programming question directly, it impacts my development activities and so it seems like it belongs here. It seems that more and more developers are turning to virtual environments for development activities on their computers, SharePoint development being a prime example. Also, as a trainer, I have virtual training environments for all of the classes that I teach. I recently purchased a new Dell E6510 to travel around with. It has the i7 620M (Dual core, HyperThreaded cpu running at 2.66GHz) and 8 GB of memory. Reading the spec sheet, it sounded like it would be a great laptop to carry around and run virtual machines on. Getting the laptop though, I've been pretty disappointed with the user experience of developing in a virtual machine. Giving the Virtual Machine 4 GB of memory, it was slow and I could type complete sentences and watch the VM "catchup". My company has training laptops that we provide for our classes. They are Dell Precision M6400 Intel Core 2 Duo P8700 running at 2.54Ghz with 8 GB of memory and the experience on this laptops is night and day compared to the E6510. They are crisp and you barely aware that you are running in a virtual environment. Since the E6510 should be faster in all categories than the M6400, I couldn't understand why the new laptop was slower, so I did a component by component comparison and the only place where the E6510 is less performant than the M6400 is the graphics department. The M6400 is running a nVidia FX 2700m GPU and the E6510 is running a nVidia 3100M GPU. Looking at benchmarks of the two GPUs suggest that the FX 2700M is twice as fast as the 3100M. http://www.notebookcheck.net/Mobile-Graphics-Cards-Benchmark-List.844.0.html 3100M = 111th (E6510) FX 2700m = 47th (Precision M6400) Radeon HD 5870 = 8th (Alienware) The host OS is Windows 7 64bit as is the guest OS, running in Virtual Box 3.1.8 with Guest Additions installed on the guest. The IDE being used in the virtual environment is VS 2010 Premium. So after that long setup, my question is: Is the GPU significantly impacting the virtual machine's performance or are there other factors that I'm not looking at that I can use to boost the vm's performance? Do we now have to consider GPU performance when purchasing laptops where we expect to use virtualized development environments? Thanks in advance. Cheers, Dave

    Read the article

  • Executing a .NET Managed Assembly from SQL Server 2008 - Pro's, Con's & Recommendations

    - by RPM1984
    Hi guys, looking for opinions/recommendations/links for the following scenario im currently facing. The Platform: .NET 4.0 Web Application SQL Server 2008 The Task: Overhaul a component of the system that performs (fairly) complex mathematical operations based on a specific user activity, and updates numerous tables in the database. A common user activity might be "Bob" decides to post a forum topic. This results in (the end-solution) needing to look at various factors (about the post he did), then after doing some math based on lookup values/ratios as well as other data in the database, inserting some other data as a result of these operations. The Options: Ok - so here's what im thinking. Although it would be much easier to do this in C# (LINQ-SQL) it doesnt make much sense as the majority of the computations are based on values in the db, and it will get difficult to control/optimize/debug the LINQ over time. Hence, im leaning towards created a managed assembly (C# Class Library) that contains the lookup values (constants) as well as leveraging the math classes in the existing .NET BCL. Basically i'd expose a few methods that can be called by the T-SQL Stored Procedures. This to me has the following advantages: Simplicity of math. Do complex math in .NET vs complex math in T-SQL. No brainer. =) Abstraction of computatations, configurable "lookup" values and business logic from raw T-SQL. T-SQL only needs to care about the data, simplifying the stored procedures and making it easier to maintain. When it needs to do math it delegates off to the managed assembly. So, having said that - ive never done this before (call .NET assmembly from T-SQL), and after some googling the best site i could come up with is here, which is useful but outdated. So - what am i asking? Well, firstly - i need some better references on how to actually do this. "This" being how to call a C# .NET 4 Assembly from within T-SQL Stored Procedures in SQL Server 2008. Secondly, who out there has done this, what problems (if any) did you face? Realize this may be difficult to provide a "correct answer", so ill try to give it to whoever gives me the answer with a combination of good links and a list of pro's/con's/problems with this implementation. Cheers!

    Read the article

  • Codeigniter validation help

    - by Drew McGhie
    I'm writing a system where users can generate/run queries on demand based on the values of 4 dropdown lists. The lists are dynamically generated based on a number of factors, but at this point, I'm having problems validating the input using codeigniter's built in validation classes. I think I have things out of order, and I've tried looking at the codeigniter site, but I think I'm tripping myself up. in my view(/dashboard/dashboard_index.php), I have the following code block: <?=form_open('dashboard/dashboard_add');?> <select ... name='selMetric'> <select ... name='selPeriod'> <select ... name='selSpan'> <select ... name='selTactic'> <input type="submit" name="submit_new_query" value="Add New Graph" class="minbutton" ></input> <?=form_close();?> Then in my controller, I have the following 2 methods: function index() { $this->load->helper(array('form', 'url')); $this->load->library('validation'); //population of $data $this->load->tile('dashboard/dashboard_index', $data); } function dashboard_add() { $rules['selMetric'] = "callback_sel_check"; $rules['selPeriod'] = "callback_sel_check"; $rules['selSpan'] = "callback_sel_check"; $rules['selTactic'] = "callback_sel_check"; $this->validation->set_rules($rules); $fields['selMetric'] = "Metric"; $fields['selPeriod'] = "Time Period"; $fields['selSpan'] = "Time Span"; $fields['selTactic'] = "Tactic"; $this->validation->set_fields($fields); if ($this->validation->run() == false) { $this->index(); } else { //do stuff with validation information } } Here's my issue. I can get the stuff to validate correctly, but for the number of errors I have, I get Unable to access an error message corresponding to your field name. as the error message for everything. I think my issue that I have the $rules and $fields stuff in the wrong place, but I've tried a few permutations and I just keep getting it wrong. I was hoping I could get some advice on the correct place to put things.

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36  | Next Page >