Search Results

Search found 5287 results on 212 pages for 'pseudo frame'.

Page 32/212 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • Framed Office Web Apps SharePoint 2010

    - by webbes
    Unfortunately the X-Frame header, that is added by the Office Web Apps service, prevents Internet Explorer to render office documents in an I-Frame! To solve this we've create a very simple HttpModule that checks for the header and changes the value from "DENY" to "SAMEORIGIN". This post simply shows the code for such a module that enables previewing of documents with Office Web Apps inside an I-Frame....(read more)

    Read the article

  • Making a full-screen animation on Android? Should I use OPENGL?

    - by Roger Travis
    Say I need to make several full-screen animation that would consist of about 500+ frames each, similar to the TalkingTom app ( https://play.google.com/store/apps/details?id=com.outfit7.talkingtom2free ). Animation should be playing at a reasonable speed - supposedly not less, then 20fps - and pictures should be of a reasonable quality, not overly compressed. What method do you think should I use? So far I tried: storing each frame as a compressed JPEG before animation starts, loading each frame into a byteArray as the animation plays, decode corresponding byteArray into a bitmap and draw it on a surface view. Problem - speed is too low, usually about 5-10 FPS. I have thought of two other options. turning all animations into one movie file... but I guess there might be problems with starting, pausing and seeking to the exactly right frame... what do you think? another option I thought about was using OPENGL ( while I never worked with it before ), to play animation frame by frame. What do you think, would opengl be able to handle it? Thanks!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • A good way in .NET Winforms to have user entered time frame?

    - by Ben
    Hi, Does anyone know of a good way to have a user enter an amount of time (hours and minutes) using winforms controls? At the moment I have two numeric up downs, one for time and one for minutes that I then parse to create a timespan. The only other idea I have is a text box that a user can enter a "00:00" time in, and validate the input. Both of these ways seem a bit bad (in UI terms) though. Any ideas? Thanks

    Read the article

  • Exporting the frames in a Flash CS5.5 animation and possibly creating the spritesheet

    - by Adam Smith
    Some time ago, I asked a question here to know what would be the best way to create animations when making an Android game and I got great answers. I did what people told me there by exporting each frame from a Flash animation manually and creating the spritesheet also manually and it was very tedious. Now, I changed project and this one is going to contain a lot more animations and I feel like there has to be a better way to to export each frame individually and possibly create my spritesheets in an automated manner. My designer is using Flash CS5.5 and I was wondering if all of this was possible, as I can't find an option or code examples on how to save each frame individually. If this is not possible using Flash, please recommend me another program that can be used to create animations without having to create each frame on its own. I'd rather keep Flash as my designer knows how to use it and it's giving great results.

    Read the article

  • How do I get Emacs to evaluate a file when a frame is raised?

    - by Brad Wright
    Basically I have my Emacs set up so it has a GUI specific elisp, but when starting it in daemon mode this doesn't evaluate. The code is something like: ;; gui.el (when window-system (progn ;; do stuff here )) I'd like this file (or at least the code within it—perhaps a funtion) to be re-evaluated when I run emacsclient -c on the command line, as I miss out on all my font-lock and color-theme goodness (as I have that stuff set to runonly when a GUI exists).

    Read the article

  • In C, do braces act as a stack frame?

    - by Claudiu
    If I create a variable within a new set of curly braces, is that variable popped off the stack on the closing brace, or does it hang out until the end of the function? For example: void foo() { int c[100]; { int d[200]; } //code that takes a while return; } Will d be taking up memory during the code that takes a while section?

    Read the article

  • A good way in Visual Studio to have user entered time frame?

    - by Ben
    Hi, Does anyone know of a good way to have a user enter an amount of time (hours and minutes) using visual studio controls? At the moment i have two numeric up downs, one for time and one for minutes that i then parse to create a timespan. The only other idea i have is a text box that a user can enter a "00:00" time in, and validate the input. Both of these ways seem a bit bad (in UI terms) though. Any ideas? Thanks

    Read the article

  • Issues loading Jquery (Galleria) script from inside an i-frame (beginner javascript?)

    - by 103188530284789248582
    Hello, first of all - I'm not entirely new to javascript, but am not fluent in it as I am with html and css, and am especially new to jQuery... so please excuse me if this questions seems easy or obvious, but after days of google I still have no solution to the problem... using jQuery 1.4.2.min, jQuery-ui-1.8.1 .... the site in question: http://homecapture.ca/sets/project_index.html The scenario: I have a tabbed menu generated from an unordered list, when a menu item is clicked it reveals an iframe which links to the page containing an image gallery. I am using jQuery UI tabs for the tabbed menu, and the galleries to which I'm linking are jQuery Galleria pages, automatically generated with Jalbum. The problem: The galleria plug-in only works normally from inside of the containing iframe in Chrome, has inconsistent behaviour in IE8 (seems to work in my local copy, but won't load properly online), and is not loaded properly in Firefox. Instead of displaying a thumbnail area and the first large image, the Galleria page shows the first thumbnail only, then when it is clicked the image it links to, but if you right-click and go Back, the iframe content shows up as a properly rendered Galleria page. Jalbum generates more script in the < head of the page in addition to linking to jquery and the galleria plug-in. All of it seems to be in charge of the gallery navigation , and I have relocated it to the < body of the page, in an effort to make it load after the parent page scripts, and together with the gallery content. At this point I am not sure what else I could do to solve the problem, without digging around in all or some of the library and pluging .js files (which I am not knowledgeable enough to do without some pointers). Has anyone dealt with a similar issue? I'm seeing some solutions for manipulating iframe content from a parent page with jQuery on here, is that what I should be researching instead? Thanks in advance for all the help! ps. I tried posting some code, but it seems I do not have enough 'reputation' for things to work right on here either :)

    Read the article

  • C#/.NET Little Wonders: Getting Caller Information

    - by James Michael Hare
    Originally posted on: http://geekswithblogs.net/BlackRabbitCoder/archive/2013/07/25/c.net-little-wonders-getting-caller-information.aspx Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. There are times when it is desirable to know who called the method or property you are currently executing.  Some applications of this could include logging libraries, or possibly even something more advanced that may server up different objects depending on who called the method. In the past, we mostly relied on the System.Diagnostics namespace and its classes such as StackTrace and StackFrame to see who our caller was, but now in C# 5, we can also get much of this data at compile-time. Determining the caller using the stack One of the ways of doing this is to examine the call stack.  The classes that allow you to examine the call stack have been around for a long time and can give you a very deep view of the calling chain all the way back to the beginning for the thread that has called you. You can get caller information by either instantiating the StackTrace class (which will give you the complete stack trace, much like you see when an exception is generated), or by using StackFrame which gets a single frame of the stack trace.  Both involve examining the call stack, which is a non-trivial task, so care should be done not to do this in a performance-intensive situation. For our simple example let's say we are going to recreate the wheel and construct our own logging framework.  Perhaps we wish to create a simple method Log which will log the string-ified form of an object and some information about the caller.  We could easily do this as follows: 1: static void Log(object message) 2: { 3: // frame 1, true for source info 4: StackFrame frame = new StackFrame(1, true); 5: var method = frame.GetMethod(); 6: var fileName = frame.GetFileName(); 7: var lineNumber = frame.GetFileLineNumber(); 8: 9: // we'll just use a simple Console write for now 10: Console.WriteLine("{0}({1}):{2} - {3}", 11: fileName, lineNumber, method.Name, message); 12: } So, what we are doing here is grabbing the 2nd stack frame (the 1st is our current method) using a 2nd argument of true to specify we want source information (if available) and then taking the information from the frame.  This works fine, and if we tested it out by calling from a file such as this: 1: // File c:\projects\test\CallerInfo\CallerInfo.cs 2:  3: public class CallerInfo 4: { 5: Log("Hello Logger!"); 6: } We'd see this: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! This works well, and in fact CallStack and StackFrame are still the best ways to examine deeper into the call stack.  But if you only want to get information on the caller of your method, there is another option… Determining the caller at compile-time In C# 5 (.NET 4.5) they added some attributes that can be supplied to optional parameters on a method to receive caller information.  These attributes can only be applied to methods with optional parameters with explicit defaults.  Then, as the compiler determines who is calling your method with these attributes, it will fill in the values at compile-time. These are the currently supported attributes available in the  System.Runtime.CompilerServices namespace": CallerFilePathAttribute – The path and name of the file that is calling your method. CallerLineNumberAttribute – The line number in the file where your method is being called. CallerMemberName – The member that is calling your method. So let’s take a look at how our Log method would look using these attributes instead: 1: static int Log(object message, 2: [CallerMemberName] string memberName = "", 3: [CallerFilePath] string fileName = "", 4: [CallerLineNumber] int lineNumber = 0) 5: { 6: // we'll just use a simple Console write for now 7: Console.WriteLine("{0}({1}):{2} - {3}", 8: fileName, lineNumber, memberName, message); 9: } Again, calling this from our sample Main would give us the same result: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! However, though this seems the same, there are a few key differences. First of all, there are only 3 supported attributes (at this time) that give you the file path, line number, and calling member.  Thus, it does not give you as rich of detail as a StackFrame (which can give you the calling type as well and deeper frames, for example).  Also, these are supported through optional parameters, which means we could call our new Log method like this: 1: // They're defaults, why not fill 'em in 2: Log("My message.", "Some member", "Some file", -13); In addition, since these attributes require optional parameters, they cannot be used in properties, only in methods. These caveats aside, they do let you get similar information inside of methods at a much greater speed!  How much greater?  Well lets crank through 1,000,000 iterations of each.  instead of logging to console, I’ll return the formatted string length of each.  Doing this, we get: 1: Time for 1,000,000 iterations with StackTrace: 5096 ms 2: Time for 1,000,000 iterations with Attributes: 196 ms So you see, using the attributes is much, much faster!  Nearly 25x faster in fact.  Summary There are a few ways to get caller information for a method.  The StackFrame allows you to get a comprehensive set of information spanning the whole call stack, but at a heavier cost.  On the other hand, the attributes allow you to quickly get at caller information baked in at compile-time, but to do so you need to create optional parameters in your methods to support it. Technorati Tags: Little Wonders,CSharp,C#,.NET,StackFrame,CallStack,CallerFilePathAttribute,CallerLineNumberAttribute,CallerMemberName

    Read the article

  • Building a webserver, client doesn't acknowledge HTTP 200 OK frame.

    - by Evert
    Hi there, I'm building my own webserver based on a tutorial. I have found a simple way to initiate a TCP connection and send one segment of http data (the webserver will run on a microcontroller, so it will be very small) Anyway, the following is the sequence I need to go through: receive SYN send SYN,ACK receive ACK (the connection is now established) receive ACK with HTTP GET command send ACK send FIN,ACK with HTTP data (e.g 200 OK) receive FIN,ACK <- I don't recieve this packet! send ACK Everything works fine until I send my acknowledgement and HTTP 200 OK message. The client won't send an acknowledgement to those two packages and thus no webpage is being displayed. I've added a pcap file of the sequence how I recorded it with wireshark. Pcap file: http://cl.ly/5f5 (now it's the right data) All sequence and acknowledgement numbers are correct, checksum are ok. Flags are also right. I have no idea what is going wrong.

    Read the article

  • My view is displaying y=-20 dispite its frame set to y=0. After rotation it snaps back to y=0

    - by jamone
    I started by creating a universal window based app. Starting with the iPhone version I created a UIViewController and associated nib. My App delegate: rootViewController = [[RootViewController alloc] initWithNibName:nil bundle:nil]; [window makeKeyAndVisible]; [window addSubview:rootViewController.view]; return YES; My RootViewController: - (void)viewDidLoad { [super viewDidLoad]; adBannerView = [[ADBannerView alloc] initWithFrame:CGRectZero]; [self.view addSubview:adBannerView]; } I've tried instanciating buttons instead of the adBanner and I get the same result. My RootViewController's nib has not been changed since x-code created it for me. My MainWindow_iPhone.xib also is stock. What's causing this?

    Read the article

  • which flash 3d particle engine generate such xml file

    - by Huang F. Lei
    I found some particle config files like below one, but I don't know which flash 3d particle engine use them, they are different from away3d's which use 'root' as root element of xml. <effect pos="0 0 0"> <property cache="1" lifetime="10000"/> <mesh blendmode="add"> <path> <frame y="100" durtime="1000" x="0" z="0"/> </path> <scale> <frame y="0.2000000001" durtime="300" x="2.2" z="2.2"/> <frame y="0.4" durtime="300" x="2.7" z="2.7"/> </scale> </mesh> <vibrate delayTime="100" amplitude="10" durationTime="750" intension="50"/> <quad billboard="false" > </quad> <particle global="false" pos=""> <scale> <frame y="1" durtime="0" x="1" z="1"/> <frame y="1" durtime="2000" x="1.5" z="1.5"/> </scale> </particle> </effect>

    Read the article

  • How can I convert .mp4 files to .3gp using ffmpeg?

    - by harisibrahimkv
    I would like to download a few videos from youtube and convert them to 3gp so that I can play them on my phone. I would like to know how this can be done using ffmpeg. I tried the various results on the net only to get the following errors. I used: ffmpeg -i dil.mp4 -sameq -ab 64k -ar 44100 dilenada.3gp I got: Unsupported codec for output stream #0.1 Seems stream 0 codec frame rate differs from container frame rate: 2000.00 (2000/1) - 29.92 (359/12) I used: ffmpeg -y -i dil.mp4 -r 20 -s 352x288 -b 400k -acodec libfaac -ac 1 -ar 2000 -ab 24k dilenada.3gp I got: Seems stream 0 codec frame rate differs from container frame rate: 2000.00 (2000/1) -> 29.92 (359/12) Unknown encoder 'libfaac' What am I doing wrong?

    Read the article

  • Finding Missing UDP Frames Using Wireshark + Custom Dissector (for CQS)

    - by John Dibling
    How do you use Wireshark to identify missing UDP frames? I have written a custom dissector for the CQS feed (reference page). One of our servers gaps when receiving this feed. According to Wireshark, some UDP frames are never received. I know that the frames were sent because all of our other servers are gap-free. A CQS frame consists of multiple messages, each having its own sequence number. My custom dissector provides the following data to Wireshark: cqs.frame_gaps - the number of gaps within a UDP frame (always zero) cqs.frame_first_seq - the first sequence number in a UDP frame cqs.frame_expected_seq - the first sequence number expected in the next UDP frame cqs.frame_msg_count - the number of messages in this UDP frame And I am displaying each of these values in custom columns, as shown in this screenshot: A typical CQS log will consist of millions of rows, so I can't just eyeball it. Is there any way I can get Wireshark to tell me which frames are missing?

    Read the article

  • How do I ensure that a JPanel Shrinks when the parent frame is resized?

    - by dah
    I have a basic notes panel that I'm looking to shrink the width of when the parent jframe is resized but it isn't happening. I'm using nested gridbaglayouts. package com.protocase.notes.views; import com.protocase.notes.controller.NotesController; import com.protocase.notes.model.Subject; import com.protocase.notes.model.Note; import com.protocase.notes.model.database.PMSNotesAdapter; import java.awt.Color; import java.awt.GridBagConstraints; import java.awt.GridBagLayout; import javax.swing.BorderFactory; import javax.swing.JButton; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.JScrollPane; /** * @author DavidH */ public class NotesViewer extends JPanel { // <editor-fold defaultstate="collapsed" desc="Attributes"> private Subject subject; private NotesController controller; //</editor-fold> // <editor-fold defaultstate="collapsed" desc="Getters N' Setters"> /** * Gets back the current subject. * @return */ public Subject getSubject() { return subject; } public NotesController getController() { return controller; } public void setController(NotesController controller) { this.controller = controller; } /** * Should clear the panel of the current subject and load the details for * the other object. * @param subject */ public void setSubject(Subject subject) { this.subject = subject; } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="Constructor"> /** * -- Sets up a note viewer with a subject and a controller. Likely this * would be the constructor used if you were passing off from another * NoteViewer or something else that used a notes adapter or controller. * @param subject * @param controller */ public NotesViewer(Subject subject, NotesController controller) { this.subject = subject; this.controller = controller; initComponents(); } /** * -- Sets up a note view with a subject and creates a new controller. This * would be the constructor typically chosen if choosing notes was * infrequent and only one or two notes needs to be displayed. * @param subject */ public NotesViewer(Subject subject) { this(subject, new NotesController(new PMSNotesAdapter())); } /** * -- Sets up a note view without a subject and creates a new controller. * This would be for a note viewer without any notes, perhaps populating * as you choose values in another form. * @param subject */ public NotesViewer() { this(null); } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="initComponents()"> /** * Sets up the view for the NotesViewer */ private void initComponents() { // -- Make a new panel for the header JPanel panel = new JPanel(); panel.setLayout(new GridBagLayout()); GridBagConstraints c = new GridBagConstraints(); c.gridx = 0; c.fill = GridBagConstraints.HORIZONTAL; c.gridy = 0; c.weightx = .5; //c.anchor = GridBagConstraints.NORTHWEST; JLabel label = new JLabel("Viewing Notes for [Subject]"); label.setAlignmentX(JLabel.LEFT_ALIGNMENT); label.setBorder(BorderFactory.createLineBorder(Color.YELLOW)); panel.add(label); JButton newNoteButton = new JButton("New"); c = new GridBagConstraints(); // c.fill = GridBagConstraints.HORIZONTAL; c.gridx = 1; c.gridy = 0; c.weightx = .5; c.anchor = GridBagConstraints.EAST; panel.add(newNoteButton, c); // -- NotePanels c = new GridBagConstraints(); c.fill = GridBagConstraints.HORIZONTAL; c.weightx = 1; c.weighty = 1; c.gridx = 0; c.gridwidth = 2; int y = 1; for (Note n : subject.getNotes()) { c.gridy = y++; panel.add(new NotesPanel(n, controller), c); } this.setLayout(new GridBagLayout()); GridBagConstraints pc = new GridBagConstraints(); pc.gridx = 0; pc.gridy = 0; pc.weightx = 1; pc.weighty = 1; pc.fill = GridBagConstraints.BOTH; panel.setBackground(Color.blue); JScrollPane scroll = new JScrollPane(); scroll.setViewportView(panel); //scroll.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER); this.add(scroll, pc); //this.add(panel, pc); // -- Add it all to the layout } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="private methods"> //</editor-fold> } package com.protocase.notes.views; import com.protocase.notes.controller.NotesController; import com.protocase.notes.model.Note; import java.awt.CardLayout; import java.awt.Color; import java.awt.Component; import java.awt.Dimension; import java.awt.GridBagConstraints; import java.awt.GridBagLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.text.DateFormat; import java.text.SimpleDateFormat; import javax.swing.BorderFactory; import javax.swing.JButton; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.JScrollPane; import javax.swing.JTextArea; import javax.swing.JTextField; import javax.swing.border.BevelBorder; import javax.swing.border.Border; import javax.swing.border.MatteBorder; /** * @author dah01 */ public class NotesPanel extends JPanel { // <editor-fold defaultstate="collapsed" desc="Attributes"> private Note note; private NotesController controller; private CardLayout cardLayout; private JTextArea viewTextArea; private JTextArea editTextArea; //</editor-fold> // <editor-fold defaultstate="collapsed" desc="Getters N' Setters"> public NotesController getController() { return controller; } public void setController(NotesController controller) { this.controller = controller; } public Note getNote() { return note; } public void setNote(Note note) { this.note = note; } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="Constructor"> /** * Sets up a note panel that shows everything about the note. * @param note */ public NotesPanel(Note note, NotesController controller) { this.note = note; cardLayout = new CardLayout(); this.setLayout(cardLayout); // -- Setup the layout manager. this.setBackground(new Color(199, 187, 192)); this.setBorder(new BevelBorder(BevelBorder.RAISED)); // -- ViewPanel this.add("ViewPanel", initViewPanel()); this.add("EditPanel", initEditPanel()); } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="EditPanel"> private JPanel initEditPanel() { JPanel editPanel = new JPanel(); editPanel.setLayout(new GridBagLayout()); GridBagConstraints c = new GridBagConstraints(); c.fill = GridBagConstraints.HORIZONTAL; c.gridy = 0; c.weightx = 1; c.weighty = 0.3; editPanel.add(initCreatorLabel(), c); c.gridy++; editPanel.add(initEditTextScroll(), c); c.gridy++; c.anchor = GridBagConstraints.WEST; c.fill = GridBagConstraints.NONE; editPanel.add(initEditorLabel(), c); c.gridx++; c.anchor = GridBagConstraints.EAST; editPanel.add(initSaveButton(), c); return editPanel; } private JScrollPane initEditTextScroll() { this.editTextArea = new JTextArea(note.getContents()); editTextArea.setLineWrap(true); editTextArea.setWrapStyleWord(true); JScrollPane scrollPane = new JScrollPane(editTextArea); scrollPane.setAlignmentX(JScrollPane.LEFT_ALIGNMENT); Border b = scrollPane.getViewportBorder(); MatteBorder mb = BorderFactory.createMatteBorder(2, 2, 2, 2, Color.BLUE); scrollPane.setBorder(mb); return scrollPane; } private JButton initSaveButton() { final CardLayout l = this.cardLayout; final JPanel p = this; final NotesController c = this.controller; final Note n = this.note; final JTextArea noteText = this.viewTextArea; final JTextArea textToSubmit = this.editTextArea; ActionListener al = new ActionListener() { @Override public void actionPerformed(ActionEvent e) { //controller.saveNote(n); noteText.setText(textToSubmit.getText()); l.next(p); } }; JButton saveButton = new JButton("Save"); saveButton.addActionListener(al); saveButton.setPreferredSize(new Dimension(62, 26)); return saveButton; } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="ViewPanel"> private JPanel initViewPanel() { JPanel viewPanel = new JPanel(); viewPanel.setLayout(new GridBagLayout()); GridBagConstraints c = new GridBagConstraints(); c.fill = GridBagConstraints.HORIZONTAL ; c.gridy = 0; c.weightx = 1; c.weighty = 0.3; viewPanel.add(initCreatorLabel(), c); c.gridy++; viewPanel.add(this.initNoteTextArea(), c); c.fill = GridBagConstraints.NONE; c.anchor = GridBagConstraints.WEST; c.gridy++; viewPanel.add(initEditorLabel(), c); c.gridx++; c.anchor = GridBagConstraints.EAST; viewPanel.add(initEditButton(), c); return viewPanel; } private JLabel initCreatorLabel() { DateFormat formatter = new SimpleDateFormat("yyyy-MM-dd"); if (note != null) { String noteBy = "Note by " + note.getCreator(); String noteCreated = formatter.format(note.getDateCreated()); JLabel creatorLabel = new JLabel(noteBy + " @ " + noteCreated); creatorLabel.setAlignmentX(JLabel.LEFT_ALIGNMENT); return creatorLabel; } else { System.out.println("NOTE IS NULL"); return null; } } private JScrollPane initNoteTextArea() { // -- Setup the notes area. this.viewTextArea = new JTextArea(note.getContents()); viewTextArea.setEditable(false); viewTextArea.setLineWrap(true); viewTextArea.setWrapStyleWord(true); JScrollPane scrollPane = new JScrollPane(viewTextArea); scrollPane.setAlignmentX(JScrollPane.LEFT_ALIGNMENT); return scrollPane; } private JLabel initEditorLabel() { // -- Setup the edited by label. JLabel editorLabel = new JLabel(" -- Last edited by " + note.getLastEdited() + " at " + note.getDateModified()); editorLabel.setAlignmentX(Component.LEFT_ALIGNMENT); return editorLabel; } private JButton initEditButton() { final CardLayout l = this.cardLayout; final JPanel p = this; ActionListener ar = new ActionListener() { @Override public void actionPerformed(ActionEvent e) { l.next(p); } }; JButton editButton = new JButton("Edit"); editButton.setPreferredSize(new Dimension(62,26)); editButton.addActionListener(ar); return editButton; } //</editor-fold> // <editor-fold defaultstate="collapsed" desc="Grow Width When Resized"> @Override public Dimension getPreferredSize() { int fw = this.getParent().getSize().width; int fh = super.getPreferredSize().height; return new Dimension(fw,fh); } //</editor-fold> }

    Read the article

  • ffmpeg-php $frame->gdimage(); Images are created with a green/blue tint

    - by dropson
    I'm trying to create stillimages with PHP-FFMPEG; but suddenly after installing FFMPEG and FFMPEG-PHP from scratch on a brand new server, all images are created with a green and blueish tint. <?PHP $flvmov = new ffmpeg_movie("test.mp4"); $flvframe = $flvmov->getFrame(50); $flvgd = $flvframe->toGDImage(); imagepng($flvgd, "test.png", 0); imagedestroy($flvgd); ?> I've tried imagejpeg, and other video inputs without luck. Previously this worked perfectly. But now I'm stuck, and I've tried all revs between FFMPEG-PHP-0.5.1 - 0.6.1. Anyone that could think of what this could be?

    Read the article

  • facebook iframe app problem.... opens on server not in facebook frame

    - by sai teja reddy
    Hi guys, I'm very new to facebook platform. I developed an iframe app. which after allowing permsiions, opens the application on my server and not in facebook iframe. I hope i'm clear. I'm using $user = $facebook-require_login(). I read somewhere that adding $facebook-require_frame() would help but it didn't help. The page reloads with new access token on each reload. Someoe please help me. Thanks in advance

    Read the article

  • I have a BHO in c++ and i need to block some keyboard controls (Ctrl-o) in a i-frame.

    - by BHOdevelopper
    I need to know of a way to prevent the user to 'open a new url' (with Ctrl-o) as soon as he has the focus on my sidebar (right-sided iframe). In fact, my sidebar offers some controls and the user should not be able to 'navigate' to other website through the sidebar. I'm using a bho in C++ using ATL(active template library), but maybe if anyone knows of a simplier way like in JS(javascript) or PHP(Hypertext Preprocessor) ? Any ideas is appreciated. Thanks.If anyone need precisions, please ask. I'll be checking for responses every single days.

    Read the article

  • XNA - Debugging/Testing Individual Sprites and Pixel Collision

    - by kwelch
    I ran through the first training on XNA where you make a shooter game. They did some thing that I would not do and I want to use their starting point to learn more things. I want to try better collision and adding a menu. I saw something online with the sonic physics where they have a frame by frame of sonic moving 1 pixel. See picture below. I am new to development, but I have been programming for years now. What would you guys suggest to try these different things out. How would I simulate a similar frame by frame testing as they do in the above picture? Thanks!

    Read the article

  • Should we use a CSS frame work ? Are they worth it ?

    - by Gaurav M
    CSS frameworks have nice styles inbuilt and ask you to focuses on the grids but still there is a bit of dependency and lack of freedom it provide.. If I need to generate a webpage by looking on a PSD based mockup screen ..either i will use the classes provided by the framework but if that actual measurements does not exist I need to again specify my own rules that will add upto my CSS filesize and if performance is a constraint as always it is...you need not a big size file..though its in kb but every drop counts. Any comments and suggestions to use the framework in a best possible way.

    Read the article

  • Is Core Animation causing my subviews to call -drawRect for every single frame?

    - by mystify
    I made a nice UIView subclass which paints all its stuff in -drawRect:, because people said that's good. That view is a subview of another. This another view is beeing animated with Core Animation: It's scaled down, rotated and moved. However, I encountered this: -drawRect seems to get called trillion of times during animation, and performance sucks. Is that normal or did I do something wrong, probably?

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >