Search Results

Search found 25550 results on 1022 pages for 'mere development'.

Page 396/1022 | < Previous Page | 392 393 394 395 396 397 398 399 400 401 402 403  | Next Page >

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • Developing an ELO like point system for a multiplayer gaming site

    - by Alejandro Piad
    I'm currently working on a gaming site where users will submit virtual players for different games, like Chess, Nash, Backgammon, Go, etc. The idea is that users don't compete themselves, but through their virtual players. There will be leagues, tournaments, and other competition formats. The question is which would be a good rating system for users in this environment. Take into account that every user may have many different virtual players playing in many different games. As a general guideline I would like to guarantee the following properties: Users who have a lot of mediocre players should not score higher than users with a few very good players. A user with a high rating should not be penalized if he adds a new bad player, until he has had enough time to improve his player. Users who don't play often should not score higher than users who play every day. Thanks in advance.

    Read the article

  • 3d vertex translated onto 2d viewport

    - by Dan Leidal
    I have a spherical world defined by simple trigonometric functions to create triangles that are relatively similar in size and shape throughout. What I want to be able to do is use mouse input to target a range of vertices in the area around the mouse click in order to manipulate these vertices in real time. I read a post on this forum regarding translating 3d world coordinates into the 2d viewport.. it recommended that you should multiply the world vector coordinates by the viewport and then the projection, but they didn't include any code examples, and suffice to say i couldn't get any good results. Further information.. I am using a lookat method for the viewport. Does this cause a problem, and if so is there a solution? If this isn't the problem, does anyone have a simple code example illustrating translating one vertex in a 3d world into a 2d viewspace? I am using XNA.

    Read the article

  • Render an image with separate layers for shadows/reflections in 3D Studio Max?

    - by Bernd Plontsch
    I have a scene with a simple object standing on a ground in the center. Caused by lights and the ground material there is some shadow and reflection on the ground surrounding the object. How can I render an image containing 3 separate layers for the object the ground the reflection / shadow on the ground Which format to use for this (it should include all 3 layers + I should be able to enable/disable them in Photoshop)? How do I define or prepare those layers for being rendering as image layers?

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • Pygame set_colorkey transparency issues

    - by Nathan Chowning
    I'm having a strange issue that I cannot seem to remedy. I am doing some prototyping with Pygame on a desktop running windows and a laptop running OS X. Both are running python v2.7.3 (installed via homebrew for the Macbook) and pygame v1.9.1. For transparency, I have been using set_colorkey with a transparency color of (255, 0, 255). Here is the applicable code: transColor = pygame.Color(255, 0, 255) image = pygame.image.load(playerPath + "idle.png").convert() image.set_colorkey(transColor) This works flawlessly on my windows machine. On my laptop, it does not work. It just shows the hideous magenta color. Here's the strange part. If I change the transColor to (0, 0, 0), all black pixels in my images are transparent. Has anyone run into this issue before?

    Read the article

  • 2D XNA C#: Texture2D Wrapping Issue

    - by Kieran
    Working in C#/XNA for a Windows game: I'm using Texture2D to draw sprites. All of my sprites are 16 x 32. The sprites move around the screen as you would expect, by changing the top X/Y position of them when they're being drawn by the spritebatch. Most of the time when I run the game, the sprites appear like this: and when moved, they move as I expect, as one element. Infrequently they appear like this: and when moved it's like there are two sprites with a gap in between them - it's hard to describe. It only seems to happen sometimes - is there something I'm missing? I'd really like to know why this is happening. [Edit:] Adding Draw code as requested: This is the main draw routine - it first draws the sprite to a RenderTarget then blows it up by a scale of 4: protected override void Draw(GameTime gameTime) { // Draw to render target GraphicsDevice.SetRenderTarget(renderTarget); GraphicsDevice.Clear(Color.CornflowerBlue); Texture2D imSprite = null; spriteBatch.Begin(SpriteSortMode.FrontToBack, null, SamplerState.PointWrap, null, null); ManSprite.Draw(spriteBatch); base.Draw(gameTime); spriteBatch.End(); // Draw render target to screen GraphicsDevice.SetRenderTarget(null); imageFrame = (Texture2D)renderTarget; GraphicsDevice.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.DarkSlateBlue, 1.0f, 0); spriteBatch.Begin(SpriteSortMode.FrontToBack, null, SamplerState.PointClamp, null, null); spriteBatch.Draw(imageFrame, new Vector2(0, 0), null, Color.White, 0, new Vector2(0, 0), IM_SCALE, SpriteEffects.None, 0); spriteBatch.End(); } This is the draw routine for the Sprite class: public virtual void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw(Texture, new Vector2(PositionX, PositionY), null, Color.White, 0.0f, Vector2.Zero, Scale, SpriteEffects.None, 0.3f); }

    Read the article

  • Calculate an AABB for bone animated model

    - by Byte56
    I have a model that has its initial bounding box calculated by finding the maximum and minimum on the x, y and z axes. Producing a correct result like so: The vertices are then stored in a VBO and only altered with matrices for rotation and bone animation. Currently the bounds are not updated when the model is altered. So the animated and rotated model has bounds like so: (Maybe it's hard to tell, but the bounds are the same as before, and don't accurately represent the rotated/animated model) So my question is, how can I calculate the bounding box using the armature matrices and rotation/translation matrices for each model? Keep in mind the modified vertex data is not available because those calculations are performed on the GPU in the shader. The end result I want is to have an accurate AABB the represents the animated model for picking/basic collision checks.

    Read the article

  • What collision detection approach for top down car game?

    - by nathan
    I have a quite advanced top down car game and i use masks to detect collisions. I have the actual designed track (what the player see) with fancy graphics etc. and two other pictures i use as mask for my detection collisions. Each mask has only two colors, white and black and i check each frame if a pixel of the car collide with a black pixel of the masks. This approach works of course but it's not really flexible. Whenever i want to change the look of a track, i have to redraw the mask and it's a real pain. What is the general approach for this kind of game? How can i improve the flexibility of such a mask based approach?

    Read the article

  • Including slick2d or slick-util in maven build?

    - by BotskoNet
    I'm converting a project to lwjgl and trying to use slick-util as well. There's no slick-util maven repo anywhere (nor slick2d itself anymore). I've included local dependancies before using <dependency> <groupId>org.newdawn</groupId> <artifactId>slick</artifactId> <version>237</version> <scope>system</scope> <systemPath>${project.basedir}/lib/slick-util.jar</systemPath> </dependency> The maven package process runs without issue, but when I try to run the jar, it errors out with a ClassNotFoundException. There's no mention of slick-util in the manifest and I can't find out how to make my game load that jar properly. Side question: how do I ensure when I distribute my applications, the game properly installs these libraries?

    Read the article

  • how to implement motion blur effect?

    - by PlayerOne
    I wanted to know how one would implement this motion blur or fade effect behind the soccer ball . Here is what I was thinking . You have the balls current position and you also keep its previous position(couple of sec back). and you draw a "streak" sprite between the 2 points. I have seen this effect lots of time implemented for projects in various 2d games and wanted to know if there is a standard technique. http://i45.tinypic.com/2n24j7r.png

    Read the article

  • Shadow mapping: what is the light looking at?

    - by PgrAm
    I'm all set to set up shadow mapping in my 3d engine but there is one thing I am struggling to understand. The scene needs to be rendered from the light's point of view so I simply first move my camera to the light's position but then I need to find out which direction the light is looking. Since its a point light its not shining in any particular direction. How do I figure out what the orientation for the light point of view is?

    Read the article

  • Is it possible to construct a cube with fewer than 24 vertices

    - by Telanor
    I have a cube-based world like Minecraft and I'm wondering if there's a way to construct a cube with fewer than 24 vertices so I can reduce memory usage. It doesn't seem possible to me for 2 reasons: the normals wouldn't come out right and per-face textures wouldn't work. Is this the case or am I wrong? Maybe there's some fancy new DX11 tech that can help? Edit: Just to clarify, I have 2 requirements: I need surface normals for each cube face in order to do proper lighting and I need a way to address a different indexes in a texture array for each cube face

    Read the article

  • how to move the camera behind a model with the same angle? in XNA

    - by Mehdi Bugnard
    I meet are having difficulty in moving my camera behind an object in a 3D world. I would create two view mode. 1: for fps (first person). 2nd: external view behind the character (second person). I searched the net some example but it does not work in my project. Here is my code used to change view if F2 is pressed //Camera double X1 = this.camera.PositionX; double X2 = this.player.Position.X; double Z1 = this.camera.PositionZ; double Z2 = this.player.Position.Z; //Verify that the user must not let the press F2 if (!this.camera.IsF2TurnedInBoucle) { // If the view mode is the second person if (this.camera.ViewCamera_type == CameraSimples.ChangeView.SecondPerson) { this.camera.ViewCamera_type = CameraSimples.ChangeView.firstPerson; //Calcul position - ?? Here my problem double direction = Math.Atan2(X2 - X1, Z2 - Z1) * 180.0 / 3.14159265; //Calcul angle - ?? Here my problem this.camera.position = .. this.camera.rotation = .. this.camera.MouseRadian_LeftrightRot = (float)direction; } //IF mode view is first person else { //....

    Read the article

  • How to design good & continuous tiles

    - by Mikalichov
    I have trouble designing tiles so that when assembled, they don't look like tiles, but look like an homogeneous thing. For example on the image below: even though the main part of the grass is only one tile, you don't "see" the grid; you know where it is if you look a bit carefully, but it is not obvious. Whereas when I design tiles, you can only see "oh, jeez, 64 times the same tile". A bit like on that image: (taken from a gamedev.stackexchange question, sorry; no critic about the game, but it proves my point, and actually has better tile design that what I manage) I think the main problem is that I design them so they are independent, there is no junction between two tiles if put closed to each other. I think having the tiles more "continuous" would have a smoother effect, but can't manage to do it, it seems overly complex to me. I think it is probably simpler than I think once you know how to do it, but couldn't find a tutorial on that specific point. Is there a known method to design continuous / homogeneous tiles? (my terminology might be totally wrong, don't hesitate to correct me)

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Gap in parallaxing background loop

    - by CinetiK
    The bug here is that my background kind of offset a bit itself from where it should draw and so I have this line. I have some troubles understanding why I get this bug when I set a speed that is different then 1,2,4,8,16,... In main class I set the speed depending on the player speed bgSpeed = -(int)playerMoveSpeed.X / 10; and here's my background class class ParallaxingBackground { Texture2D texture; Vector2[] positions; public int Speed { get; set;} public void Initialize(ContentManager content, String texturePath, int screenWidth, int speed) { texture = content.Load<Texture2D>(texturePath); this.Speed = speed; positions = new Vector2[screenWidth / texture.Width + 2]; for (int i = 0; i < positions.Length; i++) { positions[i] = new Vector2(i * texture.Width, 0); } } public void Update() { for (int i = 0; i < positions.Length; i++) { positions[i].X += Speed; if (Speed <= 0) { if (positions[i].X <= -texture.Width) { positions[i].X = texture.Width * (positions.Length - 1); } } else { if (positions[i].X >= texture.Width*(positions.Length - 1)) { positions[i].X = -texture.Width; } } } } public void Draw(SpriteBatch spriteBatch) { for (int i = 0; i < positions.Length; i++) { spriteBatch.Draw(texture, positions[i], Color.White); } } }

    Read the article

  • AndEngine doesn't fill correctly an image on my device

    - by Guille
    I'm learning about AndEngine a little bit, I'm trying to follow a tutorial but I don't get to fill the background image correctly, so, it's just appear in one side of my screen. My device is a Galaxy Nexus (1270x768 I think...). The image is 800x480. The code is: public EngineOptions onCreateEngineOptions() { camera = new Camera(0, 0, 800, 480); EngineOptions engineOptions = new EngineOptions(true, ScreenOrientation.LANDSCAPE_FIXED, new FillResolutionPolicy(), this.camera); engineOptions.getAudioOptions().setNeedsMusic(true).setNeedsSound(true); engineOptions.getRenderOptions().setMultiSampling(true);//.getConfigChooserOptions().setRequestedMultiSampling(true); engineOptions.setWakeLockOptions(WakeLockOptions.SCREEN_ON); return engineOptions; } I have been trying with several values in the camera, but it doesn't fill in all the screen, why?

    Read the article

  • Multiplayer mobile games and coping with high latency

    - by liortal
    I'm currently researching regarding a design for an online (realtime) mobile multiplayer game. As such, i'm taking into consideration that latencies (lag) is going to be high (perhaps higher than PC/consoles). I'd like to know if there are ways to overcome this or minimize the issues of high latency? The model i'll be using is peer-to-peer (using Photon cloud to broadcast messages to all other players). How do i deal with a scenario where a message about a local object's state at time t will only get to other players at *t + HUGE_LAG* ?

    Read the article

  • rts libgdx design?

    - by user36531
    I am attempting to create a simple rts multi-player strategy game using libgdx. I am stumped at the moment. I want the underlying game world to run at all times and be aware of where all items are on the map.. so if player A logs in and moves unit to some location on the grid and logs off, that unit info is still there and can be accessed again by player A when they log back on to move somewhere else (if it didnt get attacked during the playerA was logged off). How can i do this? Do i create a main game world on the server and when players connect make client just sequentially request whats in each visible tile? Is there an easier way to get this done? Or go SQL route? Whats better?

    Read the article

  • What light attenuation function does UDK use?

    - by ananamas
    I'm a big fan of the light attenuation in UDK. Traditionally I've always used the constant-linear-quadratic falloff function to control how "soft" the falloff is, which gives three values to play with. In UDK you can get similar results, but you only need to tweak one value: FalloffExponent. I'm interested in what the actual mathematical function here is. The UDK lighting reference describes it as follows: FalloffExponent: This allows you to modify the falloff of a light. The default falloff is 2. The smaller the number, the sharper the falloff and the more the brightness is maintained until the radius is reached. Does anyone know what it's doing behind the scenes?

    Read the article

  • How would I be able to get a game over screen using the pause function?

    - by Joachim Velzel
    I am having problems with my snake game, when the snake collides with itself it draws a "game over" image in the background, but only while it's colliding with itself. I want it to behave like the pause function, so that as soon as the snake collides with itself it draws an image on the screen and stops the game play. And then how would you be able to restart or to quit the game? I just have this for the detection at the moment: if (snakeHeadRectangle.Intersects(snakeBodyRectangleArray[bodyNumber])) { spriteBatch.Draw(textureGameOver, gameOverPosition, Color.White); } Thanks

    Read the article

  • Game Clock Precision

    - by Philip
    I'm reading a fantastic article about game timer precision and here is a quote about 2/3 of the way into the article: If you start your game clock at about 4 billion (more precisely 2^32, or any large power of two) then your exponent, and hence your precision, will remain constant for the next ~4 billion seconds, or ~136 years. He doesn't give a concrete example of this though. Does this mean I would want to add 2^32 to the game clock value that I store at the beginning of each frame? Or is there a way to actually set the clock in Windows so that the numbers start at 2^32?

    Read the article

  • Displaying performance data per engine subsystem

    - by liortal
    Our game (Android based) traces how long it takes to do the world logic updates, and how long it takes to a render a frame to the device screen. These traces are collected every frame, and displayed at a constant interval (currently every 1 second). I've seen games where on-screen data of various engine subsystems is displayed, with the time they consume (either in text) or as horizontal colored bars. I am wondering how to implement such a feature?

    Read the article

  • how can I specify interleaved vertex attributes and vertex indices

    - by freefallr
    I'm writing a generic ShaderProgram class that compiles a set of Shader objects, passes args to the shader (like vertex position, vertex normal, tex coords etc), then links the shader components into a shader program, for use with glDrawArrays. My vertex data already exists in a VertexBufferObject that uses the following data structure to create a vertex buffer: class CustomVertex { public: float m_Position[3]; // x, y, z // offset 0, size = 3*sizeof(float) float m_TexCoords[2]; // u, v // offset 3*sizeof(float), size = 2*sizeof(float) float m_Normal[3]; // nx, ny, nz; float colour[4]; // r, g, b, a float padding[20]; // padded for performance }; I've already written a working VertexBufferObject class that creates a vertex buffer object from an array of CustomVertex objects. This array is said to be interleaved. It renders successfully with the following code: void VertexBufferObject::Draw() { if( ! m_bInitialized ) return; glBindBuffer( GL_ARRAY_BUFFER, m_nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, m_nVboIdIndex ); glEnableClientState( GL_VERTEX_ARRAY ); glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glEnableClientState( GL_NORMAL_ARRAY ); glEnableClientState( GL_COLOR_ARRAY ); glVertexPointer( 3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 0) ); glTexCoordPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 12)); glNormalPointer(GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 20)); glColorPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 32)); glDrawElements( GL_TRIANGLES, m_nNumIndices, GL_UNSIGNED_INT, ((char*)NULL + 0) ); glDisableClientState( GL_VERTEX_ARRAY ); glDisableClientState( GL_TEXTURE_COORD_ARRAY ); glDisableClientState( GL_NORMAL_ARRAY ); glDisableClientState( GL_COLOR_ARRAY ); glBindBuffer( GL_ARRAY_BUFFER, 0 ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 ); } Back to the Vertex Array Object though. My code for creating the Vertex Array object is as follows. This is performed before the ShaderProgram runtime linking stage, and no glErrors are reported after its steps. // Specify the shader arg locations (e.g. their order in the shader code) for( int n = 0; n < vShaderArgs.size(); n ++) glBindAttribLocation( m_nProgramId, n, vShaderArgs[n].sFieldName.c_str() ); // Create and bind to a vertex array object, which stores the relationship between // the buffer and the input attributes glGenVertexArrays( 1, &m_nVaoHandle ); glBindVertexArray( m_nVaoHandle ); // Enable the vertex attribute array (we're using interleaved array, since its faster) glBindBuffer( GL_ARRAY_BUFFER, vShaderArgs[0].nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, vShaderArgs[0].nVboIndexId ); // vertex data for( int n = 0; n < vShaderArgs.size(); n ++ ) { glEnableVertexAttribArray(n); glVertexAttribPointer( n, vShaderArgs[n].nFieldSize, GL_FLOAT, GL_FALSE, vShaderArgs[n].nStride, (GLubyte *) NULL + vShaderArgs[n].nFieldOffset ); AppLog::Ref().OutputGlErrors(); } This doesn't render correctly at all. I get a pattern of white specks onscreen, in the shape of the terrain rectangle, but there are no regular lines etc. Here's the code I use for rendering: void ShaderProgram::Draw() { using namespace AntiMatter; if( ! m_nShaderProgramId || ! m_nVaoHandle ) { AppLog::Ref().LogMsg("ShaderProgram::Draw() Couldn't draw object, as initialization of ShaderProgram is incomplete"); return; } glUseProgram( m_nShaderProgramId ); glBindVertexArray( m_nVaoHandle ); glDrawArrays( GL_TRIANGLES, 0, m_nNumTris ); glBindVertexArray(0); glUseProgram(0); } Can anyone see errors or omissions in either the VAO creation code or rendering code? thanks!

    Read the article

< Previous Page | 392 393 394 395 396 397 398 399 400 401 402 403  | Next Page >