Search Results

Search found 25550 results on 1022 pages for 'mere development'.

Page 401/1022 | < Previous Page | 397 398 399 400 401 402 403 404 405 406 407 408  | Next Page >

  • How can I calculate a vertex normal for a hard edge?

    - by K.G.
    Here is a picture of a lovely polygon: Circled is a vertex, and numbered are its adjacent faces. I have calculated the normals of those faces as such (not yet normalized, 0-indexed): Vertex 1 normal 0: 0.000000 0.000000 -0.250000 Vertex 1 normal 1: 0.000000 0.000000 -0.250000 Vertex 1 normal 2: -0.250000 0.000000 0.000000 Vertex 1 normal 3: -0.250000 0.000000 0.000000 Vertex 1 normal 4: 0.250000 0.000000 0.000000 What I'm wondering is, how can I determine, taken as given that I want this vertex to represent a hard edge, whether its normal should be the normal of 1/2 or 3/4? My plan after I glanced at the sketch I used to put this together was "Ha! I'll just use whichever two faces have the same normal!" and now I see that there are two sets of two faces for which this is true. Is there a rule I can apply based on the face winding, angle of the adjacent edges, moon phase, coin flip, to consistently choose a normal direction for this box? For the record, all of the other polygons I plan to use will have their normals dictated in Maya, but after encountering this problem, it made me really curious.

    Read the article

  • Bullet Physic: Transform body after adding

    - by Mathias Hölzl
    I would like to transform a rigidbody after adding it to the btDiscreteDynamicsWorld. When I use the CF_KINEMATIC_OBJECT flag I am able to transform it but it's static (no collision response/gravity). When I don't use the CF_KINEMATIC_OBJECT flag the transform doesn't gets applied. So how to I transform non-static objects in bullet? DemoCode: btBoxShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1)); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setCollisionFlags(body->getCollisionFlags()|btCollisionObject::CF_KINEMATIC_OBJECT); body->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addRigidBody(body); startTransform.setOrigin(SCALING*btVector3( btScalar(0), btScalar(20), btScalar(0) )); body->getMotionState()->setWorldTransform(startTransform);

    Read the article

  • importing BaseGameUtils library

    - by David
    Hey :) I am trying to add the BaseGameUtils library to my workspace, I am using this guide: https://developers.google.com/games/services/android/init , I have downloaded from here :https://developers.google.com/games/services/downloads/ The BaseGameUtils sample but when I am trying to import it using Eclipse it gives me so many wrong things like Main,MainActivity and not the real BaseGameUtils, what is wrong here?

    Read the article

  • How can I convert a 2D bitmap (Used for terrain) to a 2D polygon mesh for collision?

    - by Megadanxzero
    So I'm making an artillery type game, sort of similar to Worms with all the usual stuff like destructible terrain etc... and while I could use per-pixel collision that doesn't give me collision normals or anything like that. Converting it all to a mesh would also mean I could use an existing physics library, which would be better than anything I can make by myself. I've seen people mention doing this by using Marching Squares to get contours in the bitmap, but I can't find anything which mentions how to turn these into a mesh (Unless it refers to a 3D mesh with contour lines defining different heights, which is NOT what I want). At the moment I can get a basic Marching Squares contour which looks something like this (Where the grid-like lines in the background would be the Marching Squares 'cells'): That needs to be interpolated to get a smoother, more accurate result but that's the general idea. I had a couple ideas for how to turn this into a mesh, but many of them wouldn't work in certain cases, and the one which I thought would work perfectly has turned out to be very slow and I've not even finished it yet! Ideally I'd like whatever I end up using to be fast enough to do every frame for cases such as rapidly-firing weapons, or digging tools. I'm thinking there must be some kind of existing algorithm/technique for turning something like this into a mesh, but I can't seem to find anything. I've looked at some things like Delaunay Triangulation, but as far as I can tell that won't correctly handle concave shapes like the above example, and also wouldn't account for holes within the terrain. I'll go through the technique I came up with for comparison and I guess I'll see if anyone has a better idea. First of all interpolate the Marching Squares contour lines, creating vertices from the line ends, and getting vertices where lines cross cell edges (Important). Then, for each cell containing vertices create polygons by using 2 vertices, and a cell corner as the 3rd vertex (Probably the closest corner). Do this for each cell and I think you should have a mesh which accurately represents the original bitmap (Though there will only be polygons at the edges of the bitmap, and large filled in areas in between will be empty). The only problem with this is that it involves lopping through every pixel once for the initial Marching Squares, then looping through every cell (image height + 1 x image width + 1) at least twice, which ends up being really slow for any decently sized image...

    Read the article

  • Balancing game difficulty against player progression

    - by Raven Dreamer
    It seems that the current climate of games seems to cater to an obvious progression of player power, whether that means getting a bigger, more explosive gun in Halo, leveling up in an RPG, or unlocking new options in Command and Conquer 4. Yet this concept is not exclusive to video or computer games -- even in Dungeons and Dragons players can strive to acquire a +2 sword to replace the +1 weapon they've been using. Yet as a systems designer, the concept of player progression is giving me headache after headache. Should I balance around the players exact capabilities and give up on a simple linear progression? (I think ESIV:Oblivion is a good example of this) Is it better to throw the players into an "arms race" with their opponents, where if the players don't progress in an orderly manner, it is only a matter of time until gameplay is unbearably difficult? (4th Edition DnD strikes me as a good example of this) Perhaps it would make most sense to untether the core gameplay mechanics from progression at all -- give them flashier, more interesting (but not more powerful!) ways to grow?

    Read the article

  • Model View Control Issue: Null Pointer Initialization Question

    - by David Dimalanta
    Good morning again. This is David. Please, I need an urgent help regarding control model view where I making a code that uniquely separating into groups: An Activity Java Class to Display the Interface A View and Function Java Class for Drawing Cards and Display it on the Activity Class The problem is that the result returns a Null Pointer Exception. I have initialize for the ID for Text View and Image View. Under this class "draw_deck.java". Please help me. Here's my code for draw_deck.java: package com.bodapps.inbetween.model; import android.content.Context; import android.view.View; import android.widget.ImageView; import android.widget.TextView; import com.bodapps.inbetween.R; public class draw_deck extends View { public TextView count_label; public ImageView draw_card; private int count; public draw_deck(Context context) { super(context); // TODO Auto-generated constructor stub //I have initialized two widgets for ID. I still don't get it why I got forced closed by Null Pointer Exception thing. draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); count_label = (TextView) findViewById(R.id.Text_View_Count_Card); } public void draw(int s, int c, String strSuit, String strValue, Pile pile, Context context) { //super(context); //Just printing the card drawn from pile int suit, value = 1; draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); count_label = (TextView) findViewById(R.id.Text_View_Count_Card); Card card; if(!pile.isEmpty()) //Setting it to IF statement displays the card one by one. { card = pile.drawFromPile(); //Need to check first if card is null. if (card != null) { //draws an extra if (card != null) { //Get suit of card to print out. suit = card.getSuit(); switch (suit) { case CardInfo.DIAMOND: strSuit = "DIAMOND"; s=0; break; case CardInfo.HEART: strSuit = "HEART"; s=1; break; case CardInfo.SPADE: strSuit = "SPADE"; s=2; break; case CardInfo.CLUB: strSuit = "CLUB"; s=3; break; } //Get value of card to print out. value = card.getValue(); switch (value) { case CardInfo.ACE: strValue = "ACE"; c=0; break; case CardInfo.TWO: c=1; break; case CardInfo.THREE: strValue = "THREE"; c=2; break; case CardInfo.FOUR: strValue = "FOUR"; c=3; break; case CardInfo.FIVE: strValue = "FIVE"; c=4; break; case CardInfo.SIX: strValue = "SIX"; c=4; break; case CardInfo.SEVEN: strValue = "SEVEN"; c=4; break; case CardInfo.EIGHT: strValue = "EIGHT"; c=4; break; case CardInfo.NINE: strValue = "NINE"; c=4; break; case CardInfo.TEN: strValue = "TEN"; c=4; break; case CardInfo.JACK: strValue = "JACK"; c=4; break; case CardInfo.QUEEN: strValue = "QUEEN"; c=4; break; case CardInfo.KING: strValue = "KING"; c=4; break; } } } }// //Below two lines of code, this is where issued the Null Pointer Exception. draw_card.setImageResource(deck[s][c]); count_label.setText(new StringBuilder(strValue).append(" of ").append(strSuit).append(String.valueOf(" " + count++)).toString()); } //Choice of Suits in a Deck public Integer[][] deck = { //Array Group 1 is [0][0] (No. of Cards: 4 - DIAMOND) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 2 is [1][0] (No. of Cards: 4 - HEART) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 3 is [2][0] (No. of Cards: 4 - SPADE) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, //Array Group 4 is [3][0] (No. of Cards: 4 - CLUB) { R.drawable.card_dummy_1, R.drawable.card_dummy_2, R.drawable.card_dummy_4, R.drawable.card_dummy_5, R.drawable.card_dummy_3 }, }; } And this one of the activity class, Player_Mode_2.java: package com.bodapps.inbetween; import java.util.Random; import android.app.Activity; import android.app.Dialog; import android.content.Context; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; import android.widget.ImageView; import android.widget.TextView; import android.widget.Toast; import com.bodapps.inbetween.model.Card; import com.bodapps.inbetween.model.Pile; import com.bodapps.inbetween.model.draw_deck; /* * * Public class for Two-Player mode. * */ public class Player_Mode_2 extends Activity { //Image Views private ImageView draw_card; private ImageView player_1; private ImageView player_2; private ImageView icon; //Buttons private Button set_deck; //Edit Texts private EditText enter_no_of_decks; //text Views private TextView count_label; //Integer Data Types private int no_of_cards, count; private int card_multiplier; //Contexts final Context context = this; //Pile Model public Pile pile; //Card Model public Card card; //create View @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.play_2_player_mode); //-----[ Search for Views ]----- //Initialize for Image View draw_card = (ImageView) findViewById(R.id.IV_Draw_Card); player_1 = (ImageView) findViewById(R.id.IV_Player_1_Card); player_2 = (ImageView) findViewById(R.id.IV_Player_2_Card); //Initialize for Text view or Label count_label = (TextView) findViewById(R.id.Text_View_Count_Card); //-----[ Adding Values ]----- //Integer Values count = 0; no_of_cards = 0; //-----[ Adding Dialog ]----- //Initializing Dialog final Dialog deck_dialog = new Dialog(context); deck_dialog.setContentView(R.layout.dialog); deck_dialog.setTitle("Deck Dialog"); //-----[ Initializing Views for Dialog's Contents ]----- //Initialize for Edit Text enter_no_of_decks = (EditText) deck_dialog.findViewById(R.id.Edit_Text_Set_Number_of_Decks); //Initialize for Button set_deck = (Button) deck_dialog.findViewById(R.id.Button_Deck); //-----[ Setting onClickListener() ]----- //Set Event Listener for Image view draw_card.setOnClickListener(new Draw_Card_Model()); //Set Event Listener for Setting the Deck set_deck.setOnClickListener(new OnClickListener() { public void onClick(View v) { if(card_multiplier <= 8) { //Use "Integer.parseInt()" method to instantly convert from String to int value. card_multiplier = Integer.parseInt(enter_no_of_decks.getText().toString()); //Shuffling cards... pile = new Pile(card_multiplier); //Multiply no. of decks //Dismiss or close the dialog. deck_dialog.dismiss(); } else { Toast.makeText(getApplicationContext(), "Please choose a number from 1 to 8.", Toast.LENGTH_SHORT).show(); } } }); //Show dialog. deck_dialog.show(); } //Shuffling the Array public void Shuffle_Cards(Integer[][] Shuffle_Deck) { Random random = new Random(); for(int i = Shuffle_Deck[no_of_cards].length - 1; i >=0; i--) { int Index = random.nextInt(i + 1); //Simple Swapping Integer swap = Shuffle_Deck[card_multiplier-1][Index]; Shuffle_Deck[card_multiplier-1][Index] = Shuffle_Deck[card_multiplier-1][i]; Shuffle_Deck[card_multiplier-1][i] = swap; } } //Private Class for Random Card Draw private class Draw_Card_Model implements OnClickListener { public void onClick(View v) { //Just printing the card drawn from pile int suit = 0, value = 0; String strSuit = "", strValue = ""; draw_deck draw = new draw_deck(context); //This line is where issued the Null Pointer Exception. if (count == card_multiplier*52) { // A message shows up when all cards are draw out. Toast.makeText(getApplicationContext(), "All cards have been used up.", Toast.LENGTH_SHORT).show(); draw_card.setEnabled(false); } else { draw.draw(suit, value, strSuit, strValue, pile, context); count_label.setText(count); //This is where I got force closed error, although "int count" have initialized the number. This was supposed to accept in the setText() method. count++; } } } } Take note that the issues on Null Pointer Exception is the Image View and the Edit Text. I got to test it. Thanks. If you have any info about my question, let me know it frankly.

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • Robust line of sight test on the inside of a polygon with tolerance

    - by David Gouveia
    Foreword This is a followup to this question and the main problem I'm trying to solve. My current solution is an hack which involves inflating the polygon, and doing most calculations on the inflated polygon instead. My goal is to remove this step completely, and correctly solve the problem with calculations only. Problem Given a concave polygon and treating all of its edges as if they were walls in a level, determine whether two points A and B are in line of sight of each other, while accounting for some degree of floating point errors. I'm currently basing my solution on a series of line-segment interection tests. In other words: If any of the end points are outside the polygon, they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B crosses any of the edges from the polygon, then they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B does not cross any of the edges from the polygon, then they are in line of sight. But the problem is dealing correctly with all the edge cases. In particular, it must be able to deal with all the situations depicted below, where red lines are examples that should be rejected, and green lines are examples that should be accepted. I probably missed a few other situations, such as when the line segment from A to B is colinear with an edge, but one of the end points is outside the polygon. One point of particular interest is the difference between 1 and 9. In both cases, both end points are vertices of the polygon, and there are no edges being intersected, but 1 should be rejected while 9 should be accepted. How to distinguish these two? I could check some middle point within the segment to see if it falls inside or not, but it's easy to come up with situations in which it would fail. Point 7 was also pretty tricky and I had to to treat it as a special case, which checks if two points are adjacent vertices of the polygon directly. But there are also other chances of line segments being col linear with the edges of the polygon, and I'm still not entirely sure how I should handle those cases. Is there any well known solution to this problem?

    Read the article

  • Finding Z given X & Y coordinates on terrain?

    - by mrky
    I need to know what the most efficient way of finding Z given X & Y coordinates on terrain. My terrain is set up as a grid, each grid block consisting of two triangles, which may be flipped in any direction. I want to move game objects smoothly along the floor of the terrain without "stepping." I'm currently using the following method with unexpected results: double mapClass::getZ(double x, double y) { int vertexIndex = ((floor(y))*width*2)+((floor(x))*2); vec3ray ray = {glm::vec3(x, y, 2), glm::vec3(x, y, 0)}; vec3triangle tri1 = { glmFrom(vertices[vertexIndex].v1), glmFrom(vertices[vertexIndex].v2), glmFrom(vertices[vertexIndex].v3) }; vec3triangle tri2 = { glmFrom(vertices[vertexIndex+1].v1), glmFrom(vertices[vertexIndex+1].v2), glmFrom(vertices[vertexIndex+1].v3) }; glm::vec3 intersect; if (!intersectRayTriangle(tri1, ray, intersect)) { intersectRayTriangle(tri2, ray, intersect); } return intersect.z; } intersectRayTriangle() and glmFrom() are as follows: bool intersectRayTriangle(vec3triangle tri, vec3ray ray, glm::vec3 &worldIntersect) { glm::vec3 barycentricIntersect; if (glm::intersectLineTriangle(ray.origin, ray.direction, tri.p0, tri.p1, tri.p2, barycentricIntersect)) { // Convert barycentric to world coordinates double u, v, w; u = barycentricIntersect.x; v = barycentricIntersect.y; w = 1 - (u+v); worldIntersect.x = (u * tri.p0.x + v * tri.p1.x + w * tri.p2.x); worldIntersect.y = (u * tri.p0.y + v * tri.p1.y + w * tri.p2.y); worldIntersect.z = (u * tri.p0.z + v * tri.p1.z + w * tri.p2.z); return true; } else { return false; } } glm::vec3 glmFrom(s_point3f point) { return glm::vec3(point.x, point.y, point.z); } My convenience structures are defined as: struct s_point3f { GLfloat x, y, z; }; struct s_triangle3f { s_point3f v1, v2, v3; }; struct vec3ray { glm::vec3 origin, direction; }; struct vec3triangle { glm::vec3 p0, p1, p2; }; vertices is defined as: std::vector<s_triangle3f> vertices; Basically, I'm trying to get the intersect of a ray (which is positioned at the x, and y coordinates specified facing pointing downwards toward the terrain) and one of the two triangles on the grid. getZ() rarely returns anything but 0. Other times, the numbers it generates seem to be completely off. Am I taking the wrong approach? Can anyone see a problem with my code? Any help or critique is appreciated!

    Read the article

  • Efficient mapping layout in 2D side-scroller, and collisions between character and the world

    - by Jack
    I haven't touched Visual Studio for a couple months now, but I was playing a game from the '90s toady and had an epiphany: I was looking for something what i didn't need, and I wasn't using what I knew correctly. One of those realizations was collision, so let me tell you a bit about my project that I was working on. The project's graphics looks like Mario or Dangerous Dave, etc., you get the idea - old-school pixels. So anyway I remember trying to think of something else than AABB for character form, but I couldn't think of anything. Perhaps I could get a suggestion for this? Another thing is the world - I don't want it to be just linear world, I want mountains, etc.. My idea is to use triangles, and no idea yet what to do if I want just part of the cube, say 3/4 or 2/4 or whatever. Hard-coding such things seems inefficient. P.S. I am not looking at the precision level offered by Box2D. Actually I remember trying to implement it at first, but I failed as my understanding of C++ wasn't advanced enough, as it'll be mentioned below. P.P.S. I am programming in C++, and I haven't done it for a couple months now. I have no means of testing it either, as my PC is broken down, and this one can barely run games from late '90s, not to speak about a compiler or a program with inefficient resource management... I am also not an expert (obviously), I don't even know if I can consider myself an average programmer. In short, I am simply curious about my thoughts and my past experience when programming the game. I may come back to it when my PC is fixed, I'm already filling a note about these things.

    Read the article

  • XNA - Moving Background Calculations

    - by Jesse Emond
    Hi, My question is relatively hard to explain(for me, at least), so I'll go one step at a time and just tell me in the comments if it's not clear enough. So I'm making a "Defend Your Castle" type 2D game, where two players own a castle and create units that will move horizontally to try to destroy the opponent's base. Here's a screenshot of the game: The distance between both castles is much bigger in a real game though, bigger than the screen's width actually. Because the distance is bigger than the screen's width, I had to implement a simple 2D camera: Camera2D, which only holds a Location Vector2 (and I always make sure this camera is within the field area). Then, I just move all the game elements(castles, units, health bars) by that location, so that if a unit is at (5, 0), and the camera's location is (5, 0), then the unit's position will be moved by 5 units to the left, making it (0, 0) on the screen. At first, I simply used a static background with mountains and clouds(yeah, those are supposed to be mountains and clouds). Obviously, this looked awful: when you moved the camera, the background would stay immobile. Instead, I'd like to make a moving background, kind of a "scrolling" one. But rather than making a background with the same width as the distance between the castles, I'd like to make one that is a little bit smaller(but still bigger than the screen's width). I thought this would create an effect of "distance" with the background(but it might just look awful, too). Here's the background I'm testing with: I tried different ways, but none of them seems to work. I tried this: float backgroundFieldRatio = BackgroundTexture.Width / fieldWidth;//find the ratio between the background and the field. float backgroundPositionX = -cam.Location.X * backgroundFieldRatio;//move the background to the left When I run this with fieldWith = 1600, BackgroundTexture.Width = 1500 and while looking at the rightmost area, the background is offset to the left by a too big amount, and we can see the black clear color in the back, as you can see here: I hope I explained properly what I'm trying to achieve. Thank you for your time. Note: I didn't know what to look for on Google, so I thought I'd ask here.

    Read the article

  • Nothing drawing on screen OpenGL with GLSL

    - by codemonkey
    I hate to be asking this kind of question here, but I am at a complete loss as to what is going wrong, so please bear with me. I am trying to render a single cube (voxel) in the center of the screen, through OpenGL with GLSL on Mac I begin by setting up everything using glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA|GLUT_ALPHA|GLUT_DOUBLE|GLUT_DEPTH); glutInitWindowSize(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); glutCreateWindow("Cubez-OSX"); glutReshapeFunc(reshape); glutDisplayFunc(render); glutIdleFunc(idle); _electricSheepEngine=new ElectricSheepEngine(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); _electricSheepEngine->initWorld(); glutMainLoop(); Then inside the engine init camera & projection matrices: cameraPosition=glm::vec3(2,2,2); cameraTarget=glm::vec3(0,0,0); cameraUp=glm::vec3(0,0,1); glm::vec3 cameraDirection=glm::normalize(cameraPosition-cameraTarget); cameraRight=glm::cross(cameraDirection, cameraUp); cameraRight.z=0; view=glm::lookAt(cameraPosition, cameraTarget, cameraUp); lensAngle=45.0f; aspectRatio=1.0*(windowWidth/windowHeight); nearClippingPlane=0.1f; farClippingPlane=100.0f; projection=glm::perspective(lensAngle, aspectRatio, nearClippingPlane, farClippingPlane); then init shaders and check compilation and bound attributes & uniforms to be correctly bound (my previous question) These are my two shaders, vertex: #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } and fragment: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } init the cube: setPosition(glm::vec3(0,0,0)); struct voxelData data[]={ //front face {{-1.0, -1.0, 1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, 1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, 1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, 1.0}, {0.0, 1.0, 1.0}}, //back face {{-1.0, -1.0, -1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, -1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, -1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, -1.0}, {0.0, 1.0, 1.0}} }; glGenBuffers(1, &modelVerticesBufferObject); glBindBuffer(GL_ARRAY_BUFFER, modelVerticesBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); const GLubyte indices[] = { // Front 0, 1, 2, 2, 3, 0, // Back 4, 6, 5, 4, 7, 6, // Left 2, 7, 3, 7, 6, 2, // Right 0, 4, 1, 4, 1, 5, // Top 6, 2, 1, 1, 6, 5, // Bottom 0, 3, 7, 0, 7, 4 }; glGenBuffers(1, &modelFacesBufferObject); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, modelFacesBufferObject); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); and then the render call: glClearColor(0.52, 0.8, 0.97, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); //use the shader glUseProgram(shaderProgram); //enable attributes in program glEnableVertexAttribArray(shaderAttribute_position); glEnableVertexAttribArray(shaderAttribute_color); //model matrix using model position vector glm::mat4 mvp=projection*view*voxel->getModelMatrix(); glUniformMatrix4fv(shaderAttribute_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_position, // attribute 3, // number of elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements 0 // offset of first element ); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_color, // attribute 3, // number of colour elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements (GLvoid *)(offsetof(struct voxelData, color3D)) // offset of colour data ); //draw the model by going through its elements array glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, voxel->modelFacesBufferObject); int bufferSize; glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &bufferSize); glDrawElements(GL_TRIANGLES, bufferSize/sizeof(GLushort), GL_UNSIGNED_SHORT, 0); //close up the attribute in program, no more need glDisableVertexAttribArray(shaderAttribute_position); glDisableVertexAttribArray(shaderAttribute_color); but on screen all I get is the clear color :$ I generate my model matrix using: modelMatrix=glm::translate(glm::mat4(1.0), position); which in debug turns out to be for the position of (0,0,0): |1, 0, 0, 0| |0, 1, 0, 0| |0, 0, 1, 0| |0, 0, 0, 1| Sorry for such a question, I know it is annoying to look at someone's code, but I promise I have tried to debug around and figure it out as much as I can, and can't come to a solution Help a noob please? EDIT: Full source here, if anyone wants

    Read the article

  • Constructive criticsm on my linear sampling Gaussian blur

    - by Aequitas
    I've been attempting to implement a gaussian blur utilising linear sampling, I've come across a few articles presented on the web and a question posed here which dealt with the topic. I've now attempted to implement my own Gaussian function and pixel shader drawing reference from these articles. This is how I'm currently calculating my weights and offsets: int support = int(sigma * 3.0) weights.push_back(exp(-(0*0)/(2*sigma*sigma))/(sqrt(2*pi)*sigma)); total += weights.back(); offsets.push_back(0); for (int i = 1; i <= support; i++) { float w1 = exp(-(i*i)/(2*sigma*sigma))/(sqrt(2*pi)*sigma); float w2 = exp(-((i+1)*(i+1))/(2*sigma*sigma))/(sqrt(2*pi)*sigma); weights.push_back(w1 + w2); total += 2.0f * weights[i]; offsets.push_back(w1 / weights[i]); } for (int i = 0; i < support; i++) { weights[i] /= total; } Here is an example of my vertical pixel shader: vec3 acc = texture2D(tex_object, v_tex_coord.st).rgb*weights[0]; vec2 pixel_size = vec2(1.0 / tex_size.x, 1.0 / tex_size.y); for (int i = 1; i < NUM_SAMPLES; i++) { acc += texture2D(tex_object, (v_tex_coord.st+(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; acc += texture2D(tex_object, (v_tex_coord.st-(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; } gl_FragColor = vec4(acc, 1.0); Am I taking the correct route with this? Any criticism or potential tips to improving my method would be much appreciated.

    Read the article

  • monotouch 2d pixel with correct resolution

    - by acidzombie24
    I am writing up a game that is size sensitive. It needs to be pixel perfect. I believe the resolution is 480x320 pixels with the iphone being twice the width and height. My code is grid based with images exactly 16x16pixels. I found samples of opengl in the past but I never found any good tutorial that had 0,0 the top left and was the correct size in resolution (which made images look terrible) What can I use? I'd like to write the code in C# (or C++ but C# is preferred) and use monotouch. I don't know any libraries for 2d graphics. I'll figure out sound and such afterwards and I seen documentation on monotouch for input.

    Read the article

  • Open GL Android frame-by-frame animation tutorial/example code

    - by Trick
    My first question was asked wrong, so I need to ask again :) I found out, that I will have to do an OpenGL animation for my Android game. The closest (known) example is Talking Tom (but I don't know how they did the animations). I have large PNGs which I would like to put into a animation. For example - 30 PNGs 427×240px at 8 FPS. I know some things already about Open GL, but I am used to learn from example code. And it is quicker that way (so I don't need to invent hot water all over again :)). Does anybody has any points to direct me?

    Read the article

  • How do I generate terrain like that of Scorched Earth?

    - by alex
    Hi, I'm a web developer and I am keen to start writing my own games. For familiarity, I've chosen JavaScript and canvas element for now. I want to generate some terrain like that in Scorched Earth. My first attempt made me realise I couldn't just randomise the y value; there had to be some sanity in the peaks and troughs. I have Googled around a bit, but either I can't find something simple enough for me or I am using the wrong keywords. Can you please show me what sort of algorithm I would use to generate something in the example, keeping in mind that I am completely new to games programming (since making Breakout in 2003 with Visual Basic anyway)?

    Read the article

  • Updating physics for animated models

    - by Mathias Hölzl
    For a new game we have do set up a scene with a minimum of 30 bone animated models.(shooter) The problem is that the update process for the animated models takes too long. Thats what I do: Each character has ~30 bones and for every update tick the animation gets calculated and every bone fires a event with the new matrix. The physics receives the event with the new matrix and updates the collision shape for that bone. The time that it takes to build the animation isn't that bad (0.2ms for 30 Bones - 6ms for 30 models). But the main problem is that the physic engine (Bullet) uses a diffrent matrix for transformation and so its necessary to convert it. Code for matrix conversion: (~0.005ms) btTransform CLEAR_PHYSICS_API Mat_to_btTransform( Mat mat ) { btMatrix3x3 bulletRotation; btVector3 bulletPosition; XMFLOAT4X4 matData = mat.GetStorage(); // copy rotation matrix for ( int row=0; row<3; ++row ) for ( int column=0; column<3; ++column ) bulletRotation[row][column] = matData.m[column][row]; for ( int column=0; column<3; ++column ) bulletPosition[column] = matData.m[3][column]; return btTransform( bulletRotation, bulletPosition ); } The function for updating the transform(Physic): void CLEAR_PHYSICS_API BulletPhysics::VKinematicMove(Mat mat, ActorId aid) { if ( btRigidBody * const body = FindActorBody( aid ) ) { btTransform tmp = Mat_to_btTransform( mat ); body->setWorldTransform( tmp ); } } The real problem is the function FindActorBody(id): ActorIDToBulletActorMap::const_iterator found = m_actorBodies.find( id ); if ( found != m_actorBodies.end() ) return found->second; All physic actors are stored in m_actorBodies and thats why the updating process takes to long. But I have no idea how I could avoid this. Friendly greedings, Mathias

    Read the article

  • 2D SAT How to find collision center or point or area?

    - by Felipe Cypriano
    I've just implemented collision detection using SAT and this article as reference to my implementation. The detection is working as expected but I need to know where both rectangles are colliding. I need to find the center of the intersection, the black point on the image above. I've found some articles about this but they all involve avoiding the overlap or some kind of velocity, I don't need this. I just need to put a image on top of it. Like two cars crashed so I put an image on top of the collision. Any ideas? ## Update The information I've about the rectangles are the four points that represents them, the upper right, upper left, lower right and lower left coordinates. I'm trying to find an algorithm that can give me the intersection of these points.

    Read the article

  • Why does my sprite glitch when moving? [closed]

    - by rphello101
    Using Slick 2D/Java, I'm using the mouse to rotate a sprite and WASD to move it (A and D are used to strafe). I finally got the directional keys and rotation to work in sync, but I'm having problems with sporadic movement. It seems that the move speed is not always set to the value I have it at. Sometimes the sprite with just shoot across the screen. Furthermore, it seems that at 0 degrees, when the left key is pressed, the sprite moves backwards, not to the left. There also seems to be quite a bit of glitching when two keys are pressed, like left and up. Anyone see anything obvious? Here is the rotational code: int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x+sprite.image.getWidth()/2; int pY = sprite.y+sprite.image.getHeight()/2; double mAng; if(mX!=pX){ mAng = Math.toDegrees(Math.atan2(mY - pY, mX - pX)); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=90; else mAng=270; } sprite.angle = mAng; sprite.image.setRotation((float) mAng); Movement code: Input input = gc.getInput(); Vector2f direction = new Vector2f(); Vector2f velocity = new Vector2f(); Vector2f left; Vector2f right; direction.x = (float) Math.cos(Math.toRadians(sprite.angle)); direction.y = (float) Math.sin(Math.toRadians(sprite.angle)); if(direction.length()>0) direction = direction.normalise(); left = new Vector2f(-direction.y, direction.x); right = new Vector2f(direction.y, -direction.x); velocity.x = (float) (direction.x * sprite.moveSpeed); velocity.y = (float) (direction.y * sprite.moveSpeed); if(input.isKeyDown(sprite.up)){ sprite.x += velocity.x*delta; sprite.y += velocity.y*delta; }if (input.isKeyDown(sprite.down)){ sprite.x -= velocity.x*delta; sprite.y -= velocity.y*delta; }if (input.isKeyDown(sprite.left)){ sprite.x += left.x * sprite.moveSpeed * delta; sprite.y += left.y * sprite.moveSpeed * delta; }if (input.isKeyDown(sprite.right)){ sprite.x += right.x * sprite.moveSpeed * delta; sprite.y += right.y * sprite.moveSpeed * delta; }

    Read the article

  • HLSL - Creating Shadows in 2D

    - by richard
    The way that I create shadows is by the following technique: http://www.catalinzima.com/2010/07/my-technique-for-the-shader-based-dynamic-2d-shadows/ But I have questions to HLSL. The way that I currently do it is, I have a black and white image, where Black means 'object', and white means 'nothing'. I then distort the image like in the tutorial. I do this with a pixel shader, but instead of rendering to the screen, I render to a texture, back to my application. I then take this, and create the shadows, and then send it back to the graphics card to undo the distortion, after the shadow has been added - this comes back and I have a stencil of shadow. I can put this ontop of the original image and send them back to the graphics card, which then puts them on the screen. To me this is alot of back and forth. Is there a way i can avoid this? The problem that I am having is that I need to basically go through all positions in the texture 3 times, and use the new new texture every time instead of the orginal one. I tried to read up on Passes, but i don't think that i am heading in the right direction there. Help?

    Read the article

  • Coordinate based travel through multi-line path over elapsed time

    - by Chris
    I have implemented A* Path finding to decide the course of a sprite through multiple waypoints. I have done this for point A to point B locations but am having trouble with multiple waypoints, because on slower devices when the FPS slows and the sprite travels PAST a waypoint I am lost as to the math to switch directions at the proper place. EDIT: To clarify my path finding code is separate in a game thread, this onUpdate method lives in a sprite like class which happens in the UI thread for sprite updating. To be even more clear the path is only updated when objects block the map, at any given point the current path could change but that should not affect the design of the algorithm if I am not mistaken. I do believe all components involved are well designed and accurate, aside from this piece :- ) Here is the scenario: public void onUpdate(float pSecondsElapsed) { // this could be 4x speed, so on slow devices the travel moved between // frames could be very large. What happens with my original algorithm // is it will start actually doing circles around the next waypoint.. pSecondsElapsed *= SomeSpeedModificationValue; final int spriteCurrentX = this.getX(); final int spriteCurrentY = this.getY(); // getCoords contains a large array of the coordinates to each waypoint. // A waypoint is a destination on the map, defined by tile column/row. The // path finder converts these waypoints to X,Y coords. // // I.E: // Given a set of waypoints of 0,0 to 12,23 to 23, 0 on a 23x23 tile map, each tile // being 32x32 pixels. This would translate in the path finder to this: // -> 0,0 to 12,23 // Coord : x=16 y=16 // Coord : x=16 y=48 // Coord : x=16 y=80 // ... // Coord : x=336 y=688 // Coord : x=336 y=720 // Coord : x=368 y=720 // // -> 12,23 to 23,0 -NOTE This direction change gives me trouble specifically // Coord : x=400 y=752 // Coord : x=400 y=720 // Coord : x=400 y=688 // ... // Coord : x=688 y=16 // Coord : x=688 y=0 // Coord : x=720 y=0 // // The current update index, the index specifies the coordinate that you see above // I.E. final int[] coords = getCoords( 2 ); -> x=16 y=80 final int[] coords = getCoords( ... ); // now I have the coords, how do I detect where to set the position? The tricky part // for me is when a direction changes, how do I calculate based on the elapsed time // how far to go up the new direction... I just can't wrap my head around this. this.setPosition(newX, newY); }

    Read the article

  • Calculating the position of an object with regards to current position using OpenGL like matrices

    - by spartan2417
    i have a 1st person camera that collides with walls, i also have a small sphere in front of my camera denoted by the camera position plus the distance ahead. I cannot get the postion of the sphere but i have the position of my camera. e.g. i need to find the position of the point or at the very least find away of calculating the position using the camera positions. code: static Float P_z = 0; P_z = -15; PushMatrix(); LoadMatrix(&Inv); Material(SCEGU_AMBIENT, 0x00000066); TranslateXYZ(0,0,P_z); ScaleXYZ(0.1f,0.1f,0.1f); pointer.Render(); PopMatrix(); where Inv is the camera positions (Inv.w.x,Inv.w.z), pointer is the sphere.

    Read the article

  • Ideas for attack damage algorithm (language irrelevant)

    - by Dillon
    I am working on a game and I need ideas for the damage that will be done to the enemy when your player attacks. The total amount of health that the enemy has is called enemyHealth, and has a value of 1000. You start off with a weapon that does 40 points of damage (may be changed.) The player has an attack stat that you can increase, called playerAttack. This value starts off at 1, and has a possible max value of 100 after you level it up many times and make it farther into the game. The amount of damage that the weapon does is cut and dry, and subtracts 40 points from the total 1000 points of health every time the enemy is hit. But what the playerAttack does is add to that value with a percentage. Here is the algorithm I have now. (I've taken out all of the gui, classes, etc. and given the variables very forward names) double totalDamage = weaponDamage + (weaponDamage*(playerAttack*.05)) enemyHealth -= (int)totalDamage; This seemed to work great for the most part. So I statrted testing some values... //enemyHealth ALWAYS starts at 1000 weaponDamage = 50; playerAttack = 30; If I set these values, the amount of damage done on the enemy is 125. Seemed like a good number, so I wanted to see what would happen if the players attack was maxed out, but with the weakest starting weapon. weaponDamage = 50; playerAttack = 100; the totalDamage ends up being 300, which would kill an enemy in just a few hits. Even with your attack that high, I wouldn't want the weakest weapon to be able to kill the enemy that fast. I thought about adding defense, but I feel the game will lose consistency and become unbalanced in the long run. Possibly a well designed algorithm for a weapon decrease modifier would work for lower level weapons or something like that. Just need a break from trying to figure out the best way to go about this, and maybe someone that has experience with games and keeping the leveling consistent could give me some ideas/pointers.

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

< Previous Page | 397 398 399 400 401 402 403 404 405 406 407 408  | Next Page >