Search Results

Search found 631 results on 26 pages for 'typename'.

Page 4/26 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Passing functor and function pointers interchangeably using a templated method in C++

    - by metroxylon
    I currently have a templated class, with a templated method. Works great with functors, but having trouble compiling for functions. Foo.h template <typename T> class Foo { public: // Constructor, destructor, etc... template <typename Func> void bar(T x, Func f); }; template <typename T> template <typename Func> Foo::bar(T x, Func f) { /* some code here */ } Main.cpp #include "Foo.h" template <typename T> class Functor { public: Functor() {} void operator()(T x) { /* ... */ } private: /* some attributes here */ }; void Function(T x) { /* ... */ } int main() { Foo<int> foo; foo.bar(2, Functor); // No problem foo.bar(2, Function); // <unresolved overloaded function type> return 0; }

    Read the article

  • C++ template overloading - wrong function called

    - by DeadMG
    template<typename T> T* Push(T* ptr); template<typename T> T* Push(T& ref); template<typename T, typename T1> T* Push(T1&& ref); I have int i = 0; Push<int>(i); But the compiler calls it ambiguous. How is that ambiguous? The second function is clearly the preferred match since it's more specialized. Especially since the T1&& won't bind to an lvalue unless I explicitly forward/move it. Sorry - i is an int. Otherwise, the question would make no sense, and I thought people would infer it since it's normally the loop iterator.

    Read the article

  • templated method on T inside a templated class on TT : Is that possible/correct.

    - by paercebal
    I have a class MyClass which is templated on typename T. But inside, I want a method which is templated on another type TT (which is unrelated to T). After reading/tinkering, I found the following notation: template <typename T> class MyClass { public : template<typename TT> void MyMethod(const TT & param) ; } ; For stylistic reasons (I like to have my templated class declaration in one header file, and the method definitions in another header file), I won't define the method inside the class declaration. So, I have to write it as: template <typename T> // this is the type of the class template <typename TT> // this is the type of the method void MyClass<T>::MyMethod(const TT & param) { // etc. } I knew I had to "declare" the typenames used in the method, but didn't know how exactly, and found through trials and errors. The code above compiles on Visual C++ 2008, but: Is this the correct way to have a method templated on TT inside a class templated on T? As a bonus: Are there hidden problems/surprises/constraints behind this kind of code? (I guess the specializations can be quite amusing to write)

    Read the article

  • Detect if class has overloaded function fails on Comeau compiler

    - by Frank
    Hi Everyone, I'm trying to use SFINAE to detect if a class has an overloaded member function that takes a certain type. The code I have seems to work correctly in Visual Studio and GCC, but does not compile using the Comeau online compiler. Here is the code I'm using: #include <stdio.h> //Comeau doesnt' have boost, so define our own enable_if_c template<bool value> struct enable_if_c { typedef void type; }; template<> struct enable_if_c< false > {}; //Class that has the overloaded member function class TestClass { public: void Func(float value) { printf( "%f\n", value ); } void Func(int value) { printf( "%i\n", value ); } }; //Struct to detect if TestClass has an overloaded member function for type T template<typename T> struct HasFunc { template<typename U, void (TestClass::*)( U )> struct SFINAE {}; template<typename U> static char Test(SFINAE<U, &TestClass::Func>*); template<typename U> static int Test(...); static const bool Has = sizeof(Test<T>(0)) == sizeof(char); }; //Use enable_if_c to only allow the function call if TestClass has a valid overload for T template<typename T> typename enable_if_c<HasFunc<T>::Has>::type CallFunc(TestClass &test, T value) { test.Func( value ); } int main() { float value1 = 0.0f; int value2 = 0; TestClass testClass; CallFunc( testClass, value1 ); //Should call TestClass::Func( float ) CallFunc( testClass, value2 ); //Should call TestClass::Func( int ) } The error message is: no instance of function template "CallFunc" matches the argument list. It seems that HasFunc::Has is false for int and float when it should be true. Is this a bug in the Comeau compiler? Am I doing something that's not standard? And if so, what do I need to do to fix it?

    Read the article

  • C++, what does this syntax mean?

    - by aaa
    i found this in this file: http://www.boost.org/doc/libs/1_43_0/boost/spirit/home/phoenix/core/actor.hpp What does this syntax means? struct actor ... { ... template <typename T0, typename T1> typename result<actor(T0&,T1&)>::type // this line thank you

    Read the article

  • Template specialization to use default type if class member typedef does not exist

    - by Frank
    Hi Everyone, I'm trying to write code that uses a member typedef of a template argument, but want to supply a default type if the template argument does not have that typedef. A simplified example I've tried is this: struct DefaultType { DefaultType() { printf("Default "); } }; struct NonDefaultType { NonDefaultType() { printf("NonDefault "); } }; struct A {}; struct B { typedef NonDefaultType Type; }; template<typename T, typename Enable = void> struct Get_Type { typedef DefaultType Type; }; template<typename T> struct Get_Type< T, typename T::Type > { typedef typename T::Type Type; }; int main() { Get_Type::Type test1; Get_Type::Type test2; } I would expect this to print "Default NonDefault", but instead it prints "Default Default". My expectation is that the second line in main() should match the specialized version of Get_Type, because B::Type exists. However, this does not happen. Can anyone explain what's going on here and how to fix it, or another way to accomplish the same goal? Thank you.

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • C++ non-member functions for nested template classes

    - by beldaz
    I have been writing several class templates that contain nested iterator classes, for which an equality comparison is required. As I believe is fairly typical, the comparison is performed with a non-member (and non-friend) operator== function. In doing so, my compiler (I'm using Mingw32 GCC 4.4 with flags -O3 -g -Wall) fails to find the function and I have run out of possible reasons. In the rather large block of code below there are three classes: a Base class, a Composed class that holds a Base object, and a Nested class identical to the Composed class except that it is nested within an Outer class. Non-member operator== functions are supplied for each. These classes are in templated and untemplated forms (in their own respective namespaces), with the latter equivalent to the former specialised for unsigned integers. In main, two identical objects for each class are compared. For the untemplated case there is no problem, but for the templated case the compiler fails to find operator==. What's going on? #include <iostream> namespace templated { template<typename T> class Base { T t_; public: explicit Base(const T& t) : t_(t) {} bool equal(const Base& x) const { return x.t_==t_; } }; template<typename T> bool operator==(const Base<T> &x, const Base<T> &y) { return x.equal(y); } template<typename T> class Composed { typedef Base<T> Base_; Base_ base_; public: explicit Composed(const T& t) : base_(t) {} bool equal(const Composed& x) const {return x.base_==base_;} }; template<typename T> bool operator==(const Composed<T> &x, const Composed<T> &y) { return x.equal(y); } template<typename T> class Outer { public: class Nested { typedef Base<T> Base_; Base_ base_; public: explicit Nested(const T& t) : base_(t) {} bool equal(const Nested& x) const {return x.base_==base_;} }; }; template<typename T> bool operator==(const typename Outer<T>::Nested &x, const typename Outer<T>::Nested &y) { return x.equal(y); } } // namespace templated namespace untemplated { class Base { unsigned int t_; public: explicit Base(const unsigned int& t) : t_(t) {} bool equal(const Base& x) const { return x.t_==t_; } }; bool operator==(const Base &x, const Base &y) { return x.equal(y); } class Composed { typedef Base Base_; Base_ base_; public: explicit Composed(const unsigned int& t) : base_(t) {} bool equal(const Composed& x) const {return x.base_==base_;} }; bool operator==(const Composed &x, const Composed &y) { return x.equal(y); } class Outer { public: class Nested { typedef Base Base_; Base_ base_; public: explicit Nested(const unsigned int& t) : base_(t) {} bool equal(const Nested& x) const {return x.base_==base_;} }; }; bool operator==(const Outer::Nested &x, const Outer::Nested &y) { return x.equal(y); } } // namespace untemplated int main() { using std::cout; unsigned int testVal=3; { // No templates first typedef untemplated::Base Base_t; Base_t a(testVal); Base_t b(testVal); cout << "a=b=" << testVal << "\n"; cout << "a==b ? " << (a==b ? "TRUE" : "FALSE") << "\n"; typedef untemplated::Composed Composed_t; Composed_t c(testVal); Composed_t d(testVal); cout << "c=d=" << testVal << "\n"; cout << "c==d ? " << (c==d ? "TRUE" : "FALSE") << "\n"; typedef untemplated::Outer::Nested Nested_t; Nested_t e(testVal); Nested_t f(testVal); cout << "e=f=" << testVal << "\n"; cout << "e==f ? " << (e==f ? "TRUE" : "FALSE") << "\n"; } { // Now with templates typedef templated::Base<unsigned int> Base_t; Base_t a(testVal); Base_t b(testVal); cout << "a=b=" << testVal << "\n"; cout << "a==b ? " << (a==b ? "TRUE" : "FALSE") << "\n"; typedef templated::Composed<unsigned int> Composed_t; Composed_t c(testVal); Composed_t d(testVal); cout << "c=d=" << testVal << "\n"; cout << "d==c ? " << (c==d ? "TRUE" : "FALSE") << "\n"; typedef templated::Outer<unsigned int>::Nested Nested_t; Nested_t e(testVal); Nested_t f(testVal); cout << "e=f=" << testVal << "\n"; cout << "e==f ? " << (e==f ? "TRUE" : "FALSE") << "\n"; // Above line causes compiler error: // error: no match for 'operator==' in 'e == f' } cout << std::endl; return 0; }

    Read the article

  • Class member functions instantiated by traits

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate non-virtual member functions? The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice? UPDATE: Here's another try at explaining it. I want the user to be able to fill out an order (manifest) for a custom optimizer, something like ordering off of a Chinese menu - one from column A, one from column B, etc.. Waiter, from column A (updaters), I'll have the BFGS update with Cholesky-decompositon sauce. From column B (line-searchers), I'll have the cubic interpolation line-search with an eta of 0.4 and a rho of 1e-4, please. Etc... UPDATE: Okay, okay. Here's the playing-around that I've done. I offer it reluctantly, because I suspect it's a completely wrong-headed approach. It runs okay under vc++ 2008. #include <boost/utility.hpp> #include <boost/type_traits/integral_constant.hpp> namespace dj { struct CBFGS { void bar() {printf("CBFGS::bar %d\n", data);} CBFGS(): data(1234){} int data; }; template<class T> struct is_CBFGS: boost::false_type{}; template<> struct is_CBFGS<CBFGS>: boost::true_type{}; struct LMQN {LMQN(): data(54.321){} void bar() {printf("LMQN::bar %lf\n", data);} double data; }; template<class T> struct is_LMQN: boost::false_type{}; template<> struct is_LMQN<LMQN> : boost::true_type{}; struct default_optimizer_traits { typedef CBFGS update_type; }; template<class traits> class Optimizer; template<class traits> void foo(typename boost::enable_if<is_LMQN<typename traits::update_type>, Optimizer<traits> >::type& self) { printf(" LMQN %lf\n", self.data); } template<class traits> void foo(typename boost::enable_if<is_CBFGS<typename traits::update_type>, Optimizer<traits> >::type& self) { printf("CBFGS %d\n", self.data); } template<class traits = default_optimizer_traits> class Optimizer{ friend typename traits::update_type; //friend void dj::foo<traits>(typename Optimizer<traits> & self); // How? public: //void foo(void); // How??? void foo() { dj::foo<traits>(*this); } void bar() { data.bar(); } //protected: // How? typedef typename traits::update_type update_type; update_type data; }; } // namespace dj int main_() { dj::Optimizer<> opt; opt.foo(); opt.bar(); std::getchar(); return 0; }

    Read the article

  • SecurityException in Sandboxed AppDomain

    - by Galen
    I'm attempting to use C# as a scripting language using CSharpCodeProvider (using VS2010 and .NET 4.0). I want the scripts to be run in a restricted AppDomain with minimal permissions. Currently, I'm getting an exception while trying to instantiate a class in the AppDomain (The call to CreateInstanceAndUnwrap()). Here is some simplified code that reproduces the exception: using System; using System.Collections.Generic; using Microsoft.CSharp; using System.CodeDom; using System.CodeDom.Compiler; using System.Security; using System.Security.Policy; using System.Security.Permissions; using System.Reflection; using System.Runtime.Remoting; namespace ConsoleApp { class Program { static void Main(string[] args) { // set permissions PermissionSet permissions = new PermissionSet(PermissionState.None); permissions.AddPermission(new SecurityPermission( SecurityPermissionFlag.Execution)); AppDomainSetup adSetup = new AppDomainSetup(); adSetup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //Create a list of fully trusted assemblies Assembly[] asms = AppDomain.CurrentDomain.GetAssemblies(); List<StrongName> sns = new List<StrongName>(); for (int x = 0; x < asms.Length; x++) { StrongName sn = asms[x].Evidence.GetHostEvidence<StrongName>(); if (sn != null && sns.Contains(sn) == false) sns.Add(sn); } //this includes: "mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" AppDomain domain = AppDomain.CreateDomain("NewAppDomain", AppDomain.CurrentDomain.Evidence, adSetup, permissions);//, sns);//, sn4, sn, sn2, sn3); try { String asmName = Assembly.GetExecutingAssembly().FullName; String typeName = typeof(ConsoleApp.ScriptRunner).FullName; //Throws exception here ScriptRunner scriptRunner = domain.CreateInstanceAndUnwrap(asmName, typeName) as ScriptRunner; } catch (SecurityException se) { System.Diagnostics.Debug.WriteLine(se.Message); } catch (Exception ex) { System.Diagnostics.Debug.WriteLine(ex.Message); } } } public class ScriptRunner : MarshalByRefObject { public ScriptRunner() { //A breakpoint placed here is never reached. CompilerParameters param; param = new CompilerParameters(); param.CompilerOptions = ""; param.GenerateExecutable = false; param.GenerateInMemory = true; param.IncludeDebugInformation = false; // C# compiler CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CompilerResults results = codeProvider.CompileAssemblyFromFile(param, "Danger.cs"); } } } The exception is being thrown from mscorlib and it is a System.Reflection.TargetInvocationException that has an inner System.Security.SecurityException. Here is the exception: System.Reflection.TargetInvocationException was unhandled Message=Exception has been thrown by the target of an invocation. Source=mscorlib StackTrace: at System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly, Boolean noCheck, Boolean& canBeCached, RuntimeMethodHandleInternal& ctor, Boolean& bNeedSecurityCheck) at System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean skipCheckThis, Boolean fillCache) at System.RuntimeType.CreateInstanceDefaultCtor(Boolean publicOnly, Boolean skipVisibilityChecks, Boolean skipCheckThis, Boolean fillCache) at System.Activator.CreateInstance(Type type, Boolean nonPublic) at System.RuntimeType.CreateInstanceImpl(BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes) at System.Activator.CreateInstance(Type type, BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes) at System.Activator.CreateInstance(String assemblyName, String typeName, Boolean ignoreCase, BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes, Evidence securityInfo, StackCrawlMark& stackMark) at System.Activator.CreateInstance(String assemblyName, String typeName) at System.AppDomain.CreateInstance(String assemblyName, String typeName) at System.AppDomain.CreateInstanceAndUnwrap(String assemblyName, String typeName) at System.AppDomain.CreateInstanceAndUnwrap(String assemblyName, String typeName) at ConsoleApp.Program.Main(String[] args) in C:\Documents and Settings\NaultyCS\my documents\visual studio 2010\Projects\ConsoleApplication4\ConsoleApplication4\Program.cs:line 46 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.Security.SecurityException Message=Request failed. Source=ConsoleApplication4 GrantedSet=<PermissionSet class="System.Security.PermissionSet" version="1"> <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1" Flags="Execution"/> </PermissionSet> PermissionState=<PermissionSet class="System.Security.PermissionSet" version="1" Unrestricted="true"/> RefusedSet="" Url=file:///C:/Documents and Settings/NaultyCS/my documents/visual studio 2010/Projects/ConsoleApplication4/ConsoleApplication4/bin/Debug/ConsoleApplication4.EXE StackTrace: at ConsoleApp.ScriptRunner..ctor() InnerException: So it appears to me that mscorlib is demanding full trust. I've added it as a fully trusted assembly, but it has no effect. What am I doing wrong here?

    Read the article

  • Adapting non-iterable containers to be iterated via custom templatized iterator

    - by DAldridge
    I have some classes, which for various reasons out of scope of this discussion, I cannot modify (irrelevant implementation details omitted): class Foo { /* ... irrelevant public interface ... */ }; class Bar { public: Foo& get_foo(size_t index) { /* whatever */ } size_t size_foo() { /* whatever */ } }; (There are many similar 'Foo' and 'Bar' classes I'm dealing with, and it's all generated code from elsewhere and stuff I don't want to subclass, etc.) [Edit: clarification - although there are many similar 'Foo' and 'Bar' classes, it is guaranteed that each "outer" class will have the getter and size methods. Only the getter method name and return type will differ for each "outer", based on whatever it's "inner" contained type is. So, if I have Baz which contains Quux instances, there will be Quux& Baz::get_quux(size_t index), and size_t Baz::size_quux().] Given the design of the Bar class, you cannot easily use it in STL algorithms (e.g. for_each, find_if, etc.), and must do imperative loops rather than taking a functional approach (reasons why I prefer the latter is also out of scope for this discussion): Bar b; size_t numFoo = b.size_foo(); for (int fooIdx = 0; fooIdx < numFoo; ++fooIdx) { Foo& f = b.get_foo(fooIdx); /* ... do stuff with 'f' ... */ } So... I've never created a custom iterator, and after reading various questions/answers on S.O. about iterator_traits and the like, I came up with this (currently half-baked) "solution": First, the custom iterator mechanism (NOTE: all uses of 'function' and 'bind' are from std::tr1 in MSVC9): // Iterator mechanism... template <typename TOuter, typename TInner> class ContainerIterator : public std::iterator<std::input_iterator_tag, TInner> { public: typedef function<TInner& (size_t)> func_type; ContainerIterator(const ContainerIterator& other) : mFunc(other.mFunc), mIndex(other.mIndex) {} ContainerIterator& operator++() { ++mIndex; return *this; } bool operator==(const ContainerIterator& other) { return ((mFunc.target<TOuter>() == other.mFunc.target<TOuter>()) && (mIndex == other.mIndex)); } bool operator!=(const ContainerIterator& other) { return !(*this == other); } TInner& operator*() { return mFunc(mIndex); } private: template<typename TOuter, typename TInner> friend class ContainerProxy; ContainerIterator(func_type func, size_t index = 0) : mFunc(func), mIndex(index) {} function<TInner& (size_t)> mFunc; size_t mIndex; }; Next, the mechanism by which I get valid iterators representing begin and end of the inner container: // Proxy(?) to the outer class instance, providing a way to get begin() and end() // iterators to the inner contained instances... template <typename TOuter, typename TInner> class ContainerProxy { public: typedef function<TInner& (size_t)> access_func_type; typedef function<size_t ()> size_func_type; typedef ContainerIterator<TOuter, TInner> iter_type; ContainerProxy(access_func_type accessFunc, size_func_type sizeFunc) : mAccessFunc(accessFunc), mSizeFunc(sizeFunc) {} iter_type begin() const { size_t numItems = mSizeFunc(); if (0 == numItems) return end(); else return ContainerIterator<TOuter, TInner>(mAccessFunc, 0); } iter_type end() const { size_t numItems = mSizeFunc(); return ContainerIterator<TOuter, TInner>(mAccessFunc, numItems); } private: access_func_type mAccessFunc; size_func_type mSizeFunc; }; I can use these classes in the following manner: // Sample function object for taking action on an LMX inner class instance yielded // by iteration... template <typename TInner> class SomeTInnerFunctor { public: void operator()(const TInner& inner) { /* ... whatever ... */ } }; // Example of iterating over an outer class instance's inner container... Bar b; /* assume populated which contained items ... */ ContainerProxy<Bar, Foo> bProxy( bind(&Bar::get_foo, b, _1), bind(&Bar::size_foo, b)); for_each(bProxy.begin(), bProxy.end(), SomeTInnerFunctor<Foo>()); Empirically, this solution functions correctly (minus any copy/paste or typos I may have introduced when editing the above for brevity). So, finally, the actual question: I don't like requiring the use of bind() and _1 placeholders, etcetera by the caller. All they really care about is: outer type, inner type, outer type's method to fetch inner instances, outer type's method to fetch count inner instances. Is there any way to "hide" the bind in the body of the template classes somehow? I've been unable to find a way to separately supply template parameters for the types and inner methods separately... Thanks! David

    Read the article

  • C++ invalid reference problem

    - by Karol
    Hi all, I'm writing some callback implementation in C++. I have an abstract callback class, let's say: /** Abstract callback class. */ class callback { public: /** Executes the callback. */ void call() { do_call(); }; protected: /** Callback call implementation specific to derived callback. */ virtual void do_call() = 0; }; Each callback I create (accepting single-argument functions, double-argument functions...) is created as a mixin using one of the following: /** Makes the callback a single-argument callback. */ template <typename T> class singleArgumentCallback { protected: /** Callback argument. */ T arg; public: /** Constructor. */ singleArgumentCallback(T arg): arg(arg) { } }; /** Makes the callback a double-argument callback. */ template <typename T, typename V> class doubleArgumentCallback { protected: /** Callback argument 1. */ T arg1; /** Callback argument 2. */ V arg2; public: /** Constructor. */ doubleArgumentCallback(T arg1, V arg2): arg1(arg1), arg2(arg2) { } }; For example, a single-arg function callback would look like this: /** Single-arg callbacks. */ template <typename T> class singleArgFunctionCallback: public callback, protected singleArgumentCallback<T> { /** Callback. */ void (*callbackMethod)(T arg); public: /** Constructor. */ singleArgFunctionCallback(void (*callback)(T), T argument): singleArgumentCallback<T>(argument), callbackMethod(callback) { } protected: void do_call() { this->callbackMethod(this->arg); } }; For user convenience, I'd like to have a method that creates a callback without having the user think about details, so that one can call (this interface is not subject to change, unfortunately): void test3(float x) { std::cout << x << std::endl; } void test5(const std::string& s) { std::cout << s << std::endl; } make_callback(&test3, 12.0f)->call(); make_callback(&test5, "oh hai!")->call(); My current implementation of make_callback(...) is as follows: /** Creates a callback object. */ template <typename T, typename U> callback* make_callback( void (*callbackMethod)(T), U argument) { return new singleArgFunctionCallback<T>(callbackMethod, argument); } Unfortunately, when I call make_callback(&test5, "oh hai!")->call(); I get an empty string on the standard output. I believe the problem is that the reference gets out of scope after callback initialization. I tried using pointers and references, but it's impossible to have a pointer/reference to reference, so I failed. The only solution I had was to forbid substituting reference type as T (for example, T cannot be std::string&) but that's a sad solution since I have to create another singleArgCallbackAcceptingReference class accepting a function pointer with following signature: void (*callbackMethod)(T& arg); thus, my code gets duplicated 2^n times, where n is the number of arguments of a callback function. Does anybody know any workaround or has any idea how to fix it? Thanks in advance!

    Read the article

  • STL find performs bettern than hand-crafter loop

    - by dusha
    Hello all, I have some question. Given the following C++ code fragment: #include <boost/progress.hpp> #include <vector> #include <algorithm> #include <numeric> #include <iostream> struct incrementor { incrementor() : curr_() {} unsigned int operator()() { return curr_++; } private: unsigned int curr_; }; template<class Vec> char const* value_found(Vec const& v, typename Vec::const_iterator i) { return i==v.end() ? "no" : "yes"; } template<class Vec> typename Vec::const_iterator find1(Vec const& v, typename Vec::value_type val) { return find(v.begin(), v.end(), val); } template<class Vec> typename Vec::const_iterator find2(Vec const& v, typename Vec::value_type val) { for(typename Vec::const_iterator i=v.begin(), end=v.end(); i<end; ++i) if(*i==val) return i; return v.end(); } int main() { using namespace std; typedef vector<unsigned int>::const_iterator iter; vector<unsigned int> vec; vec.reserve(10000000); boost::progress_timer pt; generate_n(back_inserter(vec), vec.capacity(), incrementor()); //added this line, to avoid any doubts, that compiler is able to // guess the data is sorted random_shuffle(vec.begin(), vec.end()); cout << "value generation required: " << pt.elapsed() << endl; double d; pt.restart(); iter found=find1(vec, vec.capacity()); d=pt.elapsed(); cout << "first search required: " << d << endl; cout << "first search found value: " << value_found(vec, found)<< endl; pt.restart(); found=find2(vec, vec.capacity()); d=pt.elapsed(); cout << "second search required: " << d << endl; cout << "second search found value: " << value_found(vec, found)<< endl; return 0; } On my machine (Intel i7, Windows Vista) STL find (call via find1) runs about 10 times faster than the hand-crafted loop (call via find2). I first thought that Visual C++ performs some kind of vectorization (may be I am mistaken here), but as far as I can see assembly does not look the way it uses vectorization. Why is STL loop faster? Hand-crafted loop is identical to the loop from the STL-find body. I was asked to post program's output. Without shuffle: value generation required: 0.078 first search required: 0.008 first search found value: no second search required: 0.098 second search found value: no With shuffle (caching effects): value generation required: 1.454 first search required: 0.009 first search found value: no second search required: 0.044 second search found value: no Many thanks, dusha. P.S. I return the iterator and write out the result (found or not), because I would like to prevent compiler optimization, that it thinks the loop is not required at all. The searched value is obviously not in the vector.

    Read the article

  • Problems with passing an anonymous temporary function-object to a templatized constructor.

    - by Akanksh
    I am trying to attach a function-object to be called on destruction of a templatized class. However, I can not seem to be able to pass the function-object as a temporary. The warning I get is (if the comment the line xi.data = 5;): warning C4930: 'X<T> xi2(writer (__cdecl *)(void))': prototyped function not called (was a variable definition intended?) with [ T=int ] and if I try to use the constructed object, I get a compilation error saying: error C2228: left of '.data' must have class/struct/union I apologize for the lengthy piece of code, but I think all the components need to be visible to assess the situation. template<typename T> struct Base { virtual void run( T& ){} virtual ~Base(){} }; template<typename T, typename D> struct Derived : public Base<T> { virtual void run( T& t ) { D d; d(t); } }; template<typename T> struct X { template<typename R> X(const R& r) { std::cout << "X(R)" << std::endl; ptr = new Derived<T,R>(); } X():ptr(0) { std::cout << "X()" << std::endl; } ~X() { if(ptr) { ptr->run(data); delete ptr; } else { std::cout << "no ptr" << std::endl; } } Base<T>* ptr; T data; }; struct writer { template<typename T> void operator()( const T& i ) { std::cout << "T : " << i << std::endl; } }; int main() { { writer w; X<int> xi2(w); //X<int> xi2(writer()); //This does not work! xi2.data = 15; } return 0; }; The reason I am trying this out is so that I can "somehow" attach function-objects types with the objects without keeping an instance of the function-object itself within the class. Thus when I create an object of class X, I do not have to keep an object of class writer within it, but only a pointer to Base<T> (I'm not sure if I need the <T> here, but for now its there). The problem is that I seem to have to create an object of writer and then pass it to the constructor of X rather than call it like X<int> xi(writer(); I might be missing something completely stupid and obvious here, any suggestions?

    Read the article

  • C++ Problem resolution - is it the best way to simulate a "tuple"?

    - by fbin
    Hi everyone! I've got the following problem: "Write a template function vectorMAXMIN() that will accept a vector and a number indicating the size of the vector and will return the max and the min values of the vector"... So i think in it... Create a class vector to avoid the "size" passing value and control the insertions and can get from this the max and min values... ( dunno if it's a good idea ) The problem is "how to return a tuple?" When i read the problem, i thought in a tuple to return "max, min values" is it correct? The code: #include <iostream> template < typename T > class _tuple { public: T _Max; T _Min; }; template < typename T > class _vector { public: _vector( int cnt = 0); ~_vector(); _tuple< T > get_tuple( void ); void insert( const T ); private: T *ptr; int cnt; int MAX; }; template < typename T > _vector< T >::_vector( int N ) { ptr = new T [N] ; MAX = N; cnt = 0; } template < typename T > _tuple<T> _vector< T >::get_tuple( void ) { _tuple< T > _mytuple; _mytuple._Max = ptr[0]; _mytuple._Min = ptr[0]; for( int i = 1; i < cnt; i++) { if( _mytuple._Max > ptr[i] ) _mytuple._Max = ptr[i]; if( _mytuple._Min < ptr[i] ) _mytuple._Min = ptr[i]; } return _mytuple; } template < typename T > void _vector< T >::insert( const T element) { if( cnt == MAX ) std::cerr << "Error: Out of range!" << std::endl; else { ptr[cnt] = element; cnt++; } } template < typename T > _vector< T >::~_vector() { delete [] ptr; } int main() { _vector< int > v; _tuple < int > t; v.insert(2); v.insert(1); v.insert(5); v.insert(0); v.insert(4); t = v.get_tuple(); std::cout << "MAX:" << t._Max; std::cout << " MIN:" << t._Min; return 0; }

    Read the article

  • error C2784: Could not deduce template argument

    - by atch
    Hi guys, Still fighting with templates. In this example, despite the fact that is copied straight from a book I'm getting the following error message: Error 2 error C2784: 'IsClassT<T>::One IsClassT<T>::test(int C::* )' : could not deduce template argument for 'int C::* ' from 'int'. This is an example from a book Templates - The Complete Guide. (I work with Visual Studio 2010 RC). template<typename T> class IsClassT { private: typedef char One; typedef struct { char a[2]; } Two; template<typename C> static One test(int C::*); template<typename C> static Two test(…); public: enum { Yes = sizeof(IsClassT<T>::test<T>(0)) == 1 }; enum { No = !Yes }; }; class MyClass { }; struct MyStruct { }; union MyUnion { }; void myfunc() { } enum E {e1} e; // check by passing type as template argument template <typename T> void check() { if (IsClassT<T>::Yes) { std::cout << " IsClassT " << std::endl; } else { std::cout << " !IsClassT " << std::endl; } } // check by passing type as function call argument template <typename T> void checkT (T) { check<T>(); } int main() { /*std::cout << "int: "; check<int>(); */ std::cout << "MyClass: "; check<MyClass>(); } And although I know roughly what's going on in this example I cannot fix this error. Thanks for help.

    Read the article

  • Class template specializations with shared functionality

    - by Thomas
    I'm writing a simple maths library with a template vector type: template<typename T, size_t N> class Vector { public: Vector<T, N> &operator+=(Vector<T, N> const &other); // ... more operators, functions ... }; Now I want some additional functionality specifically for some of these. Let's say I want functions x() and y() on Vector<T, 2> to access particular coordinates. I could create a partial specialization for this: template<typename T> class Vector<T, 3> { public: Vector<T, 3> &operator+=(Vector<T, 3> const &other); // ... and again all the operators and functions ... T x() const; T y() const; }; But now I'm repeating everything that already existed in the generic template. I could also use inheritance. Renaming the generic template to VectorBase, I could do this: template<typename T, size_t N> class Vector : public VectorBase<T, N> { }; template<typename T> class Vector<T, 3> : public VectorBase<T, 3> { public: T x() const; T y() const; }; However, now the problem is that all operators are defined on VectorBase, so they return VectorBase instances. These cannot be assigned to Vector variables: Vector<float, 3> v; Vector<float, 3> w; w = 5 * v; // error: no conversion from VectorBase<float, 3> to Vector<float, 3> I could give Vector an implicit conversion constructor to make this possible: template<typename T, size_t N> class Vector : public VectorBase<T, N> { public: Vector(VectorBase<T, N> const &other); }; However, now I'm converting from Vector to VectorBase and back again. Even though the types are the same in memory, and the compiler might optimize all this away, it feels clunky and I don't really like to have potential run-time overhead for what is essentially a compile-time problem. Is there any other way to solve this?

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • Why is the compiler not selecting my function-template overload in the following example?

    - by Steve Guidi
    Given the following function templates: #include <vector> #include <utility> struct Base { }; struct Derived : Base { }; // #1 template <typename T1, typename T2> void f(const T1& a, const T2& b) { }; // #2 template <typename T1, typename T2> void f(const std::vector<std::pair<T1, T2> >& v, Base* p) { }; Why is it that the following code always invokes overload #1 instead of overload #2? void main() { std::vector<std::pair<int, int> > v; Derived derived; f(100, 200); // clearly calls overload #1 f(v, &derived); // always calls overload #1 } Given that the second parameter of f is a derived type of Base, I was hoping that the compiler would choose overload #2 as it is a better match than the generic type in overload #1. Are there any techniques that I could use to rewrite these functions so that the user can write code as displayed in the main function (i.e., leveraging compiler-deduction of argument types)?

    Read the article

  • Multiple SFINAE rules

    - by Fred
    Hi everyone, After reading the answer to this question, I learned that SFINAE can be used to choose between two functions based on whether the class has a certain member function. It's the equivalent of the following, just that each branch in the if statement is split into an overloaded function: template<typename T> void Func(T& arg) { if(HAS_MEMBER_FUNCTION_X(T)) arg.X(); else //Do something else because T doesn't have X() } becomes template<typename T> void Func(T &arg, int_to_type<true>); //T has X() template<typename T> void Func(T &arg, int_to_type<false>); //T does not have X() I was wondering if it was possible to extend SFINAE to do multiple rules. Something that would be the equivalent of this: template<typename T> void Func(T& arg) { if(HAS_MEMBER_FUNCTION_X(T)) //See if T has a member function X arg.X(); else if(POINTER_DERIVED_FROM_CLASS_A(T)) //See if T is a pointer to a class derived from class A arg->A_Function(); else if(DERIVED_FROM_CLASS_B(T)) //See if T derives from class B arg.B_Function(); else if(IS_TEMPLATE_CLASS_C(T)) //See if T is class C<U> where U could be anything arg.C_Function(); else if(IS_POD(T)) //See if T is a POD type //Do something with a POD type else //Do something else because none of the above rules apply } Is something like this possible? Thank you.

    Read the article

  • "Undefined symbols" linker error with simple template class

    - by intregus
    Been away from C++ for a few years and am getting a linker error from the following code: Gene.h #ifndef GENE_H_INCLUDED #define GENE_H_INCLUDED template <typename T> class Gene { public: T getValue(); void setValue(T value); void setRange(T min, T max); private: T value; T minValue; T maxValue; }; #endif // GENE_H_INCLUDED Gene.cpp #include "Gene.h" template <typename T> T Gene<T>::getValue() { return this->value; } template <typename T> void Gene<T>::setValue(T value) { if(value >= this->minValue && value <= this->minValue) { this->value = value; } } template <typename T> void Gene<T>::setRange(T min, T max) { this->minValue = min; this->maxValue = max; } Using Code::Blocks and GCC if it matters to anyone. Also, clearly porting some GA stuff to C++ for fun and practice.

    Read the article

  • Template with constant expression: error C2975 with VC++2008

    - by Arman
    Hello, I am trying to use elements of meta programming, but hit the wall with the first trial. I would like to have a comparator structure which can be used as following: intersect_by<ID>(L1.data, L2.data, "By ID: "); intersect_by<IDf>(L1.data, L2.data, "By IDf: "); Where: struct ID{};// Tag used for original IDs struct IDf{};// Tag used for the file position //following Boost.MultiIndex examples template<typename Tag,typename MultiIndexContainer> void intersect_by( const MultiIndexContainer& L1,const MultiIndexContainer& L2,std::string msg, Tag* =0 /* fixes a MSVC++ 6.0 bug with implicit template function parms / ) { / obtain a reference to the index tagged by Tag */ const typename boost::multi_index::index<MultiIndexContainer,Tag>::type& L1_ID_index= get<Tag>(L1); const typename boost::multi_index::index<MultiIndexContainer,Tag>::type& L2_ID_index= get<Tag>(L2); std::set_intersection( L1_ID_index.begin(), L1_ID_index.end(), L2_ID_index.begin(), L2_ID_index.end(), std::inserter(s, s.begin()), strComparator() // Here I get the C2975 error ); } template<int N> struct strComparator; template<> struct strComparator<0>{ bool operator () (const particleID& id1, const particleID& id2) const { return id1.ID struct strComparator<1{ bool operator () (const particleID& id1, const particleID& id2) const { return id1.IDf }; What I am missing? kind regards Arman.

    Read the article

  • Output iterator's value_type

    - by wilhelmtell
    The STL commonly defines an output iterator like so: template<class Cont> class insert_iterator : public iterator<output_iterator_tag,void,void,void,void> { // ... Why do output iterators define value_type as void? It would be useful for an algorithm to know what type of value it is supposed to output. For example, a function that translates a URL query "key1=value1&key2=value2&key3=value3" into any container that holds key-value strings elements. template<typename Ch,typename Tr,typename Out> void parse(const std::basic_string<Ch,Tr>& str, Out result) { std::basic_string<Ch,Tr> key, value; // loop over str, parse into p ... *result = typename iterator_traits<Out>::value_type(key, value); } The SGI reference page of value_type hints this is because it's not possible to dereference an output iterator. But that's not the only use of value_type: I might want to instantiate one in order to assign it to the iterator.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >