Search Results

Search found 35892 results on 1436 pages for 'a different ben'.

Page 406/1436 | < Previous Page | 402 403 404 405 406 407 408 409 410 411 412 413  | Next Page >

  • extract data from Plist to array and dictionary

    - by Boaz
    Hi I made a plist that looks like that: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList 1.0.dtd"> <plist version="1.0"> <array> <array> <dict> <key>Company</key> <string>xxx</string> <key>Title</key> <string>VP Marketing</string> <key>Name</key> <string>Alon ddfr</string> </dict> <dict> <key>Name</key> <string>Adam Ben Shushan</string> <key>Title</key> <string>CEO</string> <key>Company</key> <string>Shushan ltd.</string> </dict> </array> <array> <dict> <key>Company</key> <string>xxx</string> <key>Title</key> <string>CTO</string> <key>Name</key> <string>Boaz frf</string> </dict> </array> </array> </plist> Now I want to extract the data like that (all the 'A' for key "Name" to one section and all the 'B' "Name" to other one): NSString *plistpath = [[NSBundle mainBundle] pathForResource:@"PeopleData" ofType:@"plist"]; NSMutableArray *attendees = [[NSMutableArray alloc] initWithContentsOfFile:plistpath]; listOfPeople = [[NSMutableArray alloc] init];//Add items NSDictionary *indexADict = [NSDictionary dictionaryWithObject:[[attendees objectAtIndex:0] objectForKey:@"Name"] forKey:@"Profiles"]; NSDictionary *indexBDict = [NSDictionary dictionaryWithObject:[[attendees objectAtIndex:1] objectForKey:@"Name"] forKey:@"Profiles"]; [listOfPeople addObject:indexADict]; [listOfPeople addObject:indexBDict]; This in order to view them in sectioned tableView. I know that the problem is here: NSDictionary *indexADict = [NSDictionary dictionaryWithObject:[[attendees objectAtIndex:0] objectForKey:@"Name"] forKey:@"Profiles"]; But I just can't figure how to do it right. Thanks.

    Read the article

  • SignalR recording when a Web Page has closed

    - by Benjamin Rogers
    I am using MassTransit request and response with SignalR. The web site makes a request to a windows service that creates a file. When the file has been created the windows service will send a response message back to the web site. The web site will open the file and make it available for the users to see. I want to handle the scenario where the user closes the web page before the file is created. In that case I want the created file to be emailed to them. Regardless of whether the user has closed the web page or not, the message handler for the response message will be run. What I want to be able to do is have some way of knowing within the response message handler that the web page has been closed. This is what I have done already. It doesnt work but it does illustrate my thinking. On the web page I have $(window).unload(function () { if (event.clientY < 0) { // $.connection.hub.stop(); $.connection.exportcreate.setIsDisconnected(); } }); exportcreate is my Hub name. In setIsDisconnected would I set a property on Caller? Lets say I successfully set a property to indicate that the web page has been closed. How do I find out that value in the response message handler. This is what it does now protected void BasicResponseHandler(BasicResponse message) { string groupName = CorrelationIdGroupName(message.CorrelationId); GetClients()[groupName].display(message.ExportGuid); } private static dynamic GetClients() { return AspNetHost.DependencyResolver.Resolve<IConnectionManager>().GetClients<ExportCreateHub>(); } I am using the message correlation id as a group. Now for me the ExportGuid on the message is very important. That is used to identify the file. So if I am going to email the created file I have to do it within the response handler because I need the ExportGuid value. If I did store a value on Caller in my hub for the web page close, how would I access it in the response handler. Just in case you need to know. display is defined on the web page as exportCreate.display = function (guid) { setTimeout(function () { top.location.href = 'GetExport.ashx?guid=' + guid; }, 500); }; GetExport.ashx opens the file and returns it as a response. Thank you, Regards Ben

    Read the article

  • Infinite loop when using fscanf

    - by user1409641
    I wrote this simple program in C, because I'm studying FILES right now at University. I take a txt file with a list of the results of the last race so my program will show the data formatted as I want. Here's my code: /* Esercizio file Motogp */ #include <stdio.h> #define SIZE 20 int main () { int pos, punt, num; float kmh; char nome[SIZE+1], cognome[SIZE+1], moto[SIZE+1]; char naz[SIZE+1], nome_file[SIZE+1]; FILE *fp; printf ("Inserisci il nome del file da aprire: "); gets (nome_file); fp = fopen (nome_file, "r"); if (fopen == NULL) printf ("Errore nell' apertura del file %s\n", nome_file); else { while (fscanf (fp, "%d %d %d %s %s %s %s %.2f", &pos, &punt, &num, nome, cognome, naz, moto, &kmh) != EOF ) { printf ("Posizione di arrivo: %d\n", pos); printf ("Punteggio: %d\n", punt); printf ("Numero pilota: %d\n", num); printf ("Nome pilota: %s\n", nome); printf ("Cognome pilota: %s\n", cognome); printf ("Nazione: %s\n", naz); printf ("Moto: %s\n", moto); printf ("Media Kmh: %d\n\n", kmh); } } fclose(fp); return 0; } and there's my txt file: 1 25 99 Jorge LORENZO SPA Yamaha 164.4 2 20 26 Dani PEDROSA SPA Honda 164.1 3 16 4 Andrea DOVIZIOSO ITA Yamaha 163.8 4 13 1 Casey STONER AUS Honda 163.8 5 11 35 Cal CRUTCHLOW GBR Yamaha 163.6 6 10 19 Alvaro BAUTISTA SPA Honda 163.5 7 9 46 Valentino ROSSI ITA Ducati 163.3 8 8 6 Stefan BRADL GER Honda 162.9 9 7 69 Nicky HAYDEN USA Ducati 162.5 10 6 11 Ben SPIES USA Yamaha 162.3 11 5 8 Hector BARBERA SPA Ducati 162.1 12 4 17 Karel ABRAHAM CZE Ducati 160.9 13 3 41 Aleix ESPARGARO SPA ART 160.2 14 2 51 Michele PIRRO ITA FTR 160.1 15 1 14 Randy DE PUNIET FRA ART 160.0 16 0 77 James ELLISON GBR ART 159.9 17 0 54 Mattia PASINI ITA ART 159.4 18 0 68 Yonny HERNANDEZ COL BQR 159.4 19 0 9 Danilo PETRUCCI ITA Ioda 158.2 20 0 22 Ivan SILVA SPA BQR 158.2 When I run my program, it return me an infinite loop of the first one. Why? Is there another function to read those data?

    Read the article

  • MVC Entity Framework Model not returning correct data

    - by quagland
    Hi, Run into a strange problem while writing an ASP.NET MVC site. I have a view in my SQL Server database that returns a few date ranges. The view works fine when running the query in SSMS. When the view data is returned by the Entity Framework Model, It returns the correct number of rows but some of the rows are duplicated. Here is an example of what I have done: SQL Server code: CREATE TABLE [dbo].[A]( [ID] [int] NOT NULL, [PhID] [int] NULL, [FromDate] [datetime] NULL, [ToDate] [datetime] NULL, CONSTRAINT [PK_A] PRIMARY KEY CLUSTERED ([ID] ASC)) ON [PRIMARY] go CREATE TABLE [dbo].[B]( [PhID] [int] NOT NULL, [FromDate] [datetime] NULL, [ToDate] [datetime] NULL, CONSTRAINT [PK_B] PRIMARY KEY CLUSTERED ( [PhID] ASC )) ON [PRIMARY] go CREATE VIEW C as SELECT A.ID, CASE WHEN A.PhID IS NULL THEN A.FromDate ELSE B.FromDate END AS FromDate, CASE WHEN A.PhID IS NULL THEN A.ToDate ELSE B.ToDate END AS ToDate FROM A LEFT OUTER JOIN B ON A.PhID = B.PhID go INSERT INTO B (PhID, FromDate, ToDate) VALUES (100, '20100615', '20100715') INSERT INTO A (ID, PhID, FromDate, ToDate) VALUES (1, NULL, '20100101', '20100201') INSERT INTO A (ID, PhID, FromDate, ToDate) VALUES (1, 100, '20100615', '20100715') INSERT INTO B (PhID, FromDate, ToDate) VALUES (101, '20101201', '20101231') INSERT INTO A (ID, PhID, FromDate, ToDate) VALUES (2, NULL, '20100801', '20100901') INSERT INTO A (ID, PhID, FromDate, ToDate) VALUES (2, 101, '20101201', '20101231') So now, if you select all from C, you get 4 separate date ranges In the Entity Framework Model (which I call 'Core'), the view 'C' is added. in MVC Controller: public class HomeController : Controller { public ActionResult Index() { CoreEntities db = new CoreEntities(); var clist = from c in db.C select c; return View(clist.ToList()); } } in MVC View: @model List<RM.Models.C> @{ foreach (RM.Models.C c in Model) { @String.Format("{0:dd-MMM-yyyy}", c.FromDate) <span>-</span> @String.Format("{0:dd-MMM-yyyy}", c.ToDate) <br /> } } When I run all this, it outputs this: 01-Jan-2010 - 01-Feb-2010 01-Jan-2010 - 01-Feb-2010 01-Aug-2010 - 01-Sep-2010 01-Aug-2010 - 01-Sep-2010 When it should do this (this is what the view returns): 01-Jan-2010 - 01-Feb-2010 15-Jun-2010 - 15-Jul-2010 01-Aug-2010 - 01-Sep-2010 01-Dec-2010 - 31-Dec-2010 Also, I've run the SQL profiler over it and according to that, the query being executed is: SELECT [Extent1].[ID] AS [ID], [Extent1].[FromDate] AS [FromDate], [Extent1].[ToDate] AS [ToDate] FROM (SELECT [C].[ID] AS [ID], [C].[FromDate] AS [FromDate], [C].[ToDate] AS [ToDate] FROM [dbo].[C] AS [C]) AS [Extent1] Which returns the correct data So it seems that the entity framework is doing something to the data in the meantime. To me, everything looks fine! Have I missed something? Cheers, Ben

    Read the article

  • Helping linqtosql datacontext use implicit conversion between varchar column in the database and tab

    - by user213256
    I am creating an mssql database table, "Orders", that will contain a varchar(50) field, "Value" containing a string that represents a slightly complex data type, "OrderValue". I am using a linqtosql datacontext class, which automatically types the "Value" column as a string. I gave the "OrderValue" class implicit conversion operators to and from a string, so I can easily use implicit conversion with the linqtosql classes like this: // get an order from the orders table MyDataContext db = new MyDataContext(); Order order = db.Orders(o => o.id == 1); // use implicit converstion to turn the string representation of the order // value into the complex data type. OrderValue value = order.Value; // adjust one of the fields in the complex data type value.Shipping += 10; // use implicit conversion to store the string representation of the complex // data type back in the linqtosql order object order.Value = value; // save changes db.SubmitChanges(); However, I would really like to be able to tell the linqtosql class to type this field as "OrderValue" rather than as "string". Then I would be able to avoid complex code and re-write the above as: // get an order from the orders table MyDataContext db = new MyDataContext(); Order order = db.Orders(o => o.id == 1); // The Value field is already typed as the "OrderValue" type rather than as string. // When a string value was read from the database table, it was implicity converted // to "OrderValue" type. order.Value.Shipping += 10; // save changes db.SubmitChanges(); In order to achieve this desired goal, I looked at the datacontext designer and selected the "Value" field of the "Order" table. Then, in properties, I changed "Type" to "global::MyApplication.OrderValue". The "Server Data Type" property was left as "VarChar(50) NOT NULL" The project built without errors. However, when reading from the database table, I was presented with the following error message: Could not convert from type 'System.String' to type 'MyApplication.OrderValue'. at System.Data.Linq.DBConvert.ChangeType(Object value, Type type) at Read_Order(ObjectMaterializer1 ) at System.Data.Linq.SqlClient.ObjectReaderCompiler.ObjectReader2.MoveNext() at System.Linq.Buffer1..ctor(IEnumerable1 source) at System.Linq.Enumerable.ToArray[TSource](IEnumerable`1 source) at Example.OrdersProvider.GetOrders() at ... etc From the stack trace, I believe this error is happening while reading the data from the table. When presented with converting a string to my custom data type, even though the implicit conversion operators are present, the DBConvert class gets confused and throws an error. Is there anything I can do to help it not get confused and do the implicit conversion? Thanks in advance, and apologies if I have posted in the wrong forum. cheers / Ben

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • MySQL – Learning MySQL Online in 6 Hours – MySQL Fundamentals in 320 Minutes

    - by Pinal Dave
    MySQL is one of the most popular database language and I have been recently working with it a lot. Data have no barrier and every database have their own place. I have been working with MySQL for quite a while and just like SQL Server, I often find lots of people asking me if I have a tutorial which can teach them MySQL from the beginning. Here is the good news, I have written two different courses on MySQL Fundamentals, which is available online. The reason for writing two different courses was to keep the learning simple. Both of the courses are absolutely connected with other but designed if you watch either of the course independently you can watch them and learn without dependencies. However, if you ask me, I will suggest that you watch MySQL Fundamentals Part 1 course following with MySQL Fundamentals Part 2 course. Let us quickly explore outline of MySQL courses. MySQL Fundamental – 1 (157 minutes) MySQL is a popular choice of database for use in web applications, and is a central component of the widely used LAMP open source web application software stack. This course covers the fundamentals of MySQL, including how to install MySQL as well as written basic data retrieval and data modification queries. Introduction (duration 00:02:12) Installations and GUI Tools (duration 00:13:51) Fundamentals of RDBMS and Database Designs (duration 00:16:13) Introduction MYSQL Workbench (duration 00:31:51) Data Retrieval Techniques (duration 01:11:13) Data Modification Techniques (duration 00:20:41) Summary and Resources (duration 00:01:31) MySQL Fundamental – 2 (163 minutes) MySQL is a popular choice of database for use in web applications, and is a central component of the widely used LAMP open source web application software stack. In this course, which is part 2 of the Fundamentals of MySQL series, we explore more advanced topics such as stored procedures & user-defined functions, subqueries & joins, views and events & triggers. Introduction (duration 00:02:09) Joins, Unions and Subqueries (duration 01:03:56) MySQL Functions (duration 00:36:55) MySQL Views (duration 00:19:19) Stored Procedures and Stored Functions (duration 00:25:23) Triggers and Events (duration 00:13:41) Summary and Resources (duration 00:02:18) Note if you click on the link above and you do not see the play button to watch the course, you will have to login to the system and watch the course. I would like to throw a challenge to you – Can you watch both of the courses in a single day? If yes, once you are done watching the course on your Pluralsight Profile Page (here is my profile http://pluralsight.com/training/users/pinal-dave) you will get following badges. If you have already watched MySQL Fundamental Part 1, you can qualify by just watching MySQL Fundamental Part 2. Just send me the link to your profile and I will publish your name on this blog. For the first five people who send me email at Pinal at sqlauthority.com; I might have something cool as a giveaway as well. Watch the teaser of MySQL course. Reference: Pinal Dave (http://blog.sqlauthority.com)  Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL Server Configuration timeouts - and a workaround [SSIS]

    - by jamiet
    Ever since I started writing SSIS packages back in 2004 I have opted to store configurations in .dtsConfig (.i.e. XML) files rather than in a SQL Server table (aka SQL Server Configurations) however recently I inherited some packages that used SQL Server Configurations and thus had to immerse myself in their murky little world. To all the people that have ever gone onto the SSIS forum and asked questions about ambiguous behaviour of SQL Server Configurations I now say this... I feel your pain! The biggest problem I have had was in dealing with the change to the order in which configurations get applied that came about in SSIS 2008. Those changes are detailed on MSDN at SSIS Package Configurations however the pertinent bits are: As the utility loads and runs the package, events occur in the following order: The dtexec utility loads the package. The utility applies the configurations that were specified in the package at design time and in the order that is specified in the package. (The one exception to this is the Parent Package Variables configurations. The utility applies these configurations only once and later in the process.) The utility then applies any options that you specified on the command line. The utility then reloads the configurations that were specified in the package at design time and in the order specified in the package. (Again, the exception to this rule is the Parent Package Variables configurations). The utility uses any command-line options that were specified to reload the configurations. Therefore, different values might be reloaded from a different location. The utility applies the Parent Package Variable configurations. The utility runs the package. To understand how these steps differ from SSIS 2005 I recommend reading Doug Laudenschlager’s blog post Understand how SSIS package configurations are applied. The very nature of SQL Server Configurations means that the Connection String for the database holding the configuration values needs to be supplied from the command-line. Typically then the call to execute your package resembles this: dtexec /FILE Package.dtsx /SET "\Package.Connections[SSISConfigurations].Properties[ConnectionString]";"\"Data Source=SomeServer;Initial Catalog=SomeDB;Integrated Security=SSPI;\"", The problem then is that, as per the steps above, the package will (1) attempt to apply all configurations using the Connection String stored in the package for the "SSISConfigurations" Connection Manager before then (2) applying the Connection String from the command-line and then (3) apply the same configurations all over again. In the packages that I inherited that first attempt to apply the configurations would timeout (not unexpected); I had 8 SQL Server Configurations in the package and thus the package was waiting for 2 minutes until all the Configurations timed out (i.e. 15seconds per Configuration) - in a package that only executes for ~8seconds when it gets to do its actual work a delay of 2minutes was simply unacceptable. We had three options in how to deal with this: Get rid of the use of SQL Server configurations and use .dtsConfig files instead Edit the packages when they get deployed Change the timeout on the "SSISConfigurations" Connection Manager #1 was my preferred choice but, for reasons I explain below*, wasn't an option in this particular instance. #2 was discounted out of hand because it negates the point of using Configurations in the first place. This left us with #3 - change the timeout on the Connection Manager. This is done by going into the properties of the Connection Manager, opening the "All" tab and changing the Connect Timeout property to some suitable value (in the screenshot below I chose 2 seconds). This change meant that the attempts to apply the SQL Server configurations timed out in 16 seconds rather than two minutes; clearly this isn't an optimum solution but its certainly better than it was. So there you have it - if you are having problems with SQL Server configuration timeouts within SSIS try changing the timeout of the Connection Manager. Better still - don't bother using SQL Server Configuration in the first place. Even better - install RC0 of SQL Server 2012 to start leveraging SSIS parameters and leave the nasty old world of configurations behind you. @Jamiet * Basically, we are leveraging a SSIS execution/logging framework in which the client had invested a lot of resources and SQL Server Configurations are an integral part of that.

    Read the article

  • ASP.NET AJAX, jQuery and AJAX Control Toolkit&ndash;the roadmap

    - by Harish Ranganathan
    The opinions mentioned herein are solely mine and do not reflect those of my employer Wanted to post this for a long time but couldn’t.  I have been an ASP.NET Developer for quite sometime and have worked with version 1.1, 2.0, 3.5 as well as the latest 4.0. With ASP.NET 2.0 and Visual Studio 2005, came the era of AJAX and rich UI style web applications.  So, ASP.NET AJAX (codenamed “ATLAS”) was released almost an year later.  This was called as ASP.NET 2.0 AJAX Extensions.  This release was supported further with Visual Studio 2005 Service Pack 1. The initial release of ASP.NET AJAX had 3 components ASP.NET AJAX Library – Client library that is used internally by the server controls as well as scripts that can be used to write hand coded ajax style pages ASP.NET AJAX Extensions – Server controls i.e. ScriptManager,Proxy, UpdatePanel, UpdateProgress and Timer server controls.  Works pretty much like other server controls in terms of development and render client side behavior automatically AJAX Control Toolkit – Set of server controls that extend a behavior or a capability.  Ex.- AutoCompleteExtender The AJAX Control Toolkit was a separate download from CodePlex while the first two get installed when you install ASP.NET AJAX Extensions. With Visual Studio 2008, ASP.NET AJAX made its way into the runtime.  So one doesn’t need to separately install the AJAX Extensions.  However, the AJAX Control Toolkit still remained as a community project that can be downloaded from CodePlex.  By then, the toolkit had close to 30 controls. So, the approach was clear viz., client side programming using ASP.NET AJAX Library and server side model using built-in controls (UpdatePanel) and/or AJAX Control Toolkit. However, with Visual Studio 2008 Service Pack 1, we also added support for the ever increasing popular jQuery library.  That is, you can use jQuery along with ASP.NET and would also get intellisense for jQuery in Visual Studio 2008. Some of you who have played with Visual Studio 2010 Beta and .NET Framework 4 Beta, would also have explored the new AJAX Library which had a lot of templates, live bindings etc.,  But, overall, the road map ahead makes it much simplified. For client side programming using JavaScript for implementing AJAX in ASP.NET, the recommendation is to use jQuery which will be shipped along with Visual Studio and provides intellisense as well. For server side programming one you can use the server controls like UpdatePanel etc., and also the AJAX Control Toolkit which has close to 40 controls now.  The AJAX Control Toolkit still remains as a separate download at CodePlex.  You can download the different versions for different versions of ASP.NET at http://ajaxcontroltoolkit.codeplex.com/ The Microsoft AJAX Library will still be available through the CDN (Content Delivery Network) channels.  You can view the CDN resources at http://www.asp.net/ajaxlibrary/CDN.ashx Similarly even jQuery and the toolkit would be available as CDN resources in case you chose not to download and have them as a part of your application. I think this makes AJAX development pretty simple.  Earlier, having Microsoft AJAX Library as well as jQuery for client side scripting was kind of confusing on which one to use.  With this roadmap, it makes it simple and clear. You can read more on this at http://ajax.asp.net I hope this post provided some clarity on the AJAX roadmap as I could decipher from various product teams. Cheers!!!

    Read the article

  • Interview questions about ASP.NET Web services.

    - by Jalpesh P. Vadgama
    I have seen there are lots of myth’s about asp.net web services in fresher level asp.net developers. So I decided to write a blog post about asp.net web services interview questions. Because I think this is the best way to reach fresher asp.net developers. Followings are few questions about asp.net web services. 1) What is asp.net web services? Ans: Web services are used to support http requests that formatted using xml,http and SOAP syntax. They interact with through standards xml messages through Soap. They are used to support interoperability. It has .asmx extension and .NET framework contains http handlers for web services to support http requested directly. 2) What kind of data can be returned web services web methods? Ans: It supports all the primitive data types and custom data types that can be encoded and serialized by xml. You can find more information about that from the following link. http://msdn.microsoft.com/en-us/library/bb552900.aspx 3) Is web services are only written in asp.net? Ans: No, It can be written by Java and PHP languages also. 4) Explain web method attributes in web services Ans: Web method attributes are added to a public class method to indicate that this method is exposed as a part of XML web services. You can have multiple web methods in a class. But it should be having public attributes as it will be exposed as xml web service part. You can find more information about web method attributes from following link. http://msdn.microsoft.com/en-us/library/byxd99hx(v=vs.71).aspx 5) What is SOA? Ans: SOA stands for “Services Oriented Architecture”. It is kind of service oriented architecture used to support different kind of computing platforms and applications. Web services in asp.net are one of the technologies that supports that kind of architecture.  You can call asp.net web services from any computing platforms and applications. 6) What is SOAP,WDSL and UDDI? Ans: SOAP stands “Simple Object Access protocol”. Web services will be interact with SOAP messages written in XML. SOAP is sometimes referred as “data wrapper” or “data envelope”.Its contains different xml tag that creates a whole SOAP message.  WSDL stand for “Web services Description Language”.  It is an xml document which is written according to standard specified by W3c. It is a kind of manual or document that describes how we can use and consume web service. Web services development software processes the WSDL document and generates SOAP messages that are needed for specific web service. UDDI stand for “Universal Discovery, Description and Integration”. Its is used for web services registries. You can find addresses of web services from UDDI.

    Read the article

  • Start Learning Ruby with IronRuby – Setting up the Environment

    - by kazimanzurrashid
    Recently I have decided to learn Ruby and for last few days I am playing with IronRuby. Learning a new thing is always been a fun and when it comes to adorable language like Ruby it becomes more entertaining. Like any other language, first we have to create the development environment. In order to run IronRuby we have to download the binaries form the IronRuby CodePlex project. IronRuby supports both .NET 2.0 and .NET 4, but .NET 4 is the recommended version, you can download either the installation or the zip file. If you download the zip file make sure you added the bin directory in the environment path variable. Once you are done, open up the command prompt and type : ir –v It should print message like: IronRuby 1.0.0.0 on .NET 4.0.30319.1 The ir is 32bit version of IronRuby, if you want to use 64bit you can try ir64. Next, we have to find a editor where we can write our Ruby code as there is currently no integration story of IronRuby with Visual Studio like its twin Iron Python. Among the free IDEs only SharpDevelop has the IronRuby support but it does not have auto complete or debugging built into it, only thing that it supports is the syntax highlighting, so using a text editor which has the same features is nothing different comparing to it. To play with the IronRuby we will be using Notepad++, which can be downloaded from its sourceforge download page. The Notepad++ does have a nice syntax highlighting support : I am using the Vibrant Ink with some little modification. The next thing we have to do is configure the Notepad++ that we can run the Ruby script in IronRuby inside the Notepad++. Lets create a batch(.bat) file in the IronRuby bin directory, which will have the following content: @echo off  cls call ir %1 pause This will make sure that the console will be paused once we run the script. Now click Run->Run in the Notepad++, it will bring up the run dialog and put the following command in the textbox: riir.bat "$(FULL_CURRENT_PATH)" Click the save which will bring another dialog. Type Iron Ruby and assign the shortcut to ctrl + f5 (Same as Visual Studio Start without Debugging) and click ok. Once you are done you will find the IronRuby in the Run menu. Now press ctrl + f5, we will find the ruby script running in the IronRuby. Now there are one last thing that we would like to add which is poor man’s context sensitive help. First, download the ruby language help file from the Ruby Installer site and extract into a directory. Next we will have to install the Language Help Plug-in of Notepad++, click Plugins->Plugin Manger –>Show Plugin Manager and scroll down until you find the plug-in the list, now check the plug-in and click install. Once it is installed it will prompt you to restart the Notepad++, click yes. When the Notepad++ restarts, click the Plugins –> Language Help –> Options –> add and enter the following details and click ok: The chm file location can be different depending upon where you extracted it. Now when you put your in any of ruby keyword and press ctrl + f1 it will take you to the help topic of that keyword. For example, when my caret is in the each of the following code and I press ctrl + f1, it will take me to the each api doc of Array. def loop_demo (1..10).each{ |n| puts n} end loop_demo That’s it for today. Happy Ruby coding.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Book Review: Middleware Management with Oracle Enterprise Manager Grid Control 10g R5

    - by olaf.heimburger
    When you are familar with the Oracle Database and Middleware stack, chances are that you came across the Enterprise Manager. It comes in many versions for the database or the middleware and differs in its features. If meet someone who talks about Enterprise Manager, it might be possible that this person is talking about something completely different - Enterprise Manager Grid Control. Enterprise Manager Grid Control is the Oracle product for the data center that monitors all databases - and middleware components as well as operating systems. Since the database part is taken for granted, is needs some additional steps to get into the world of centralized middleware management. That's what this book is for - bringing you in the world of middleware management. The Authors This book is written by Debu Panda, former Product Management Director of the Oracle Fusion Middleware Management development team, and Arvind Maheshwari, Senior Software Development Manager of the Oracle Enterprise Manager development team. The Book Oracle Enterprise Manager conceptionally works for many different management areas. As a user you often think of managing databases with it. This is a wide area and deserves another book. The least known area is the middleware management and that's what the booked aimes for. The first 3 chapters cover the key features of Enterprise Manager Grid Control, Installing Enterprise Manager Grid Control, and Enterprise Manager Key Concepts and Subsystems. The foundation you need to understand the whole software and the following chapters. Read them in order and you are well prepared for the next 10 chapters on managing the various bits and pieces in your data center. The list of bits and pieces is always a surprise, no matter how often you open the book. You can manage Oracle WebLogic Server, Oracle Application Server, Oracle Forms and Reports Services, SOA Suite 10g, Oracle Service Bus 10g, Oracle Internet Directory, Oracle Virtual Directory, Oracle Access Manager, Oracle Identity Manager, Oracle Identity Federation, Oracle Coherence Cluster, Non-Oracle Middleware like Apache, Tomcat, JBoss, OBM WebSphere and much much more. The chapters for these components can be read in any order you like, you only need the foundation chapters and continue with the parts in your data center. Once you are done with them, don't forget to read the last chapter, Best Practices for Managing Middleware Components using Enterprise Manager. Read it, understand it, and implement it in your organization. This will save you valueable time and budget. Recommendation This book is mainly written for the Enterprise Manager newbies and saves you a lot of time while going through the standard product documentation. All chapters are considerable short and tell exactly what need to know to get started with. Nothing more and nothing less. That's the beauty of it and why I love it. Due to its limitation it will cover everything you'd like to know, but it gets you started and interested for more insights. But that is the job of the product documentation. The Details Title Middleware Management with Oracle Enterprise Manager Grid Control 10g R5 Authors Debu Panda and Arvind Maheshwari Paperback 310 pages ISBN 13 978-1-847198-34-1

    Read the article

  • SQL SERVER – Merge Operations – Insert, Update, Delete in Single Execution

    - by pinaldave
    This blog post is written in response to T-SQL Tuesday hosted by Jorge Segarra (aka SQLChicken). I have been very active using these Merge operations in my development. However, I have found out from my consultancy work and friends that these amazing operations are not utilized by them most of the time. Here is my attempt to bring the necessity of using the Merge Operation to surface one more time. MERGE is a new feature that provides an efficient way to do multiple DML operations. In earlier versions of SQL Server, we had to write separate statements to INSERT, UPDATE, or DELETE data based on certain conditions; however, at present, by using the MERGE statement, we can include the logic of such data changes in one statement that even checks when the data is matched and then just update it, and similarly, when the data is unmatched, it is inserted. One of the most important advantages of MERGE statement is that the entire data are read and processed only once. In earlier versions, three different statements had to be written to process three different activities (INSERT, UPDATE or DELETE); however, by using MERGE statement, all the update activities can be done in one pass of database table. I have written about these Merge Operations earlier in my blog post over here SQL SERVER – 2008 – Introduction to Merge Statement – One Statement for INSERT, UPDATE, DELETE. I was asked by one of the readers that how do we know that this operator was doing everything in single pass and was not calling this Merge Operator multiple times. Let us run the same example which I have used earlier; I am listing the same here again for convenience. --Let’s create Student Details and StudentTotalMarks and inserted some records. USE tempdb GO CREATE TABLE StudentDetails ( StudentID INTEGER PRIMARY KEY, StudentName VARCHAR(15) ) GO INSERT INTO StudentDetails VALUES(1,'SMITH') INSERT INTO StudentDetails VALUES(2,'ALLEN') INSERT INTO StudentDetails VALUES(3,'JONES') INSERT INTO StudentDetails VALUES(4,'MARTIN') INSERT INTO StudentDetails VALUES(5,'JAMES') GO CREATE TABLE StudentTotalMarks ( StudentID INTEGER REFERENCES StudentDetails, StudentMarks INTEGER ) GO INSERT INTO StudentTotalMarks VALUES(1,230) INSERT INTO StudentTotalMarks VALUES(2,255) INSERT INTO StudentTotalMarks VALUES(3,200) GO -- Select from Table SELECT * FROM StudentDetails GO SELECT * FROM StudentTotalMarks GO -- Merge Statement MERGE StudentTotalMarks AS stm USING (SELECT StudentID,StudentName FROM StudentDetails) AS sd ON stm.StudentID = sd.StudentID WHEN MATCHED AND stm.StudentMarks > 250 THEN DELETE WHEN MATCHED THEN UPDATE SET stm.StudentMarks = stm.StudentMarks + 25 WHEN NOT MATCHED THEN INSERT(StudentID,StudentMarks) VALUES(sd.StudentID,25); GO -- Select from Table SELECT * FROM StudentDetails GO SELECT * FROM StudentTotalMarks GO -- Clean up DROP TABLE StudentDetails GO DROP TABLE StudentTotalMarks GO The Merge Join performs very well and the following result is obtained. Let us check the execution plan for the merge operator. You can click on following image to enlarge it. Let us evaluate the execution plan for the Table Merge Operator only. We can clearly see that the Number of Executions property suggests value 1. Which is quite clear that in a single PASS, the Merge Operation completes the operations of Insert, Update and Delete. I strongly suggest you all to use this operation, if possible, in your development. I have seen this operation implemented in many data warehousing applications. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Joins, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Merge

    Read the article

  • USB software protection dongle for Java with an SDK which is cross-platform “for real”. Does it exist?

    - by Unai Vivi
    What I'd like to ask is if anybody knows about an hardware USB-dongle for software protection which offers a very complete out-of-the-box API support for cross-platform Java deployments. Its SDK should provide a jar (only one, not one different library per OS & bitness) ready to be added to one's project as a library. The jar should contain all the native stuff for the various OSes and bitnesses From the application's point of view, one should continue to write (api calls) once and run everywhere, without having to care where the end-user will run the software The provided jar should itself deal with loading the appropriate native library Does such a thing exist? With what I've tried so far, you have different APIs and compiled libraries for win32, linux32, win64, linux64, etc (or you even have to compile stuff yourself on the target machine), but hey, we're doing Java here, we don't know (and don't care) where the program will run! And we can't expect the end-user to be a software engineer, tweak (and break!) its linux server, link libraries, mess with gcc, litter the filesystem, etc... In general, Java support (in a transparent cross-platform fashion) is quite bad with the dongle SDKs I've evaluated so far (e.g. KeyLok and SecuTech's UniKey). I even purchased (no free evaluation kit available) SecureMetric SDKs&dongles (they should've been "soooo" straighforward to integrate -- according to marketing material :\ ) and they were the worst ever: SecureDongle X has no 64bit support and SecureDongle SD is not cross-platform at all. So, has anyone out there been through this and found the ultimate Java security usb dongle for cross-platform deployments? Note: software is low-volume, high-value; application is off-line (intranet with no internet access), so no online-activation alternatives and the like. -- EDIT Tried out HASP dongles (used to be called "Aladdin"), and added them to the no-no list: here, too, there is no out-of-the-box (out-of-the-jar) support: e.g. end-linux-user has to manually put the .so library (the specific file for the appropriate bitness) in the right place on his filesystem, and export an env. variable accordingly. -- EDIT 2 I really don't understand all the negativity and all the downvoting: is this a taboo topic? Is it so hard to understand that a freelance developer has to put food on the table everyday to feed its family and pay the bills at the end of the month? Please don't talk about "adding value" as a supplier, because that'd be off-topic. Furthermore I'm not in direct contact with end-customers, but there's an intermediate reselling entity: it's this entity I want to prevent selling copies of the software without sharing the revenue. -- EDIT 3 I'd like to emphasize the fact that the question is looking for a technical answer, not one about opinions concerning business models, philosophical lucubrations on the concept of value, resellers' reliability, etc. I cannot change resellers, because this isn't a "general purpose" kind of sw, but a very vertical one and (for some reasons it's not worth explaining here) I must go through them. I just need to prevent the "we sold 2 copies, here's your share [bwahaha we sold 10]" scenario.

    Read the article

  • ASP.NET Web API - Screencast series with downloadable sample code - Part 1

    - by Jon Galloway
    There's a lot of great ASP.NET Web API content on the ASP.NET website at http://asp.net/web-api. I mentioned my screencast series in original announcement post, but we've since added the sample code so I thought it was worth pointing the series out specifically. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. So - let's watch them together! Grab some popcorn and pay attention, because these are short. After each video, I'll talk about what I thought was important. I'm embedding the videos using HTML5 (MP4) with Silverlight fallback, but if something goes wrong or your browser / device / whatever doesn't support them, I'll include the link to where the videos are more professionally hosted on the ASP.NET site. Note also if you're following along with the samples that, since Part 1 just looks at the File / New Project step, the screencast part numbers are one ahead of the sample part numbers - so screencast 4 matches with sample code demo 3. Note: I started this as one long post for all 6 parts, but as it grew over 2000 words I figured it'd be better to break it up. Part 1: Your First Web API [Video and code on the ASP.NET site] This screencast starts with an overview of why you'd want to use ASP.NET Web API: Reach more clients (thinking beyond the browser to mobile clients, other applications, etc.) Scale (who doesn't love the cloud?!) Embrace HTTP (a focus on HTTP both on client and server really simplifies and focuses service interactions) Next, I start a new ASP.NET Web API application and show some of the basics of the ApiController. We don't write any new code in this first step, just look at the example controller that's created by File / New Project. using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace NewProject_Mvc4BetaWebApi.Controllers { public class ValuesController : ApiController { // GET /api/values public IEnumerable<string> Get() { return new string[] { "value1", "value2" }; } // GET /api/values/5 public string Get(int id) { return "value"; } // POST /api/values public void Post(string value) { } // PUT /api/values/5 public void Put(int id, string value) { } // DELETE /api/values/5 public void Delete(int id) { } } } Finally, we walk through testing the output of this API controller using browser tools. There are several ways you can test API output, including Fiddler (as described by Scott Hanselman in this post) and built-in developer tools available in all modern browsers. For simplicity I used Internet Explorer 9 F12 developer tools, but you're of course welcome to use whatever you'd like. A few important things to note: This class derives from an ApiController base class, not the standard ASP.NET MVC Controller base class. They're similar in places where API's and HTML returning controller uses are similar, and different where API and HTML use differ. A good example of where those things are different is in the routing conventions. In an HTTP controller, there's no need for an "action" to be specified, since the HTTP verbs are the actions. We don't need to do anything to map verbs to actions; when a request comes in to /api/values/5 with the DELETE HTTP verb, it'll automatically be handled by the Delete method in an ApiController. The comments above the API methods show sample URL's and HTTP verbs, so we can test out the first two GET methods by browsing to the site in IE9, hitting F12 to bring up the tools, and entering /api/values in the URL: That sample action returns a list of values. To get just one value back, we'd browse to /values/5: That's it for Part 1. In Part 2 we'll look at getting data (beyond hardcoded strings) and start building out a sample application.

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • “Query cost (relative to the batch)” <> Query cost relative to batch

    - by Dave Ballantyne
    OK, so that is quite a contradictory title, but unfortunately it is true that a common misconception is that the query with the highest percentage relative to batch is the worst performing.  Simply put, it is a lie, or more accurately we dont understand what these figures mean. Consider the two below simple queries: SELECT * FROM Person.BusinessEntity JOIN Person.BusinessEntityAddress ON Person.BusinessEntity.BusinessEntityID = Person.BusinessEntityAddress.BusinessEntityID go SELECT * FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID After executing these and looking at the plans, I see this : So, a 13% / 87% split ,  but 13% / 87% of WHAT ? CPU ? Duration ? Reads ? Writes ? or some magical weighted algorithm ?  In a Profiler trace of the two we can find the metrics we are interested in. CPU and duration are well out but what about reads (210 and 1935)? To save you doing the maths, though you are more than welcome to, that’s a 90.2% / 9.8% split.  Close, but no cigar. Lets try a different tact.  Looking at the execution plan the “Estimated Subtree cost” of query 1 is 0.29449 and query 2 its 1.96596.  Again to save you the maths that works out to 13.03% and 86.97%, round those and thats the figures we are after.  But, what is the worrying word there ? “Estimated”.  So these are not “actual”  execution costs,  but what’s the problem in comparing the estimated costs to derive a meaning of “Most Costly”.  Well, in the case of simple queries such as the above , probably not a lot.  In more complicated queries , a fair bit. By modifying the second query to also show the total number of lines on each order SELECT *,COUNT(*) OVER (PARTITION BY Sales.SalesOrderDetail.SalesOrderID) FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID The split in percentages is now 6% / 94% and the profiler metrics are : Even more of a discrepancy. Estimates can be out with actuals for a whole host of reasons,  scalar UDF’s are a particular bug bear of mine and in-fact the cost of a udf call is entirely hidden inside the execution plan.  It always estimates to 0 (well, a very small number). Take for instance the following udf Create Function dbo.udfSumSalesForCustomer(@CustomerId integer) returns money as begin Declare @Sum money Select @Sum= SUM(SalesOrderHeader.TotalDue) from Sales.SalesOrderHeader where CustomerID = @CustomerId return @Sum end If we have two statements , one that fires the udf and another that doesn't: Select CustomerID from Sales.Customer order by CustomerID go Select CustomerID,dbo.udfSumSalesForCustomer(Customer.CustomerID) from Sales.Customer order by CustomerID The costs relative to batch is a 50/50 split, but the has to be an actual cost of firing the udf. Indeed profiler shows us : No where even remotely near 50/50!!!! Moving forward to window framing functionality in SQL Server 2012 the optimizer sees ROWS and RANGE ( see here for their functional differences) as the same ‘cost’ too SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid RANGE unbounded preceding) from Sales.SalesOrderdetail go SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid Rows unbounded preceding) from Sales.SalesOrderdetail By now it wont be a great display to show you the Profiler trace reads a *tiny* bit different. So moral of the story, Percentage relative to batch can give a rough ‘finger in the air’ measurement, but dont rely on it as fact.

    Read the article

  • Ubuntu 10.04 & IBM DS3524 with FC multipath, inactive path is [failed][faulty] instead of [active][ghost]

    - by Graeme Donaldson
    OK, this is my setup: FC Switches IBM/Brocade, Switch1 and Switch2, independent fabrics. Server IBM x3650 M2, 2x QLogic QLE2460, 1 connected to each FC Switch. Storage IBM DS3524, 2x controllers with 4x FC ports each, but only 2x connected on each. +-----------------------------------------------------------------------+ | HBA1 Server HBA2 | +-----------------------------------------------------------------------+ | | | | | | +-----------------------------+ +------------------------------+ | Switch1 | | Switch2 | +-----------------------------+ +------------------------------+ | | | | | | | | | | | | | | | | | | | | +-----------------------------------+-----------------------------------+ | Contr A, port 3 | Contr A, port 4 | Contr B, port 3 | Contr B, port 4 | +-----------------------------------+-----------------------------------+ | Storage | +-----------------------------------------------------------------------+ My /etc/multipath.conf is from the IBM redbook for the DS3500, except I use a different setting for prio_callout, IBM uses /sbin/mpath_prio_tpc, but according to http://changelogs.ubuntu.com/changelogs/pool/main/m/multipath-tools/multipath-tools_0.4.8-7ubuntu2/changelog, this was renamed to /sbin/mpath_prio_rdac, which I'm using. devices { device { #ds3500 vendor "IBM" product "1746 FAStT" hardware_handler "1 rdac" path_checker rdac failback 0 path_grouping_policy multibus prio_callout "/sbin/mpath_prio_rdac /dev/%n" } } multipaths { multipath { wwid xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx alias array07 path_grouping_policy multibus path_checker readsector0 path_selector "round-robin 0" failback "5" rr_weight priorities no_path_retry "5" } } The output of multipath -ll with controller A as the preferred path: root@db06:~# multipath -ll sdg: checker msg is "directio checker reports path is down" sdh: checker msg is "directio checker reports path is down" array07 (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) dm-2 IBM ,1746 FASt [size=4.9T][features=1 queue_if_no_path][hwhandler=0] \_ round-robin 0 [prio=2][active] \_ 5:0:1:0 sdd 8:48 [active][ready] \_ 5:0:2:0 sde 8:64 [active][ready] \_ 6:0:1:0 sdg 8:96 [failed][faulty] \_ 6:0:2:0 sdh 8:112 [failed][faulty] If I change the preferred path using IBM DS Storage Manager to Controller B, the output swaps accordingly: root@db06:~# multipath -ll sdd: checker msg is "directio checker reports path is down" sde: checker msg is "directio checker reports path is down" array07 (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) dm-2 IBM ,1746 FASt [size=4.9T][features=1 queue_if_no_path][hwhandler=0] \_ round-robin 0 [prio=2][active] \_ 5:0:1:0 sdd 8:48 [failed][faulty] \_ 5:0:2:0 sde 8:64 [failed][faulty] \_ 6:0:1:0 sdg 8:96 [active][ready] \_ 6:0:2:0 sdh 8:112 [active][ready] According to IBM, the inactive path should be "[active][ghost]", not "[failed][faulty]". Despite this, I don't seem to have any I/O issues, but my syslog is being spammed with this every 5 seconds: Jun 1 15:30:09 db06 multipathd: sdg: directio checker reports path is down Jun 1 15:30:09 db06 kernel: [ 2350.282065] sd 6:0:2:0: [sdh] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE Jun 1 15:30:09 db06 kernel: [ 2350.282071] sd 6:0:2:0: [sdh] Sense Key : Illegal Request [current] Jun 1 15:30:09 db06 kernel: [ 2350.282076] sd 6:0:2:0: [sdh] <<vendor>> ASC=0x94 ASCQ=0x1ASC=0x94 ASCQ=0x1 Jun 1 15:30:09 db06 kernel: [ 2350.282083] sd 6:0:2:0: [sdh] CDB: Read(10): 28 00 00 00 00 00 00 00 08 00 Jun 1 15:30:09 db06 kernel: [ 2350.282092] end_request: I/O error, dev sdh, sector 0 Jun 1 15:30:10 db06 multipathd: sdh: directio checker reports path is down Jun 1 15:30:14 db06 kernel: [ 2355.312270] sd 6:0:1:0: [sdg] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE Jun 1 15:30:14 db06 kernel: [ 2355.312277] sd 6:0:1:0: [sdg] Sense Key : Illegal Request [current] Jun 1 15:30:14 db06 kernel: [ 2355.312282] sd 6:0:1:0: [sdg] <<vendor>> ASC=0x94 ASCQ=0x1ASC=0x94 ASCQ=0x1 Jun 1 15:30:14 db06 kernel: [ 2355.312290] sd 6:0:1:0: [sdg] CDB: Read(10): 28 00 00 00 00 00 00 00 08 00 Jun 1 15:30:14 db06 kernel: [ 2355.312299] end_request: I/O error, dev sdg, sector 0 Does anyone know how I can get the inactive path to show "[active][ghost]" instead of "[failed][faulty]"? I assume that once I can get that right then the spam in my syslog will end as well. One final thing worth mentioning is that the IBM redbook doc targets SLES 11 so I'm assuming there's something a little different under Ubuntu that I just haven't figured out yet. Update: As suggested by Mitch, I've tried removing /etc/multipath.conf, and now the output of multipath -ll looks like this: root@db06:~# multipath -ll sdg: checker msg is "directio checker reports path is down" sdh: checker msg is "directio checker reports path is down" xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxdm-1 IBM ,1746 FASt [size=4.9T][features=0][hwhandler=0] \_ round-robin 0 [prio=1][active] \_ 5:0:2:0 sde 8:64 [active][ready] \_ round-robin 0 [prio=1][enabled] \_ 5:0:1:0 sdd 8:48 [active][ready] \_ round-robin 0 [prio=0][enabled] \_ 6:0:1:0 sdg 8:96 [failed][faulty] \_ round-robin 0 [prio=0][enabled] \_ 6:0:2:0 sdh 8:112 [failed][faulty] So its more or less the same, with the same message in the syslog every 5 minutes as before, but the grouping has changed.

    Read the article

  • SQL SERVER – A Picture is Worth a Thousand Words – A Collection of Inspiring and Funny Posts by Vinod Kumar

    - by pinaldave
    One of the most popular quotes is: A picture is worth a thousand words. Working on this concept I started a series over my blog called the “Picture Post”. Rather than rambling over tons of material over text, we are trying to give you a capsule mode of the blog in a quick glance. Some of the picture posts already available over my blog are: Correlation of Ego and Work: Ego and Pride most of the times become a hindrance when we work inside a team. Take this cue, the first ever Picture post was published. Simple and easy to understand concept. Would want to say, Ego is the biggest enemy to humans. Read Original Post. Success (Perception Vs Reality): Personally, have always thought success is not something the talented achieve with the opportunity presented to them, but success is developed using the opportunity in hand now. In this fast paced world where success is pre-defined and convoluted by metrics it is hard to understand how complex it can sometimes be. So I took a stab at this concept in a simple way. Read Original Post. Doing Vs Saying: As Einstein would describe, Insanity is doing the same thing over and over again and expecting different results. Given the amount of information we get, it is difficult to keep track, learn and implement the same. If you were ever reminded of your college days, there will always be 5-6 people doing different things and we naturally try to emulate what they are doing. This could be from competitive exams GMAT, GRE, CAT, Higher-Ed, B-School hunting etc. Rather than saying you are going to do, it is best to do and then say!!! Read Original Picture Post. Your View Vs Management View: Being in the corporate world can be really demanding and we keep asking this question – “Why me?” when the performance appraisal process ends. In this post I just want to ask you one frank opinion – “Are you really self-critical in your assessments?”. If that is the case there shouldn’t be any heartburns or surprises. If you had just one thing to take back, well forget what others are getting but invest time in making yourself better because that is going to take you longer and further in your career. Read Picture Post. Blogging lifecycle for majority: I am happy and fortunate to be in this blog post because this picture post surely doesn’t apply to SQLAuthority where consistency and persistence have been the hallmark of the blog. For the majority others, who have a tendency to start a blog, get into slumber for a while and write saying they want to get back to blogging, the picture post was specifically done for them. Paradox of being someone else: It is always a dream that we want to become somebody and in this process of doing so, we become nobody. In this constant tussle of lost identity we forget to enjoy the moment that is in front of us. I just depicted this using a simple analogy of our constant struggle to get to the other side, just to realize we missed the wonderful moments. Grass is not greener on the other side, but grass is greener where we water the surface. Read Picture Post. And on the lighter side… Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Change Desktop Resolution With a Keyboard Shortcut

    - by Matthew Guay
    Do you find yourself changing your monitor resolution several times a day?  If so, you might like this handy way to set a keyboard shortcut for your most-used resolutions. Most users rarely have to change their screen resolution often, as LCD monitors usually only look best at their native resolution.  But netbooks present a unique situation, as their native resolution is usually only 1024×600.  Some newer netbooks offer higher resolutions which may not looks as crisp as the native resolution but can be handy for using a program that expects a higher resolution.  This is the perfect situation for a keyboard shortcut to help you change the resolution without having to hassle with dialogs and menus each time, and HRC – HotKey Resolution Changer makes it easy to do. Create Keyboard Shortcuts Download the HRC – HotKey Resolution Changer (link below), unzip, and then run HRC.exe in the folder. This will start a tray icon, and will not automatically open the HRC window.  You don’t have to install HRC.  Double-click the tray icon to open it.  Note: Windows 7 automatically hides new tray icons, so if you can’t see it, click the arrow to see the hidden tray icons. By default, HRC will show two entries with your default resolutions, color depth, and refresh rate. Add a keyboard shortcut by clicking the Change button over the resolution.  Press the keyboard shortcut you want to press to switch to that resolution; we entered Ctrl+Alt+1 for our default resolution.  Make sure not to use a keyboard shortcut you use in another application, as this will override it.  Click Set when you’ve entered the hotkey(s) you want. Now, on the second entry, select the resolution you want for your alternate resolution.  The drop-down list will only show your monitor’s supported resolutions, so you don’t have to worry about choosing an incorrect resolution.  You can also set a different color depth or refresh rate for this resolution.  Now add a keyboard shortcut for this resolution as well. You can set keyboard shortcuts for up to 9 different resolutions with HRC.  Click the Select number of HotKeys button on the left, and choose the number of resolutions you want to set.  Here we have unique keyboard shortcuts for our three most-used resolutions on our netbook. HRC must be kept running to use the keyboard shortcuts, so click the Minimize to tray icon which is the second icon to the right.  This will keep it running in the tray. If you want to be able to change your resolution anytime, you’ll want HRC to automatically start with Windows.  Create a shortcut to HRC, and paste it into your Windows startup folder.  You can easily open this folder by entering the following in the Run command or in the address bar in Explorer: %appdata%\Microsoft\Windows\Start Menu\Programs\Startup   Conclusion HRC- HotKey Resolution Changer gives you a great way to quickly change your screen resolution with a keyboard shortcut.  Whether or not you love keyboard shortcuts, this is still a much easier way to switch between your most commonly used resolutions. Download HRC – HotKey Resolution Changer Similar Articles Productive Geek Tips Create a Keyboard Shortcut to Access Hidden Desktop Icons and FilesGet Mac’s Hide Others (cmd+opt+H) Keyboard Shortcut for WindowsHide Desktop Icon Text on Windows 7 or VistaShow Keyboard Shortcut Access Keys in Windows VistaKeyboard Ninja: 21 Keyboard Shortcut Articles TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Use Flixtime To Create Video Slideshows Creating a Password Reset Disk in Windows Bypass Waiting Time On Customer Service Calls With Lucyphone MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative

    Read the article

  • “I could use a little help here” or “I can do it myself, thank you” for Cloud Projects

    - by BuckWoody
    Windows Azure allows you to write code in languages within the .NET stack, you can use Java, C++, PHP, NodeJS and others. Code is code - other than keeping things stateless, using a Web or Worker Role in Azure is not all that different from working with an on-premises system. However…. Working in a scalable, component-based stateless architecture that can use federated security is not all that common for many developers. Some are used to owning the server, scaling up, and state-full paradigms that have a single security domain. Making the transition whilst trying to create a new software application or even port a previous one can be daunting. Sure, we have absolutely tons of free training, kits, videos, online books and more to learn on your own, but some things like architecture can be pivotal as you move along. So the question is, should you just strike out on your own for a Cloud project, or get Microsoft Consulting Services or another partner to work with you on your first one? I use a few decision points to help guide the projects I assist in. Note: I’m a huge fan of having help that ends up giving you training and leaves you in charge. If you do engage with someone to help you, make sure you keep this clear and take more and more ownership yourself as the project progresses. How much time do you have? Usually the first thing I ask is about the timeline for the project. It doesn’t matter how skilled you are, if you have a short window to get things done it’s better to get help - especially if this is your first cloud project. Having someone that knows the platform well can save you amazing amounts of time. If you have longer, then start with the training in the link above and once you feel confident, jump in. How complex is the project? If there are a lot of moving parts, it’s best to engage a partner. The reason is that certain interactions - particularly things like Service Bus or Data Integration  - can be quite different than what you may have encountered before. How many people do you have? I have a “pizza rule” about projects I’ve used in my career - if it takes over two pizzas to feed everyone on the project, it’s too big and will fail. That being said, one developer and a one-week deadline does not a good project make, usually. It’s best to have at least one architect (or someone in that role) guiding the project along, and at least two developers to work on a cloud project. That’s a generalization of course, since I’ve seen great software on Azure with one developer writing code all by herself, but for more complex projects, more (to a point) is better. The nice thing about bringing on a partner is that you don’t have to hire them full time - they help you and then they go away. How critical is the project? There’s no shame in using some help. If the platform is new, if the project is large and complex, and if it is critical to the business, you should engage a partner. That’s regardless of Cloud or anything else - get some help. You don’t want to hit your company’s bottom line in a negative way, but you have to innovate and get them a competitive advantage. Do your research, make sure the partner is qualified to help you, and get it done. Don’t let these questions scare you off. There are lots of projects you can implement on Windows and SQL Azure with nothing other than the Software Development Kit (SDK) that you get for free with Windows Azure. And assistance comes in many forms - sometimes just phone support, a friend you can ask. Microsoft Consulting Services or any of our great partners. You can get help on just the architecture piece or have them show you how to write the code. They’ll get involved as little or as much as you like.

    Read the article

  • A Few of My Favorite HTML5 and CSS3 Online Tools

    - by dwahlin
    I really enjoy coding up HTML5, CSS3, and JavaScript applications but there are some things that I’m better off writing with the help of a development tool. For example, CSS3 gradients aren’t exactly the most fun thing to write by hand and the same could be said for animations, transforms, or styles that require various vendor extensions. There are a lot of online tools that can simplify building HTML5/CSS3 sites and increase productivity in the process so I thought I’d put together a post on a few of my favorites tools. HTML5 Boilerplate HTML5 Boilerplate provides a great way to get started building HTML5 sites. It includes many best practices out of the box and even includes a few tricks that many people don’t even know about. The custom download option allows you to pick the features that you want to include in the files that’s generated. You can read more about it here.   Initializr Although HTML5 Boilerplate provides a great foundation for starting HTML5 sites, it focuses on providing a starting shell structure (namely an html page, JavaScript files, and a CSS stylesheet) and doesn’t include much in the way of page content to get started with. Initializer builds on HTML5 Boilerplate and provides an initial test page that can be tweaked to meet your needs. It also provides several different customization options to include/exclude features. CSS3 Maker CSS3 provides a lot of great features ranging from gradient support to rounded corners. Although many of the features are fairly straightforward there are some that are pretty involved such as gradients, animations, and really any styles that require custom vendor extensions to use across browsers. Sure, you can type everything by hand, but sites such as CSS3 Maker provide a visual way to generate CSS3 styles. CSS3, Please! CSS3, Please! is a code generation tool that can be used to generate cross-browser CSS3 styles quickly and easily. All of the main things you can do with CSS3 are available including a clever way to visually generate CSS3 transform styles.       Ultimate CSS Gradient Generator CSS3 Maker (above) has a gradient generator built-in but my favorite tool for creating CSS3 gradients is the Ultimate CSS Gradient Generator. If you’ve created gradients in tools like Photoshop then you’ll love what this tool has to offer especially since it makes it extremely straightforward to work with different gradient stops. @font-face Fonts Although @font-face has been available for awhile, I think fonts are cool and wanted to mention a site that provides a lot of font choices. When used correctly fonts can really enhance a page and when used incorrectly (think Comic Sans) they can absolutely ruin a page. Several sites exist that provide fonts that can be used with @font-face definitions in CSS style sheets. One of my favorites is Font Squirrel.   HTML5 & CSS3 Support and Tests Interested in knowing what HTML5 and CSS3 features a given browser supports? Want to know how various browsers stack up with each other as far as HTML5/CSS3 support. Look no further than the HTML5 & CSS3 Support page or the HTML5 Test page.   CSS3 Easing Animation Tool CSS3 animations aren’t widely supported across browsers right now (I’m not really using them at this point) but they do offer a lot of promise. Creating easings for animations can definitely be a challenge but they’re something that are critical for adding that “professional touch” to your animations. Fortunately you can use the Ceaser CSS Easing Animation Tool to simplify the process and handle animation easing with…...ease.   There are several other online tools that I like but these are some of the ones I find myself using the most. If you have any favorite online tools that simplify working with HTML5 or CSS3 let me know.     For more information about onsite or online training, mentoring and consulting solutions for HTML5, jQuery, .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • SQL SERVER – SQL Server Misconceptions and Resolution – A Practical Perspective – TechEd 2012 India

    - by pinaldave
    TechEd India 2012 is just around the corner and I will be presenting there in two different sessions. On the very first day of this event, my presentation will be all about SQL Server Misconceptions and Resolution – A Practical Perspective. The dictionary tells us that a “misconception” means a view or opinion that is incorrect and is based on faulty thinking or understanding. In SQL Server, there are so many misconceptions. In fact, when I hear some of these misconceptions, I feel like fainting at that very moment! Seriously, at one time, I came across the scenario where instead of using INSERT INTO…SELECT, the developer used CURSOR believing that cursor is faster (duh!). Here is the link the blog post related to this. Pinal and Vinod in 2009 I have been presenting in TechEd India for last three years. This is my fourth opportunity to present a technical session on SQL Server. Just like the previous years, I decided to present something different. Here is a novelty of this year: I will be presenting this session with Vinod Kumar. Vinod Kumar and I have a great synergy when we work together. So far, we have written one SQL Server Interview Questions and Answers book and 2 video courses: (1) SQL Server Questions and Answers (2) SQL Server Performance: Indexing Basics. Pinal and Vinod in 2011 When we sat together and started building an outline for this course, we had many options in mind for this tango session. However, we have decided that we will make this session as lively as possible while keeping it natural at the same time. We know our flow and we know our conversation highlight, but we do not know what exactly each of us is going to present. We have decided to challenge each other on stage and push each other’s knowledge to the verge. We promise that the session will be entertaining with lots of SQL Server trivia, tips and tricks. Here are the challenges that I’ll take on: I will puzzle Vinod with my difficult questions I will present such misconception that Vinod will have no resolution for it. I need your help.  Will you help me stump Vinod? If yes, come and attend our session and join me to prove that together we are superior (a friendly brain clash, but we must win!). SQL Server enthusiasts and SQL Server fans are going to have gala time at #TechEdIn as we have a very solid lineup of the speaker and extremely interesting sessions at TechEdIn. Read the complete blog post of Vinod. Session Details Title: SQL Server Misconceptions and Resolution – A Practical Perspective (Add to Calendar) Abstract: “Earth is flat”! – An ancient common misconception, which has been proven incorrect as we progressed in modern times. In this session we will see various database misconceptions prevailing and their resolution with the aid of the demos. In this unique session audience will be part of the conversation and resolution. Date and Time: March 21, 2012, 15:15 to 16:15 Location: Hotel Lalit Ashok - Kumara Krupa High Grounds, Bengaluru – 560001, Karnataka, India. Add to Calendar Please submit your questions in the comments area and I will be for sure discussing them during my session. If I pick your question to discuss during my session, here is your gift I commit right now – SQL Server Interview Questions and Answers Book. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Interview Questions and Answers, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: TechEd, TechEdIn

    Read the article

< Previous Page | 402 403 404 405 406 407 408 409 410 411 412 413  | Next Page >