Search Results

Search found 144001 results on 5761 pages for 'sql server data tools'.

Page 41/5761 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • SQL Server: export data via SQL query?

    - by rlb.usa
    I have FK and PK all over my db and table data needs to be specified in a certain order or else I get FK/PK insertion errors. I'm tired of executing the wizard again and again to transfer data one table at a time. In the SQL Server export data wizard there is an option to "Write a query to specify the data to transfer". I'd like to write the query myself and specify the correct order. Will this solve my problem? How do I do this? Can you provide a sample query (or link to one) The databases are on two different servers - SQL Server 2008 on each ; The database names & permissions are the same ; each table name & col is the same ; I need Identity Insert for each table.

    Read the article

  • Return type from DAL class (Sql ce, Linq to Sql)

    - by bretddog
    Hi, Using VS2008 and Sql CE 3.5, and preferably Linq to Sql. I'm learning database, and unsure about DAL methods return types and how/where to map the data over to my business objects: I don't want direct UI binding. A business object class UserData, and a class UserDataList (Inherits List(Of UserData)), is represented in the database by the table "Users". I use SQL Compact and run SqlMetal which creates dbml/designer.vb file. This gives me a class with a TableAttribute: <Table()> _ Partial Public Class Users I'm unsure how to use this class. Should my business object know about this class, such that the DAL can return the type Users, or List(Of Users) ? So for example the "UserDataService Class" is a part of the DAL, and would have for example the functions GetAll and GetById. Will this be correct : ? Public Class UserDataService Public Function GetAll() As List(Of Users) Dim ctx As New MyDB(connection) Dim q As List(Of Users) = From n In ctx.Users Select n Return q End Function Public Function GetById(ByVal id As Integer) As Users Dim ctx As New MyDB(connection) Dim q As Users = (From n In ctx.Users Where n.UserID = id Select n).Single Return q End Function And then, would I perhaps have a method, say in the UserDataList class, like: Public Class UserDataList Inherits List(Of UserData) Public Sub LoadFromDatabase() Me.clear() Dim database as New UserDataService dim users as List(Of Users) users = database.GetAll() For each u in users dim newUser as new UserData newUser.Id = u.Id newUser.Name = u.Name Me.Add(newUser) Next End Sub End Class Is this a sensible approach? Would appreciate any suggestions/alternatives, as this is my first attempt on a database DAL. cheers!

    Read the article

  • SQL Server Intellisense VS. Red Gate SQL Prompt

    Fabiano Amorim is hooked on today's Integrated Development Environments with built-in Intellisense, so he looked forward keenly to SQL Server 2008's native intellisense. He was disappointed at how it turned out, so turned instead to SQL Prompt. Fabiano explains why he prefers to SQL Prompt, why he reckons it fits in with the way that database developers work, and goes on to describe some of the features he'd like to see in it.

    Read the article

  • Where is the SQL Azure Development Environment

    - by BuckWoody
    Recently I posted an entry explaining that you can develop in Windows Azure without having to connect to the main service on the Internet, using the Software Development Kit (SDK) which installs two emulators - one for compute and the other for storage. That brought up the question of the same kind of thing for SQL Azure. The short answer is that there isn’t one. While we’ll make the development experience for all versions of SQL Server, including SQL Azure more easy to write against, you can simply treat it as another edition of SQL Server. For instance, many of us use the SQL Server Developer Edition - which in versions up to 2008 is actually the Enterprise Edition - to develop our code. We might write that code against all kinds of environments, from SQL Express through Enterprise Edition. We know which features work on a certain edition, what T-SQL it supports and so on, and develop accordingly. We then test on the actual platform to ensure the code runs as expected. You can simply fold SQL Azure into that same development process. When you’re ready to deploy, if you’re using SQL Server Management Studio 2008 R2 or higher, you can script out the database when you’re done as a SQL Azure script (with change notifications where needed) by selecting the right “Engine Type” on the scripting panel: (Thanks to David Robinson for pointing this out and my co-worker Rick Shahid for the screen-shot - saved me firing up a VM this morning!) Will all this change? Will SSMS, “Data Dude” and other tools change to include SQL Azure? Well, I don’t have a specific roadmap for those tools, but we’re making big investments on Windows Azure and SQL Azure, so I can say that as time goes on, it will get easier. For now, make sure you know what features are and are not included in SQL Azure, and what T-SQL is supported. Here are a couple of references to help: General Guidelines and Limitations: http://msdn.microsoft.com/en-us/library/ee336245.aspx Transact-SQL Supported by SQL Azure: http://msdn.microsoft.com/en-us/library/ee336250.aspx SQL Azure Learning Plan: http://blogs.msdn.com/b/buckwoody/archive/2010/12/13/windows-azure-learning-plan-sql-azure.aspx

    Read the article

  • Where is the SQL Azure Development Environment

    - by BuckWoody
    Recently I posted an entry explaining that you can develop in Windows Azure without having to connect to the main service on the Internet, using the Software Development Kit (SDK) which installs two emulators - one for compute and the other for storage. That brought up the question of the same kind of thing for SQL Azure. The short answer is that there isn’t one. While we’ll make the development experience for all versions of SQL Server, including SQL Azure more easy to write against, you can simply treat it as another edition of SQL Server. For instance, many of us use the SQL Server Developer Edition - which in versions up to 2008 is actually the Enterprise Edition - to develop our code. We might write that code against all kinds of environments, from SQL Express through Enterprise Edition. We know which features work on a certain edition, what T-SQL it supports and so on, and develop accordingly. We then test on the actual platform to ensure the code runs as expected. You can simply fold SQL Azure into that same development process. When you’re ready to deploy, if you’re using SQL Server Management Studio 2008 R2 or higher, you can script out the database when you’re done as a SQL Azure script (with change notifications where needed) by selecting the right “Engine Type” on the scripting panel: (Thanks to David Robinson for pointing this out and my co-worker Rick Shahid for the screen-shot - saved me firing up a VM this morning!) Will all this change? Will SSMS, “Data Dude” and other tools change to include SQL Azure? Well, I don’t have a specific roadmap for those tools, but we’re making big investments on Windows Azure and SQL Azure, so I can say that as time goes on, it will get easier. For now, make sure you know what features are and are not included in SQL Azure, and what T-SQL is supported. Here are a couple of references to help: General Guidelines and Limitations: http://msdn.microsoft.com/en-us/library/ee336245.aspx Transact-SQL Supported by SQL Azure: http://msdn.microsoft.com/en-us/library/ee336250.aspx SQL Azure Learning Plan: http://blogs.msdn.com/b/buckwoody/archive/2010/12/13/windows-azure-learning-plan-sql-azure.aspx

    Read the article

  • T-SQL Improvements And Data Types in ms sql 2008

    - by Aamir Hasan
     Microsoft SQL Server 2008 is a new version released in the first half of 2008 introducing new properties and capabilities to SQL Server product family. All these new and enhanced capabilities can be defined as the classic words like secure, reliable, scalable and manageable. SQL Server 2008 is secure. It is reliable. SQL2008 is scalable and is more manageable when compared to previous releases. Now we will have a look at the features that are making MS SQL Server 2008 more secure, more reliable, more scalable, etc. in details.Microsoft SQL Server 2008 provides T-SQL enhancements that improve performance and reliability. Itzik discusses composable DML, the ability to declare and initialize variables in the same statement, compound assignment operators, and more reliable object dependency information. Table-Valued ParametersInserts into structures with 1-N cardinality problematicOne order -> N order line items"N" is variable and can be largeDon't want to force a new order for every 20 line itemsOne database round-trip / line item slows things downNo ARRAY data type in SQL ServerXML composition/decomposition used as an alternativeTable-valued parameters solve this problemTable-Valued ParametersSQL Server has table variablesDECLARE @t TABLE (id int);SQL Server 2008 adds strongly typed table variablesCREATE TYPE mytab AS TABLE (id int);DECLARE @t mytab;Parameters must use strongly typed table variables Table Variables are Input OnlyDeclare and initialize TABLE variable  DECLARE @t mytab;  INSERT @t VALUES (1), (2), (3);  EXEC myproc @t;Procedure must declare variable READONLY  CREATE PROCEDURE usetable (    @t mytab READONLY ...)  AS    INSERT INTO lineitems SELECT * FROM @t;    UPDATE @t SET... -- no!T-SQL Syntax EnhancementsSingle statement declare and initialize  DECLARE @iint = 4;Compound Assignment Operators  SET @i += 1;Row constructors  DECLARE @t TABLE (id int, name varchar(20));  INSERT INTO @t VALUES    (1, 'Fred'), (2, 'Jim'), (3, 'Sue');Grouping SetsGrouping Sets allow multiple GROUP BY clauses in a single SQL statementMultiple, arbitrary, sets of subtotalsSingle read pass for performanceNested subtotals provide ever better performanceGrouping Sets are an ANSI-standardCOMPUTE BY is deprecatedGROUPING SETS, ROLLUP, CUBESQL Server 2008 - ANSI-syntax ROLLUP and CUBEPre-2008 non-ANSI syntax is deprecatedWITH ROLLUP produces n+1 different groupings of datawhere n is the number of columns in GROUP BYWITH CUBE produces 2^n different groupingswhere n is the number of columns in GROUP BYGROUPING SETS provide a "halfway measure"Just the number of different groupings you needGrouping Sets are visible in query planGROUPING_ID and GROUPINGGrouping Sets can produce non-homogeneous setsGrouping set includes NULL values for group membersNeed to distinguish by grouping and NULL valuesGROUPING (column expression) returns 0 or 1Is this a group based on column expr. or NULL value?GROUPING_ID (a,b,c) is a bitmaskGROUPING_ID bits are set based on column expressions a, b, and cMERGE StatementMultiple set operations in a single SQL statementUses multiple sets as inputMERGE target USING source ON ...Operations can be INSERT, UPDATE, DELETEOperations based onWHEN MATCHEDWHEN NOT MATCHED [BY TARGET] WHEN NOT MATCHED [BY SOURCE]More on MERGEMERGE statement can reference a $action columnUsed when MERGE used with OUTPUT clauseMultiple WHEN clauses possible For MATCHED and NOT MATCHED BY SOURCEOnly one WHEN clause for NOT MATCHED BY TARGETMERGE can be used with any table sourceA MERGE statement causes triggers to be fired onceRows affected includes total rows affected by all clausesMERGE PerformanceMERGE statement is transactionalNo explicit transaction requiredOne Pass Through TablesAt most a full outer joinMatching rows = when matchedLeft-outer join rows = when not matched by targetRight-outer join rows = when not matched by sourceMERGE and DeterminismUPDATE using a JOIN is non-deterministicIf more than one row in source matches ON clause, either/any row can be used for the UPDATEMERGE is deterministicIf more than one row in source matches ON clause, its an errorKeeping Track of DependenciesNew dependency views replace sp_dependsViews are kept in sync as changes occursys.dm_sql_referenced_entitiesLists all named entities that an object referencesExample: which objects does this stored procedure use?sys.dm_sql_referencing_entities 

    Read the article

  • java.lang.IllegalAccessException during Ant jwsc webservice build

    - by KevB
    Hi. I have a large application, part of which relies on a set of 3 webservices. I'm currently in the process of writing an Ant build script to build and package the application into an EAR file. When building the web sub-project for this application I use the <jwsc> task in Ant to compile the webservices. This causes an IllegalAccessException, as outlined in the stack trace below: [jwsc] warning: 'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds [jwsc] JWS: processing module weboutput [jwsc] Parsing source files [jwsc] Parsing source files [jwsc] 3 JWS files being processed for module weboutput [jwsc] JWS: C:\dev\ir\irWeb\src\webservices\DailyRun.java Validated. [jwsc] JWS: C:\dev\ir\irWeb\src\webservices\PendingRegistrationsSweep.java Validated. [jwsc] JWS: C:\dev\ir\irWeb\src\webservices\RegistrationsGoLive.java Validated. [jwsc] Compiling 6 source files to C:\DOCUME~1\KEVIN~1.BRE\LOCALS~1\Temp\_5l950r [jwsc] An exception has occurred in the compiler (1.6.0_23). Please file a bug at the Java Developer Connection (http://java.sun.com/webapps/bugreport) after checking the Bug Parade for duplicates. Include your program and the following diagnostic in your report. Thank you. [jwsc] java.lang.IllegalAccessError: tried to access class com.sun.tools.javac.jvm.ClassReader$AnnotationDefaultCompleter from class com.sun.tools.javac.jvm.ClassReader [jwsc] at com.sun.tools.javac.jvm.ClassReader.attachAnnotationDefault(ClassReader.java:1128) [jwsc] at com.sun.tools.javac.jvm.ClassReader.readMemberAttr(ClassReader.java:906) [jwsc] at com.sun.tools.javac.jvm.ClassReader.readMemberAttrs(ClassReader.java:1027) [jwsc] at com.sun.tools.javac.jvm.ClassReader.readMethod(ClassReader.java:1490) [jwsc] at com.sun.tools.javac.jvm.ClassReader.readClass(ClassReader.java:1586) [jwsc] at com.sun.tools.javac.jvm.ClassReader.readClassFile(ClassReader.java:1658) [jwsc] at com.sun.tools.javac.jvm.ClassReader.fillIn(ClassReader.java:1845) [jwsc] at com.sun.tools.javac.jvm.ClassReader.complete(ClassReader.java:1777) [jwsc] at com.sun.tools.javac.code.Symbol.complete(Symbol.java:386) [jwsc] at com.sun.tools.javac.code.Symbol$ClassSymbol.complete(Symbol.java:763) [jwsc] at com.sun.tools.javac.jvm.ClassReader.loadClass(ClassReader.java:1951) [jwsc] at com.sun.tools.javac.comp.Resolve.loadClass(Resolve.java:842) [jwsc] at com.sun.tools.javac.comp.Resolve.findIdentInPackage(Resolve.java:1011) [jwsc] at com.sun.tools.javac.comp.Attr.selectSym(Attr.java:1921) [jwsc] at com.sun.tools.javac.comp.Attr.visitSelect(Attr.java:1835) [jwsc] at com.sun.tools.javac.tree.JCTree$JCFieldAccess.accept(JCTree.java:1522) [jwsc] at com.sun.tools.javac.comp.Attr.attribTree(Attr.java:360) [jwsc] at com.sun.tools.javac.comp.Attr.attribType(Attr.java:390) [jwsc] at com.sun.tools.javac.comp.MemberEnter.attribImportType(MemberEnter.java:681) [jwsc] at com.sun.tools.javac.comp.MemberEnter.visitImport(MemberEnter.java:545) [jwsc] at com.sun.tools.javac.tree.JCTree$JCImport.accept(JCTree.java:495) [jwsc] at com.sun.tools.javac.comp.MemberEnter.memberEnter(MemberEnter.java:387) [jwsc] at com.sun.tools.javac.comp.MemberEnter.memberEnter(MemberEnter.java:399) [jwsc] at com.sun.tools.javac.comp.MemberEnter.visitTopLevel(MemberEnter.java:512) [jwsc] at com.sun.tools.javac.tree.JCTree$JCCompilationUnit.accept(JCTree.java:446) [jwsc] at com.sun.tools.javac.comp.MemberEnter.memberEnter(MemberEnter.java:387) [jwsc] at com.sun.tools.javac.comp.MemberEnter.complete(MemberEnter.java:819) [jwsc] at com.sun.tools.javac.code.Symbol.complete(Symbol.java:386) [jwsc] at com.sun.tools.javac.code.Symbol$ClassSymbol.complete(Symbol.java:763) [jwsc] at com.sun.tools.javac.comp.Enter.complete(Enter.java:464) [jwsc] at com.sun.tools.javac.comp.Enter.main(Enter.java:442) [jwsc] at com.sun.tools.javac.main.JavaCompiler.enterTrees(JavaCompiler.java:819) [jwsc] at com.sun.tools.javac.main.JavaCompiler.compile(JavaCompiler.java:727) [jwsc] at com.sun.tools.javac.main.Main.compile(Main.java:353) [jwsc] at com.sun.tools.javac.main.Main.compile(Main.java:279) [jwsc] at com.sun.tools.javac.main.Main.compile(Main.java:270) [jwsc] at com.sun.tools.javac.Main.compile(Main.java:69) [jwsc] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [jwsc] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.taskdefs.compilers.Javac13.execute(Javac13.java:56) [jwsc] at org.apache.tools.ant.taskdefs.Javac.compile(Javac.java:1097) [jwsc] at weblogic.wsee.tools.anttasks.DelegatingJavacTask$ExposingJavac.compile(DelegatingJavacTask.java:343) [jwsc] at weblogic.wsee.tools.anttasks.DelegatingJavacTask.compile(DelegatingJavacTask.java:286) [jwsc] at weblogic.wsee.tools.anttasks.JwscTask.javac(JwscTask.java:335) [jwsc] at weblogic.wsee.tools.anttasks.JwsModule.compile(JwsModule.java:390) [jwsc] at weblogic.wsee.tools.anttasks.JwsModule.build(JwsModule.java:262) [jwsc] at weblogic.wsee.tools.anttasks.JwscTask.execute(JwscTask.java:227) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.Target.execute(Target.java:390) [jwsc] at org.apache.tools.ant.Target.performTasks(Target.java:411) [jwsc] at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1397) [jwsc] at org.apache.tools.ant.helper.SingleCheckExecutor.executeTargets(SingleCheckExecutor.java:38) [jwsc] at org.apache.tools.ant.Project.executeTargets(Project.java:1249) [jwsc] at org.apache.tools.ant.taskdefs.Ant.execute(Ant.java:442) [jwsc] at org.apache.tools.ant.taskdefs.CallTarget.execute(CallTarget.java:105) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.Target.execute(Target.java:390) [jwsc] at org.apache.tools.ant.Target.performTasks(Target.java:411) [jwsc] at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1397) [jwsc] at org.apache.tools.ant.Project.executeTarget(Project.java:1366) [jwsc] at com.bea.workshop.cmdline.antlib.AntExTask.execute(AntExTask.java:406) [jwsc] at com.bea.workshop.cmdline.antlib.AntCallExTask.execute(AntCallExTask.java:118) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.Target.execute(Target.java:390) [jwsc] at org.apache.tools.ant.Target.performTasks(Target.java:411) [jwsc] at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1397) [jwsc] at org.apache.tools.ant.Project.executeTarget(Project.java:1366) [jwsc] at com.bea.workshop.cmdline.antlib.AntExTask.execute(AntExTask.java:406) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) [jwsc] at net.sf.antcontrib.logic.IfTask.execute(IfTask.java:217) [jwsc] at sun.reflect.GeneratedMethodAccessor44.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.TaskAdapter.execute(TaskAdapter.java:154) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) [jwsc] at net.sf.antcontrib.logic.IfTask.execute(IfTask.java:197) [jwsc] at sun.reflect.GeneratedMethodAccessor44.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.TaskAdapter.execute(TaskAdapter.java:154) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) [jwsc] at net.sf.antcontrib.logic.ForTask.doSequentialIteration(ForTask.java:259) [jwsc] at net.sf.antcontrib.logic.ForTask.doToken(ForTask.java:268) [jwsc] at net.sf.antcontrib.logic.ForTask.doTheTasks(ForTask.java:299) [jwsc] at net.sf.antcontrib.logic.ForTask.execute(ForTask.java:244) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.Target.execute(Target.java:390) [jwsc] at org.apache.tools.ant.Target.performTasks(Target.java:411) [jwsc] at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1397) [jwsc] at org.apache.tools.ant.helper.SingleCheckExecutor.executeTargets(SingleCheckExecutor.java:38) [jwsc] at org.apache.tools.ant.Project.executeTargets(Project.java:1249) [jwsc] at org.apache.tools.ant.taskdefs.Ant.execute(Ant.java:442) [jwsc] at org.apache.tools.ant.taskdefs.CallTarget.execute(CallTarget.java:105) [jwsc] at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) [jwsc] at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) [jwsc] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) [jwsc] at java.lang.reflect.Method.invoke(Method.java:597) [jwsc] at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) [jwsc] at org.apache.tools.ant.Task.perform(Task.java:348) [jwsc] at org.apache.tools.ant.Target.execute(Target.java:390) [jwsc] at org.apache.tools.ant.Target.performTasks(Target.java:411) [jwsc] at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1397) [jwsc] at org.apache.tools.ant.Project.executeTarget(Project.java:1366) [jwsc] at org.apache.tools.ant.helper.DefaultExecutor.executeTargets(DefaultExecutor.java:41) [jwsc] at org.apache.tools.ant.Project.executeTargets(Project.java:1249) [jwsc] at org.apache.tools.ant.Main.runBuild(Main.java:801) [jwsc] at org.apache.tools.ant.Main.startAnt(Main.java:218) [jwsc] at org.apache.tools.ant.launch.Launcher.run(Launcher.java:280) [jwsc] at org.apache.tools.ant.launch.Launcher.main(Launcher.java:109) [AntUtil.deleteDir] Deleting directory C:\DOCUME~1\KEVIN~1.BRE\LOCALS~1\Temp_5l950r The Ant target that uses the <jwsc> task is this: <target name="webservice.build" depends="init,generated.root.init"> <path id="jwsc.srcpath"> <path path="${java.sourcepath}" /> <pathelement path="build/assembly/.src" /> </path> <taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask" > <classpath> <path refid="weblogic.jar.classpath" /> </classpath> </taskdef> <property name="jwsc.module.root" value="${project.dir}/build/weboutput"/> <property name="jwsc.contextpath" value="irWeb"/> <property name="jwsc.srcpath.prop" refid="jwsc.srcpath"/> <path id="jwsc.classpath"> <path refid="weblogic.jar.classpath" /> <path refid="java.classpath" /> <pathelement path="${java.outpath}" /> </path> <jwsc destdir="${project.dir}/build" classpathref="jwsc.classpath"> <module name="weboutput" explode="true" contextPath="${jwsc.contextpath}" > <jwsFileSet srcdir="${webservices.dir}" type="JAXRPC"> <include name="**/*.java"/> </jwsFileSet> <descriptor file="${jwsc.module.root}/WEB-INF/web.xml" /> <descriptor file="${jwsc.module.root}/WEB-INF/weblogic.xml" /> </module> </jwsc> </target> I have no idea what could be causing the compiler to throw this error at build time, and a day of google searching has turned up other instances of this error caused by different triggers, and solutions for those propblems didn't work for me. I also found a single report on the Oracle forums that seemed to be a carbon copy of this issue, but there were no replies. The application is written in Weblogic Workshop 10, runs on Weblogic Server 10.3, and uses Beehive / NetUI. Not sure if that would make a difference or not though. The build scripts were automatically generated by Weblogic Workshop, with some tweaks and fixes made to other aspects of the files by myself to fix other compatability issues. I am using Java 1.6.0_23 from Sun, and Ant 1.8.1 Any help or advice would be greatly appreciated.

    Read the article

  • timetable in a jTable

    - by chandra
    I want to create a timetable in a jTable. For the top row it will display from monday to sunday and the left colume will display the time of the day with 2h interval e.g 1st colume (0000 - 0200), 2nd colume (0200 - 0400) .... And if i click a button the timing will change from 2h interval to 1h interval. I do not want to hardcode it because i need to do for 2h, 1h, 30min , 15min, 1min, 30sec and 1 sec interval and it will take too long for me to hardcode. Can anyone show me an example or help me create an example for the 2h to 1h interval so that i know what to do? The data array is for me to store data and are there any other easier or shortcuts for me to store them because if it is in 1 sec interval i got thousands of array i need to type it out. private void oneHour() //1 interval functions { if(!once) { initialize(); once = true; } jTable.setModel(new javax.swing.table.DefaultTableModel( new Object [][] { {"0000 - 0100", data[0][0], data[0][1], data[0][2], data[0][3], data[0][4], data[0][5], data[0][6]}, {"0100 - 0200", data[2][0], data[2][1], data[2][2], data[2][3], data[2][4], data[2][5], data[2][6]}, {"0200 - 0300", data[4][0], data[4][1], data[4][2], data[4][3], data[4][4], data[4][5], data[4][6]}, {"0300 - 0400", data[6][0], data[6][1], data[6][2], data[6][3], data[6][4], data[6][5], data[6][6]}, {"0400 - 0600", data[8][0], data[8][1], data[8][2], data[8][3], data[8][4], data[8][5], data[8][6]}, {"0600 - 0700", data[10][0], data[4][1], data[10][2], data[10][3], data[10][4], data[10][5], data[10][6]}, {"0700 - 0800", data[12][0], data[12][1], data[12][2], data[12][3], data[12][4], data[12][5], data[12][6]}, {"0800 - 0900", data[14][0], data[14][1], data[14][2], data[14][3], data[14][4], data[14][5], data[14][6]}, {"0900 - 1000", data[16][0], data[16][1], data[16][2], data[16][3], data[16][4], data[16][5], data[16][6]}, {"1000 - 1100", data[18][0], data[18][1], data[18][2], data[18][3], data[18][4], data[18][5], data[18][6]}, {"1100 - 1200", data[20][0], data[20][1], data[20][2], data[20][3], data[20][4], data[20][5], data[20][6]}, {"1200 - 1300", data[22][0], data[22][1], data[22][2], data[22][3], data[22][4], data[22][5], data[22][6]}, {"1300 - 1400", data[24][0], data[24][1], data[24][2], data[24][3], data[24][4], data[24][5], data[24][6]}, {"1400 - 1500", data[26][0], data[26][1], data[26][2], data[26][3], data[26][4], data[26][5], data[26][6]}, {"1500 - 1600", data[28][0], data[28][1], data[28][2], data[28][3], data[28][4], data[28][5], data[28][6]}, {"1600 - 1700", data[30][0], data[30][1], data[30][2], data[30][3], data[30][4], data[30][5], data[30][6]}, {"1700 - 1800", data[32][0], data[32][1], data[32][2], data[32][3], data[32][4], data[32][5], data[32][6]}, {"1800 - 1900", data[34][0], data[34][1], data[34][2], data[34][3], data[34][4], data[34][5], data[34][6]}, {"1900 - 2000", data[36][0], data[36][1], data[36][2], data[36][3], data[36][4], data[36][5], data[36][6]}, {"2000 - 2100", data[38][0], data[38][1], data[38][2], data[38][3], data[38][4], data[38][5], data[38][6]}, {"2100 - 2200", data[40][0], data[40][1], data[40][2], data[40][3], data[40][4], data[40][5], data[40][6]}, {"2200 - 2300", data[42][0], data[42][1], data[42][2], data[42][3], data[42][4], data[42][5], data[42][6]}, {"2300 - 2400", data[44][0], data[44][1], data[44][2], data[44][3], data[44][4], data[44][5], data[44][6]}, {"2400 - 0000", data[46][0], data[46][1], data[46][2], data[46][3], data[46][4], data[46][5], data[46][6]}, }, new String [] { "Time/Day", "(Mon)", "(Tue)", "(Wed)", "(Thurs)", "(Fri)", "(Sat)", "(Sun)" } )); } private void twoHour() //2 hour interval functions { if(!once) { initialize(); once = true; } jTable.setModel(new javax.swing.table.DefaultTableModel( new Object [][] { {"0000 - 0200", data[0][0], data[0][1], data[0][2], data[0][3], data[0][4], data[0][5], data[0][6]}, {"0200 - 0400", data[4][0], data[4][1], data[4][2], data[4][3], data[4][4], data[4][5], data[4][6]}, {"0400 - 0600", data[8][0], data[8][1], data[8][2], data[8][3], data[8][4], data[8][5], data[8][6]}, {"0600 - 0800", data[12][0], data[12][1], data[12][2], data[12][3], data[12][4], data[12][5], data[12][6]}, {"0800 - 1000", data[16][0], data[16][1], data[16][2], data[16][3], data[16][4], data[16][5], data[16][6]}, {"1000 - 1200", data[20][0], data[20][1], data[20][2], data[20][3], data[20][4], data[20][5], data[20][6]}, {"1200 - 1400", data[24][0], data[24][1], data[24][2], data[24][3], data[24][4], data[24][5], data[24][6]}, {"1400 - 1600", data[28][0], data[28][1], data[28][2], data[28][3], data[28][4], data[28][5], data[28][6]}, {"1600 - 1800", data[32][0], data[32][1], data[32][2], data[32][3], data[32][4], data[32][5], data[32][6]}, {"1800 - 2000", data[36][0], data[36][1], data[36][2], data[36][3], data[36][4], data[36][5], data[36][6]}, {"2000 - 2200", data[40][0], data[40][1], data[40][2], data[40][3], data[40][4], data[40][5], data[40][6]}, {"2200 - 2400",data[44][0], data[44][1], data[44][2], data[44][3], data[44][4], data[44][5], data[44][6]} },

    Read the article

  • Dynamic SQL to generate column names?

    - by Ben McCormack
    I have a query where I'm trying pivot row values into column names and currently I'm using SUM(Case...) As 'ColumnName' statements, like so: SELECT SKU1, SUM(Case When Sku2=157 Then Quantity Else 0 End) As '157', SUM(Case When Sku2=158 Then Quantity Else 0 End) As '158', SUM(Case When Sku2=167 Then Quantity Else 0 End) As '167' FROM OrderDetailDeliveryReview Group By OrderShipToID, DeliveryDate, SKU1 The above query works great and gives me exactly what I need. However, I'm writing out the SUM(Case... statements by hand based on the results of the following query: Select Distinct Sku2 From OrderDetailDeliveryReview Is there a way, using T-SQL inside a stored procedure, that I can dynamically generate the SUM(Case... statements from the Select Distinct Sku2 From OrderDetailDeliveryReview query and then execute the resulting SQL code?

    Read the article

  • SQL Server 2000 tables

    - by klork
    We currently have an SQL Server 2000 database with one table containing data for multiple users. The data is keyed by memberid which is an integer field. The table has a clustered index on memberid. The table is now about 200 million rows. Indexing and maintenance are becoming issues. We are debating splitting the table into one table per user model. This would imply that we would end up with a very large number of tables potentially upto the 2,147,483,647, considering just positive values. My questions: Does anyone have any experience with a SQL Server (2000/2005) installation with millions of tables? What are the implications of this architecture with regards to maintenance and access using Query Analyzer, Enterprise Manager etc. What are the implications to having such a large number of indexes in a database instance. All comments are appreciated. Thanks

    Read the article

  • Get data types from arbitrary sql statement in SQL Server 2008

    - by Christopherous 5000
    Given some arbitrary SQL I would like to get the data types of the returned columns. The statement might join many tables, views, TVFs, etc. I know I could create a view based on the query and get the datatypes from that, hoping there's a quicker way. Only think I've been able to think of is writing a .net utility to run the SQL and examine the results, wondering if there is a TSQL answer. i.e. Given (not real tables just an example) SELECT p.Name AS PersonName, p.Age, a.Account as AccountName FROM Person as p LEFT JOIN Account as a ON p.Id = a.OwnerId I would like to have something like PersonName: (nvarchar(255), not null) Age: (smallInt, not null) etc...

    Read the article

  • Is Data Science “Science”?

    - by BuckWoody
    I hold the term “science” in very high esteem. I grew up on the Space Coast in Florida, and eventually worked at the Kennedy Space Center, surrounded by very intelligent people who worked in various scientific fields. Recently a new term has entered the computing dialog – “Data Scientist”. Since it’s not a standard term, it has a lot of definitions, and in fact has been disputed as a correct term. After all, the reasoning goes, if there’s no such thing as “Data Science” then how can there be a Data Scientist? This argument has been made before, albeit with a different term – “Computer Science”. In Peter Denning’s excellent article “Is Computer Science Science” (April  2005/Vol. 48, No. 4 COMMUNICATIONS OF THE ACM) there are many points that separate “science” from “engineering” and even “art”.  I won’t repeat the content of that article here (I recommend you read it on your own) but will leverage the points he makes there. Definition of Science To ask the question “is data science ‘science’” then we need to start with a definition of terms. Various references put the definition into the same basic areas: Study of the physical world Systematic and/or disciplined study of a subject area ...and then they include the things studied, the bodies of knowledge and so on. The word itself comes from Latin, and means merely “to know” or “to study to know”. Greek divides knowledge further into “truth” (episteme), and practical use or effects (tekhne). Normally computing falls into the second realm. Definition of Data Science And now a more controversial definition: Data Science. This term is so new and perhaps so niche that the major dictionaries haven’t yet picked it up (my OED reference is older – can’t afford to pop for the online registration at present). Researching the term's general use I created an amalgam of the definitions this way: “Studying and applying mathematical and other techniques to derive information from complex data sets.” Using this definition, data science certainly seems to be science - it's learning about and studying some object or area using systematic methods. But implicit within the definition is the word “application”, which makes the process more akin to engineering or even technology than science. In fact, I find that using these techniques – and data itself – part of science, not science itself. I leave out the concept of studying data patterns or algorithms as part of this discipline. That is actually a domain I see within research, mathematics or computer science. That of course is a type of science, but does not seek for practical applications. As part of the argument against calling it “Data Science”, some point to the scientific method of creating a hypothesis, testing with controls, testing results against the hypothesis, and documenting for repeatability.  These are not steps that we often take in working with data. We normally start with a question, and fit patterns and algorithms to predict outcomes and find correlations. In this way Data Science is more akin to statistics (and in fact makes heavy use of them) in the process rather than starting with an assumption and following on with it. So, is Data Science “Science”? I’m uncertain – and I’m uncertain it matters. Even if we are facing rampant “title inflation” these days (does anyone introduce themselves as a secretary or supervisor anymore?) I can tolerate the term at least from the intent that we use data to study problems across a wide spectrum, rather than restricting it to a single domain. And I also understand those who have worked hard to achieve the very honorable title of “scientist” who have issues with those who borrow the term without asking. What do you think? Science, or not? Does it matter?

    Read the article

  • t-sql recursive query

    - by stackoverflowuser
    Based on an existing table I used CTE recursive query to come up with following data. But failing to apply it a level further. Data is as below id name parentid -------------------------- 1 project 0 2 structure 1 3 path_1 2 4 path_2 2 5 path_3 2 6 path_4 3 7 path_5 4 8 path_6 5 I want to recursively form full paths from the above data. Means the recursion will give the following output. FullPaths ------------- Project Project\Structure Project\Structure\Path_1 Project\Structure\Path_2 Project\Structure\Path_3 Project\Structure\Path_1\path_4 Project\Structure\Path_2\path_5 Project\Structure\Path_3\path_6 Thanks

    Read the article

  • Analytic functions – they’re not aggregates

    - by Rob Farley
    SQL 2012 brings us a bunch of new analytic functions, together with enhancements to the OVER clause. People who have known me over the years will remember that I’m a big fan of the OVER clause and the types of things that it brings us when applied to aggregate functions, as well as the ranking functions that it enables. The OVER clause was introduced in SQL Server 2005, and remained frustratingly unchanged until SQL Server 2012. This post is going to look at a particular aspect of the analytic functions though (not the enhancements to the OVER clause). When I give presentations about the analytic functions around Australia as part of the tour of SQL Saturdays (starting in Brisbane this Thursday), and in Chicago next month, I’ll make sure it’s sufficiently well described. But for this post – I’m going to skip that and assume you get it. The analytic functions introduced in SQL 2012 seem to come in pairs – FIRST_VALUE and LAST_VALUE, LAG and LEAD, CUME_DIST and PERCENT_RANK, PERCENTILE_CONT and PERCENTILE_DISC. Perhaps frustratingly, they take slightly different forms as well. The ones I want to look at now are FIRST_VALUE and LAST_VALUE, and PERCENTILE_CONT and PERCENTILE_DISC. The reason I’m pulling this ones out is that they always produce the same result within their partitions (if you’re applying them to the whole partition). Consider the following query: SELECT     YEAR(OrderDate),     FIRST_VALUE(TotalDue)         OVER (PARTITION BY YEAR(OrderDate)               ORDER BY OrderDate, SalesOrderID               RANGE BETWEEN UNBOUNDED PRECEDING                         AND UNBOUNDED FOLLOWING),     LAST_VALUE(TotalDue)         OVER (PARTITION BY YEAR(OrderDate)               ORDER BY OrderDate, SalesOrderID               RANGE BETWEEN UNBOUNDED PRECEDING                         AND UNBOUNDED FOLLOWING),     PERCENTILE_CONT(0.95)         WITHIN GROUP (ORDER BY TotalDue)         OVER (PARTITION BY YEAR(OrderDate)),     PERCENTILE_DISC(0.95)         WITHIN GROUP (ORDER BY TotalDue)         OVER (PARTITION BY YEAR(OrderDate)) FROM Sales.SalesOrderHeader ; This is designed to get the TotalDue for the first order of the year, the last order of the year, and also the 95% percentile, using both the continuous and discrete methods (‘discrete’ means it picks the closest one from the values available – ‘continuous’ means it will happily use something between, similar to what you would do for a traditional median of four values). I’m sure you can imagine the results – a different value for each field, but within each year, all the rows the same. Notice that I’m not grouping by the year. Nor am I filtering. This query gives us a result for every row in the SalesOrderHeader table – 31465 in this case (using the original AdventureWorks that dates back to the SQL 2005 days). The RANGE BETWEEN bit in FIRST_VALUE and LAST_VALUE is needed to make sure that we’re considering all the rows available. If we don’t specify that, it assumes we only mean “RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW”, which means that LAST_VALUE ends up being the row we’re looking at. At this point you might think about other environments such as Access or Reporting Services, and remember aggregate functions like FIRST. We really should be able to do something like: SELECT     YEAR(OrderDate),     FIRST_VALUE(TotalDue)         OVER (PARTITION BY YEAR(OrderDate)               ORDER BY OrderDate, SalesOrderID               RANGE BETWEEN UNBOUNDED PRECEDING                         AND UNBOUNDED FOLLOWING) FROM Sales.SalesOrderHeader GROUP BY YEAR(OrderDate) ; But you can’t. You get that age-old error: Msg 8120, Level 16, State 1, Line 5 Column 'Sales.SalesOrderHeader.OrderDate' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause. Msg 8120, Level 16, State 1, Line 5 Column 'Sales.SalesOrderHeader.SalesOrderID' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause. Hmm. You see, FIRST_VALUE isn’t an aggregate function. None of these analytic functions are. There are too many things involved for SQL to realise that the values produced might be identical within the group. Furthermore, you can’t even surround it in a MAX. Then you get a different error, telling you that you can’t use windowed functions in the context of an aggregate. And so we end up grouping by doing a DISTINCT. SELECT DISTINCT     YEAR(OrderDate),         FIRST_VALUE(TotalDue)              OVER (PARTITION BY YEAR(OrderDate)                   ORDER BY OrderDate, SalesOrderID                   RANGE BETWEEN UNBOUNDED PRECEDING                             AND UNBOUNDED FOLLOWING),         LAST_VALUE(TotalDue)             OVER (PARTITION BY YEAR(OrderDate)                   ORDER BY OrderDate, SalesOrderID                   RANGE BETWEEN UNBOUNDED PRECEDING                             AND UNBOUNDED FOLLOWING),     PERCENTILE_CONT(0.95)          WITHIN GROUP (ORDER BY TotalDue)         OVER (PARTITION BY YEAR(OrderDate)),     PERCENTILE_DISC(0.95)         WITHIN GROUP (ORDER BY TotalDue)         OVER (PARTITION BY YEAR(OrderDate)) FROM Sales.SalesOrderHeader ; I’m sorry. It’s just the way it goes. Hopefully it’ll change the future, but for now, it’s what you’ll have to do. If we look in the execution plan, we see that it’s incredibly ugly, and actually works out the results of these analytic functions for all 31465 rows, finally performing the distinct operation to convert it into the four rows we get in the results. You might be able to achieve a better plan using things like TOP, or the kind of calculation that I used in http://sqlblog.com/blogs/rob_farley/archive/2011/08/23/t-sql-thoughts-about-the-95th-percentile.aspx (which is how PERCENTILE_CONT works), but it’s definitely convenient to use these functions, and in time, I’m sure we’ll see good improvements in the way that they are implemented. Oh, and this post should be good for fellow SQL Server MVP Nigel Sammy’s T-SQL Tuesday this month.

    Read the article

  • SQL Query Builder/Designer and code Formating

    - by DavRob60
    I write SQL query every now and then, I could easily write them freehand, but sometimes I do create SQL queries using SQL Query Designers for various reason. (I wont start to enumerate them here and/or argue about their usefulness, so let's just say they are sometime useful.) Anyway, I currently use 2 Query Designers : SQL server management studio's Query Designer. Visual Studio 2010's Query Builder (must often within the Table adapter Query Configuration Wizard.) There's something I hate about those two (I don't know about the others), it's the way they throw away my Code formatting of SQL queries after an edit. Is there any way to configure something to automatically reformat the SQL output or is there any external tool/plug-in that I could use to do that job?

    Read the article

  • SQL Server Column Level Encryption - Rotating Keys

    - by BarDev
    We are thinking about using SQL Server Column (cell) Level Encryption for sensitive data. There should be no problem when we initially encryption the column, but we have requirements that every year the Encryption Key needs to change. It seems that this requirement may be problem. Assumption: The table that includes the column that has sensitive data will have 500 million records. Below are the steps we have thought about implementing. During the encryption/decryption process is the data online, and also how long would this process take? Initially encrypt the column New Year Decrypt the column Encrypt the column with new key. Question : When the column is being decrypted/encrypted is the data online (available to be query)? Does SQL Server provide feature that allows for key changes while the data is online? BarDev

    Read the article

  • SQL Server Express performance issue

    - by Developer IT
    Hi folks ! I know my questions will sound silly and probably nobody will have perfect answer but since I am in a complete dead-end with the situation it will make me feel better to post it here. So... I have a SQL Server Express database that's 500 Mb. It contains 5 tables and maybe 30 stored procedure. This database is use to store articles and is use for the Developer It web site. Normally the web pages load quickly, let's say 2 ou 3 sec. BUT, sqlserver process uses 100% of the processor for those 2 or 3 sec. I try to find which stored procedure was the problem and I could not find one. It seems like every read into the table dans contains the articles (there are about 155,000 of them and 20 or so gets added every 15 minutes). I added few index but without luck... It is because the table is full text indexed ? Should I have order with the primary key instead of date ? I never had any problems with ordering by dates.... Should I use dynamic SQL ? Should I add the primary key into the url of the articles ? Should I use mutiple indexes for seperate columns or one big index ? I you want more details or code bits, just ask for it. Basicly, every little hint is much apreciated. Thanks.

    Read the article

  • Setting up SQL Server 2005 to use all available memory in 32bit Windows Server 2003 - and verifying

    - by Rizwan Kassim
    There are a number of questions along this line - but they either sometimes contradict each other, or don't show how to properly verify that everything is actually working - hopefully this can be comprehensive... I'm running SQL Server 2005 SP3 Standard on Windows Server 2003 R2 Standard. My server has 8GB of memory installed - my system is almost entirely used as a Database Server - there are some services running on them, but the OS + services can run within 1Gb of RAM. What I've done (please tell me if I'm doing something wrong): /3GB in the boot.ini. (To increase the amount of user-space memory available - info) /PAE in the boot.ini. (Windows claimed to be doing PAE even without this switch, somethow.) Enabled AWE in SQL Server. Enabled Lock Pages in Memory Option for users SYSTEM and Local Service. (info). SQL Server Standard doesn't seem to use this until Cumulative Update 4, which isn't installed on my server. (info) Set Min/Max Memory to : 1024Mb/5112Mb After doing all the above, we definately saw a level of improvement - but I'd like now to verify my settings, make sure that I'm making full use of the memory available. (There appeared to be a slowdown when max = 7Gb, so I edged off from that value, but it might have been just perceptual.) To verify, I checked the following levels in PerfMon : Process(sqlserv):Working Set : 76386304 SQL Server(Memory Manager) : Total Server Memory : 3538944 (I saw a doc that noted that this wasn't the full memory used by SQL Server, so I'm not sure whether to trust it) So -- my questions... Should my max be around 7Gb? If not, what should it be? Why is total server memory at 3.5G, when it's been allocated 5G? What is the proper metric for the amount of memory allocated to SQL Server? The Working Set seems a bit large... Am I possibly missing any steps in the setup? Any recommended resources on starting to tune the caching system now? Thanks

    Read the article

  • Oracle Data Mining a Star Schema: Telco Churn Case Study

    - by charlie.berger
    There is a complete and detailed Telco Churn case study "How to" Blog Series just posted by Ari Mozes, ODM Dev. Manager.  In it, Ari provides detailed guidance in how to leverage various strengths of Oracle Data Mining including the ability to: mine Star Schemas and join tables and views together to obtain a complete 360 degree view of a customer combine transactional data e.g. call record detail (CDR) data, etc. define complex data transformation, model build and model deploy analytical methodologies inside the Database  His blog is posted in a multi-part series.  Below are some opening excerpts for the first 3 blog entries.  This is an excellent resource for any novice to skilled data miner who wants to gain competitive advantage by mining their data inside the Oracle Database.  Many thanks Ari! Mining a Star Schema: Telco Churn Case Study (1 of 3) One of the strengths of Oracle Data Mining is the ability to mine star schemas with minimal effort.  Star schemas are commonly used in relational databases, and they often contain rich data with interesting patterns.  While dimension tables may contain interesting demographics, fact tables will often contain user behavior, such as phone usage or purchase patterns.  Both of these aspects - demographics and usage patterns - can provide insight into behavior.Churn is a critical problem in the telecommunications industry, and companies go to great lengths to reduce the churn of their customer base.  One case study1 describes a telecommunications scenario involving understanding, and identification of, churn, where the underlying data is present in a star schema.  That case study is a good example for demonstrating just how natural it is for Oracle Data Mining to analyze a star schema, so it will be used as the basis for this series of posts...... Mining a Star Schema: Telco Churn Case Study (2 of 3) This post will follow the transformation steps as described in the case study, but will use Oracle SQL as the means for preparing data.  Please see the previous post for background material, including links to the case study and to scripts that can be used to replicate the stages in these posts.1) Handling missing values for call data recordsThe CDR_T table records the number of phone minutes used by a customer per month and per call type (tariff).  For example, the table may contain one record corresponding to the number of peak (call type) minutes in January for a specific customer, and another record associated with international calls in March for the same customer.  This table is likely to be fairly dense (most type-month combinations for a given customer will be present) due to the coarse level of aggregation, but there may be some missing values.  Missing entries may occur for a number of reasons: the customer made no calls of a particular type in a particular month, the customer switched providers during the timeframe, or perhaps there is a data entry problem.  In the first situation, the correct interpretation of a missing entry would be to assume that the number of minutes for the type-month combination is zero.  In the other situations, it is not appropriate to assume zero, but rather derive some representative value to replace the missing entries.  The referenced case study takes the latter approach.  The data is segmented by customer and call type, and within a given customer-call type combination, an average number of minutes is computed and used as a replacement value.In SQL, we need to generate additional rows for the missing entries and populate those rows with appropriate values.  To generate the missing rows, Oracle's partition outer join feature is a perfect fit.  select cust_id, cdre.tariff, cdre.month, minsfrom cdr_t cdr partition by (cust_id) right outer join     (select distinct tariff, month from cdr_t) cdre     on (cdr.month = cdre.month and cdr.tariff = cdre.tariff);   ....... Mining a Star Schema: Telco Churn Case Study (3 of 3) Now that the "difficult" work is complete - preparing the data - we can move to building a predictive model to help identify and understand churn.The case study suggests that separate models be built for different customer segments (high, medium, low, and very low value customer groups).  To reduce the data to a single segment, a filter can be applied: create or replace view churn_data_high asselect * from churn_prep where value_band = 'HIGH'; It is simple to take a quick look at the predictive aspects of the data on a univariate basis.  While this does not capture the more complex multi-variate effects as would occur with the full-blown data mining algorithms, it can give a quick feel as to the predictive aspects of the data as well as validate the data preparation steps.  Oracle Data Mining includes a predictive analytics package which enables quick analysis. begin  dbms_predictive_analytics.explain(   'churn_data_high','churn_m6','expl_churn_tab'); end; /select * from expl_churn_tab where rank <= 5 order by rank; ATTRIBUTE_NAME       ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK-------------------- ----------------- ----------------- ----------LOS_BAND                                      .069167052          1MINS_PER_TARIFF_MON  PEAK-5                   .034881648          2REV_PER_MON          REV-5                    .034527798          3DROPPED_CALLS                                 .028110322          4MINS_PER_TARIFF_MON  PEAK-4                   .024698149          5From the above results, it is clear that some predictors do contain information to help identify churn (explanatory value > 0).  The strongest uni-variate predictor of churn appears to be the customer's (binned) length of service.  The second strongest churn indicator appears to be the number of peak minutes used in the most recent month.  The subname column contains the interior piece of the DM_NESTED_NUMERICALS column described in the previous post.  By using the object relational approach, many related predictors are included within a single top-level column. .....   NOTE:  These are just EXCERPTS.  Click here to start reading the Oracle Data Mining a Star Schema: Telco Churn Case Study from the beginning.    

    Read the article

  • Using Hadooop (HDInsight) with Microsoft - Two (OK, Three) Options

    - by BuckWoody
    Microsoft has many tools for “Big Data”. In fact, you need many tools – there’s no product called “Big Data Solution” in a shrink-wrapped box – if you find one, you probably shouldn’t buy it. It’s tempting to want a single tool that handles everything in a problem domain, but with large, complex data, that isn’t a reality. You’ll mix and match several systems, open and closed source, to solve a given problem. But there are tools that help with handling data at large, complex scales. Normally the best way to do this is to break up the data into parts, and then put the calculation engines for that chunk of data right on the node where the data is stored. These systems are in a family called “Distributed File and Compute”. Microsoft has a couple of these, including the High Performance Computing edition of Windows Server. Recently we partnered with Hortonworks to bring the Apache Foundation’s release of Hadoop to Windows. And as it turns out, there are actually two (technically three) ways you can use it. (There’s a more detailed set of information here: http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/big-data.aspx, I’ll cover the options at a general level below)  First Option: Windows Azure HDInsight Service  Your first option is that you can simply log on to a Hadoop control node and begin to run Pig or Hive statements against data that you have stored in Windows Azure. There’s nothing to set up (although you can configure things where needed), and you can send the commands, get the output of the job(s), and stop using the service when you are done – and repeat the process later if you wish. (There are also connectors to run jobs from Microsoft Excel, but that’s another post)   This option is useful when you have a periodic burst of work for a Hadoop workload, or the data collection has been happening into Windows Azure storage anyway. That might be from a web application, the logs from a web application, telemetrics (remote sensor input), and other modes of constant collection.   You can read more about this option here:  http://blogs.msdn.com/b/windowsazure/archive/2012/10/24/getting-started-with-windows-azure-hdinsight-service.aspx Second Option: Microsoft HDInsight Server Your second option is to use the Hadoop Distribution for on-premises Windows called Microsoft HDInsight Server. You set up the Name Node(s), Job Tracker(s), and Data Node(s), among other components, and you have control over the entire ecostructure.   This option is useful if you want to  have complete control over the system, leave it running all the time, or you have a huge quantity of data that you have to bulk-load constantly – something that isn’t going to be practical with a network transfer or disk-mailing scheme. You can read more about this option here: http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/big-data.aspx Third Option (unsupported): Installation on Windows Azure Virtual Machines  Although unsupported, you could simply use a Windows Azure Virtual Machine (we support both Windows and Linux servers) and install Hadoop yourself – it’s open-source, so there’s nothing preventing you from doing that.   Aside from being unsupported, there are other issues you’ll run into with this approach – primarily involving performance and the amount of configuration you’ll need to do to access the data nodes properly. But for a single-node installation (where all components run on one system) such as learning, demos, training and the like, this isn’t a bad option. Did I mention that’s unsupported? :) You can learn more about Windows Azure Virtual Machines here: http://www.windowsazure.com/en-us/home/scenarios/virtual-machines/ And more about Hadoop and the installation/configuration (on Linux) here: http://en.wikipedia.org/wiki/Apache_Hadoop And more about the HDInsight installation here: http://www.microsoft.com/web/gallery/install.aspx?appid=HDINSIGHT-PREVIEW Choosing the right option Since you have two or three routes you can go, the best thing to do is evaluate the need you have, and place the workload where it makes the most sense.  My suggestion is to install the HDInsight Server locally on a test system, and play around with it. Read up on the best ways to use Hadoop for a given workload, understand the parts, write a little Pig and Hive, and get your feet wet. Then sign up for a test account on HDInsight Service, and see how that leverages what you know. If you're a true tinkerer, go ahead and try the VM route as well. Oh - there’s another great reference on the Windows Azure HDInsight that just came out, here: http://blogs.msdn.com/b/brunoterkaly/archive/2012/11/16/hadoop-on-azure-introduction.aspx  

    Read the article

  • SCOM, Server 2008 and SQL Server 2008

    - by Jacques
    Hi there, I'm trying to setup SCOM(System Center Operations Manager 2007 (SCOM) – Platform Monitoring) on my Server 2008 machine using SQL Server 2008 running on the same machine. When I check my prerequisites I get problem on SQL and Active Directory components. (I'm running SQL server 2008 and Server 2008 with active directory not installed) Errors: 1.Microsoft SQL Server 2005 Service Pack 1 required. Details: SQL Server 2005 SP1 is the next version of SQL Server. SQL Server 2005 Enterprise Edition, is a complete data and analysis platform for large mission-critical business applications. The link provided in the resolution column is a trial version of the product and is not supported by the Microsoft SQL Server team In order to install active directory needs to be present. Details:Setup failed to verify the presence of Active Directory for this server. I've got a couple of questions I need answering, hope someone can help. Do I need to install Active Directory for SCOM to work? Can I run SCOM with an SQL 2008 Database? How do I get pass these problems?

    Read the article

  • SQL server 2008 R2 installation error

    - by Sonia
    I have a windows 7,32 bit laptop. I am the administrator with all permissions. when I click on the SQL server 2008R2 set up file,it says : "SQL server set up has encountered the following error:Failed to retreive data for this request" click on OK. I have uninstalled all the components of SQL from control panel. I used Windows installer clean up to remove the files(which I must have not done ),but still no go. The summary.txt log says: Overall summary: Final result: Failed: see details below Exit code (Decimal): 847168662 Exit facility code: 638 Exit error code: 50326 Exit message: Failed to retrieve data for this request. Start time: 2012-05-25 14:59:15 End time: 2012-05-25 15:00:09 Requested action: RunRules Log with failure: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20120525_145905\Detail.txt Exception help link: http%3a%2f%2fgo.microsoft.com%2ffwlink%3fLinkId%3d20476%26ProdName%3dMicrosoft%2bSQL%2bServer%26EvtSrc%3dsetup.rll%26EvtID%3d50000%26ProdVer%3d10.0.5500.0%26EvtType%3d0xEF814B06%400x92D13C14 Machine Properties: Machine name: EWAN-PC Machine processor count: 4 OS version: Windows Vista OS service pack: Service Pack 1 OS region: Australia OS language: English (United States) OS architecture: x86 Process architecture: 32 Bit OS clustered: No Package properties: Description: SQL Server Database Services 2008 SQLProductFamilyCode: {628F8F38-600E-493D-9946-F4178F20A8A9} ProductName: SQL2008 Type: RTM Version: 10 SPLevel: 0 Installation location: c:\385030d65c6ff61fb9\x86\setup\ Installation edition: EXPRESS User Input Settings: ACTION: RunRules CONFIGURATIONFILE: FEATURES: HELP: False INDICATEPROGRESS: False INSTANCENAME: QUIET: False QUIETSIMPLE: False RULES: GLOBALRULES,SqlUnsupportedProductBlocker,PerfMonCounterNotCorruptedCheck,Bids2005InstalledCheck,BlockInstallSxS,AclPermissionsFacet,FacetDomainControllerCheck,SSMS_IsInternetConnected,FacetWOW64PlatformCheck,FacetPowerShellCheck X86: False Configuration file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20120525_145905\ConfigurationFile.ini Detailed results: Rules with failures: Global rules: There are no scenario-specific rules. Rules report file: The rule result report file is not available. Exception summary: The following is an exception stack listing the exceptions in outermost to innermost order Inner exceptions are being indented Exception type: Microsoft.SqlServer.Management.Sdk.Sfc.EnumeratorException Message: Failed to retrieve data for this request. Data: HelpLink.ProdName = Microsoft SQL Server HelpLink.BaseHelpUrl = http://go.microsoft.com/fwlink HelpLink.LinkId = 20476 DisableWatson = true Stack: at Microsoft.SqlServer.Setup.Chainer.Workflow.PendingActions.InvokeActions(WorkflowObject metaDb, TextWriter loggingStream) at Microsoft.SqlServer.Setup.Chainer.Workflow.ActionEngine.RunActionQueue() at Microsoft.SqlServer.Setup.Chainer.Workflow.Workflow.RunWorkflow(HandleInternalException exceptionHandler) at Microsoft.SqlServer.Chainer.Setup.Setup.RunRequestedWorkflow() at Microsoft.SqlServer.Chainer.Setup.Setup.Run() at Microsoft.SqlServer.Chainer.Setup.Setup.Start() at Microsoft.SqlServer.Chainer.Setup.Setup.Main() Inner exception type: Microsoft.SqlServer.Configuration.Sco.ScoException Message: Attempted to perform an unauthorized operation. Data: WatsonData = HKEY_LOCAL_MACHINE@SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Microsoft SQL Server 10 Stack: at Microsoft.SqlServer.Configuration.Sco.InternalRegistryKey.OpenSubKey(String subkey, RegistryAccess requestedAccess) at Microsoft.SqlServer.Configuration.Sco.SqlRegistryKey.OpenSubKey(String subkey, RegistryAccess requestedAccess) at Microsoft.SqlServer.Discovery.RegistryKeyExistsPropertyValueProvider.GetPropertyValue(Object[] context) at Microsoft.SqlServer.Discovery.DiscoveryEnumObject.GetPropertyValueFromProvider(IPropertyValueProvider propertyValueProvider, String machineName, Object[] context) at Microsoft.SqlServer.Discovery.ObjectInstanceSettings.IsObjectFound(String machineName, String idFilter) at Microsoft.SqlServer.Discovery.Product.FilterObjectSet(ArrayList objects, String idFilter) at Microsoft.SqlServer.Discovery.Product.GetData(EnumResult erParent) at Microsoft.SqlServer.Management.Sdk.Sfc.Environment.GetData() at Microsoft.SqlServer.Management.Sdk.Sfc.Environment.GetData(Request req, Object ci) at Microsoft.SqlServer.Management.Sdk.Sfc.Enumerator.GetData(Object connectionInfo, Request request) at Microsoft.SqlServer.Management.Sdk.Sfc.Enumerator.Process(Object connectionInfo, Request request) Inner exception type: System.UnauthorizedAccessException Message: Attempted to perform an unauthorized operation. Stack: at Microsoft.SqlServer.Configuration.Sco.InternalRegistryKey.OpenSubKey(String subkey, RegistryAccess requestedAccess) Ineed to install SQL server 2008 R2 for one of the company softwares to work. Any immediate help will be greatly appreciated. Thanks Sonia

    Read the article

  • Error after moving WSUS DB from one server to another

    - by Saariko
    I have a WSUS 3.2 Installed on a Windows Server 2003 R2. SQL Server 2005. I want to move the WSUS DB from this server, to our new SQL Server 2008 R2 on a new Windows Server 2008 R2 Machine. After following 2 guides http://itechhawk.wordpress.com/2012/10/10/move-wsus-database-to-another-server/ http://davehope.co.uk/Blog/moving-a-wsus-database/ I encounter an error: I detached, copied, attached to the new server.

    Read the article

  • SQL Server compatibility mode not logged

    - by smithsi
    I've been researching a problem which was diagnosed as someone changing the compatability mode for the SQL Server database from 80 to 90 on SQL Server 2005 for a database which had it's compatibility mode set to 80 due to legacy stored procedure code not having been upgraded. I found that when changing the compatibility mode this is not logged in the SQL Server logs. Has anyone seen this issue and is this a bug or is there an alternative method to track these changes?

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >