Search Results

Search found 19281 results on 772 pages for 'blender game engine'.

Page 412/772 | < Previous Page | 408 409 410 411 412 413 414 415 416 417 418 419  | Next Page >

  • Low complexity shader to indicate the sides of a polyline

    - by Pris
    I have a bunch of polylines that I draw using GL_LINES. They can have thousands of points. They actually represent the separation of land and water on a map. I don't have complete polygons, just the ordered set of points. I'm looking for a neat but efficient way to visually convey Side A and Side B as being different. For example I could offset the polyline in one direction a few times and fade it out (but every offset is doubling the number of points), or offset it once to make a "ribbon" and give one side a 'glow' like effect to mimic the outer glow or shadow of a polygon). This is for a mobile application and I'm using OpenGL ES 2. I'd like to keep the effect as simple as possible from a complexity stand point. I'm looking for some additional ideas; maybe there's a clever shader technique out there or a visual effect I haven't considered.

    Read the article

  • How can I chose the depth of a quadtree?

    - by Evpok
    In a 2d world, using a quadtree to prune pairs in collision detection, how can I chose the depth of said quadtree? The world I am dealing with is mostly made of moving objects¹, so the cost of dispatching the objects between the quadtree cells matter. So what I am interested in is the balance between the gain from less collision checking and the loss from more dispatching. 1. To be completely explicit, autonomous self-replicating cells competing for food sources, in an attempt to show my pupils predator-prey dynamics and genetic evolution at work

    Read the article

  • Most efficient AABB - Ray intersection algorithm for input/output distance calculation

    - by Tobbey
    Thanks to the following thread : most efficient AABB vs Ray collision algorithms I have seen very fast algorithm for ray/AABB intersection point computation. Unfortunately, most of the recent algorithm are accelerated by omitting the "output" intersection point of the box. In my application, I would interested in getting both the the distance from source ray to input: t0 and source ray to output of bounding box: t1. I have seen for instance Eisemann designed a very fast version regarding plucker, smits, ... , but it does not compare the case when both input/output distance should be computed see: http://www.cg.cs.tu-bs.de/publications/Eisemann07FRA/ Does someone know where I can find more information on algorithm performances for the specific input/output problem ? Thank you in advance

    Read the article

  • Most efficient way to implement delta time

    - by Starkers
    Here's one way to implement delta time: /// init /// var duration = 5000, currentTime = Date.now(); // and create cube, scene, camera ect ////// function animate() { /// determine delta /// var now = Date.now(), deltat = now - currentTime, currentTime = now, scalar = deltat / duration, angle = (Math.PI * 2) * scalar; ////// /// animate /// cube.rotation.y += angle; ////// /// update /// requestAnimationFrame(render); ////// } Could someone confirm I know how it works? Here what I think is going on: Firstly, we set duration at 5000, which how long the loop will take to complete in an ideal world. With a computer that is slow/busy, let's say the animation loop takes twice as long as it should, so 10000: When this happens, the scalar is set to 2.0: scalar = deltat / duration scalar = 10000 / 5000 scalar = 2.0 We now times all animation by twice as much: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 2.0; angle = (Math.PI * 4) // which is 2 rotations When we do this, the cube rotation will appear to 'jump', but this is good because the animation remains real-time. With a computer that is going too quickly, let's say the animation loop takes half as long as it should, so 2500: When this happens, the scalar is set to 0.5: scalar = deltat / duration scalar = 2500 / 5000 scalar = 0.5 We now times all animation by a half: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 0.5; angle = (Math.PI * 1) // which is half a rotation When we do this, the cube won't jump at all, and the animation remains real time, and doesn't speed up. However, would I be right in thinking this doesn't alter how hard the computer is working? I mean it still goes through the loop as fast as it can, and it still has render the whole scene, just with different smaller angles! So this a bad way to implement delta time, right? Now let's pretend the computer is taking exactly as long as it should, so 5000: When this happens, the scalar is set to 1.0: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 1; angle = (Math.PI * 2) // which is 1 rotation When we do this, everything is timsed by 1, so nothing is changed. We'd get the same result if we weren't using delta time at all! My questions are as follows Mostly importantly, have I got the right end of the stick here? How do we know to set the duration to 5000 ? Or can it be any number? I'm a bit vague about the "computer going too quickly". Is there a way loop less often rather than reduce the animation steps? Seems like a better idea. Using this method, do all of our animations need to be timesed by the scalar? Do we have to hunt down every last one and times it? Is this the best way to implement delta time? I think not, due to the fact the computer can go nuts and all we do is divide each animation step and because we need to hunt down every step and times it by the scalar. Not a very nice DSL, as it were. So what is the best way to implement delta time? Below is one way that I do not really get but may be a better way to implement delta time. Could someone explain please? // Globals INV_MAX_FPS = 1 / 60; frameDelta = 0; clock = new THREE.Clock(); // In the animation loop (the requestAnimationFrame callback)… frameDelta += clock.getDelta(); // API: "Get the seconds passed since the last call to this method." while (frameDelta >= INV_MAX_FPS) { update(INV_MAX_FPS); // calculate physics frameDelta -= INV_MAX_FPS; } How I think this works: Firstly we set INV_MAX_FPS to 0.01666666666 How we will use this number number does not jump out at me. We then intialize a frameDelta which stores how long the last loop took to run. Come the first loop frameDelta is not greater than INV_MAX_FPS so the loop is not run (0 = 0.01666666666). So nothing happens. Now I really don't know what would cause this to happen, but let's pretend that the loop we just went through took 2 seconds to complete: We set frameDelta to 2: frameDelta += clock.getDelta(); frameDelta += 2.00 Now we run an animation thanks to update(0.01666666666). Again what is relevance of 0.01666666666?? And then we take away 0.01666666666 from the frameDelta: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 2 - 0.01666666666 frameDelta = 1.98333333334 So let's go into the second loop. Let's say it took 2(? Why not 2? Or 12? I am a bit confused): frameDelta += clock.getDelta(); frameDelta = frameDelta + clock.getDelta(); frameDelta = 1.98333333334 + 2 frameDelta = 3.98333333334 This time we enter the while loop because 3.98333333334 = 0.01666666666 We run update We take away 0.01666666666 from frameDelta again: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 3.98333333334 - 0.01666666666 frameDelta = 3.96666666668 Now let's pretend the loop is super quick and runs in just 0.1 seconds and continues to do this. (Because the computer isn't busy any more). Basically, the update function will be run, and every loop we take away 0.01666666666 from the frameDelta untill the frameDelta is less than 0.01666666666. And then nothing happens until the computer runs slowly again? Could someone shed some light please? Does the update() update the scalar or something like that and we still have to times everything by the scalar like in the first example?

    Read the article

  • Solving 2D Collision Detection Issues with Relative Velocities

    - by Jengerer
    Imagine you have a situation where two objects are moving parallel to one-another and are both within range to collide with a static wall, like this: A common method used in dynamic collision detection is to loop through all objects in arbitrary order, solve for pair-wise collision detection using relative velocities, and then move the object to the nearest collision, if any. However, in this case, if the red object is checked first against the blue one, it would see that the relative velocity to the blue object is -20 m/s (and would thereby not collide this time frame). Then it would see that the red object would collide with the static wall, and the solution would be: And the red object passes through the blue one. So it appears to be a matter of choosing the right order in which you check collisions; but how can you determine which order is correct? How can this passing through of objects be avoided? Is ignoring relative velocity and considering every object as static during pair-wise checks a better idea for this reason?

    Read the article

  • Is there a good way to get pixel-perfect collision detection in XNA?

    - by ashes999
    Is there a well-known way (or perhaps reusable bit of code) for pixel-perfect collision detection in XNA? I assume this would also use polygons (boxes/triangles/circles) for a first-pass, quick-test for collisions, and if that test indicated a collision, it would then search for a per-pixel collision. This can be complicated, because we have to account for scale, rotation, and transparency. WARNING: If you're using the sample code from the link from the answer below, be aware that the scaling of the matrix is commented out for good reason. You don't need to uncomment it out to get scaling to work.

    Read the article

  • Can't get sprite to rotate correctly?

    - by rphello101
    I'm attempting to play with graphics using Java/Slick 2d. I'm trying to get my sprite to rotate to wherever the mouse is on the screen and then move accordingly. I figured the best way to do this was to keep track of the angle the sprite is at since I have to multiply the cosine/sine of the angle by the move speed in order to get the sprite to go "forwards" even if it is, say, facing 45 degrees in quadrant 3. However, before I even worry about that, I'm having trouble even getting my sprite to rotate in the first place. Preliminary console tests showed that this code worked, but when applied to the sprite, it just kind twitches. Anyone know what's wrong? int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x; int pY = sprite.y; int tempY, tempX; double mAng, pAng = sprite.angle; double angRotate=0; if(mX!=pX){ tempY=pY-mY; tempX=mX-pX; mAng = Math.toDegrees(Math.atan2(Math.abs((tempY)),Math.abs((tempX)))); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=270; else mAng=90; } //Calculations if(mX<pX&&mY<pY){ //If in Q2 mAng = 180-mAng; } if(mX<pX&&mY>pY){ //If in Q3 mAng = 180+mAng; } if(mX>pX&&mY>pY){ //If in Q4 mAng = 360-mAng; } angRotate = mAng-pAng; sprite.angle = mAng; sprite.image.setRotation((float)angRotate);

    Read the article

  • How can I transform a Point2f with a matrix on Android?

    - by Vivendi
    I'm developing for Android and I'm using the android.renderscript.Matrix3f class to do some calculations. What I need to do now is to now is to do something like mat.tranform(pointIn, pointOut); So I need to transform a matrix by a given Point class. In awt I would simply do this: AffineTransform t = new AffineTransform(); Point2D.Float p = new Point2D.Float(); t.transform( p, p ); But in Android I now have this: Matrix3f t = new Matrix3f(); PointF p = new PointF(); // Now I need to tranform it somehow.. But the Matrix3f class in Android doesn't have a Matrix.transform(Point2D ptSrc, Point2D ptDst) method. So I guess I have to do the transformation manually. But I'm not really sure how that works. From what I've seen it's something like a translate and then a rotate? Could anyone please tell me how to do this in code?

    Read the article

  • Foreach loop with 2d array of objects

    - by Jacob Millward
    I'm using a 2D array of objects to store data about tiles, or "blocks" in my gameworld. I initialise the array, fill it with data and then attempt to invoke the draw method of each object. foreach (Block block in blockList) { block.Draw(spriteBatch); } I end up with an exception being thrown "Object reference is not set to an instance of an object". What have I done wrong? EDIT: This is the code used to define the array Block[,] blockList; Then blockList = new Block[screenRectangle.Width, screenRectangle.Height]; // Fill with dummy data for (int x = 0; x <= screenRectangle.Width / texture.Width; x++) { for (int y = 0; y <= screenRectangle.Height / texture.Width; y++) { if (y >= screenRectangle.Height / (texture.Width*2)) { blockList[x, y] = new Block(1, new Rectangle(x * 16, y * 16, texture.Width, texture.Height), texture); } else { blockList[x, y] = new Block(0, new Rectangle(x * 16, y * 16, texture.Width, texture.Height), texture); } } }

    Read the article

  • Where to store shaders

    - by Mark Ingram
    I have an OpenGL renderer which has a Scene member variable. The Scene object can contain N SceneObjects. I use these SceneObjects for storing the vertex position and any transforms. My question is, where should shaders be stored in this arrangement? I guess they need to be in a central location because multiple objects can use the same shader. But then each object needs access to the shader because it needs to set attributes into the shader. Does anyone have any advice?

    Read the article

  • 2D wave-like sprite movement XNA

    - by TheBroodian
    I'm trying to create a particle that will 'circle' my character. When the particle is created, it's given a random position in relation to my character, and a box to provide boundaries for how far left or right this particle should circle. When I use the phrase 'circle', I'm referring to a simulated circling, i.e., when moving to the right, the particle will appear in front of my character, when passing back to the left, the particle will appear behind my character. That may have been too much context, so let me cut to the chase: In essence, the path I would like my particle to follow would be akin to a sine wave, with the left and right sides of the provided rectangle being the apexes of the wave. The trouble I'm having is that the position of the particle will be random, so it will never be produced at the same place within the wave twice, but I have no idea how to create this sort of behavior procedurally.

    Read the article

  • Algorithm for creating spheres?

    - by Dan the Man
    Does anyone have an algorithm for creating a sphere proceduraly with la amount of latitude lines, lo amount of longitude lines, and a radius of r? I need it to work with Unity, so the vertex positions need to be defined and then, the triangles defined via indexes (more info). EDIT I managed to get the code working in unity. But I think I might have done something wrong. When I turn up the detailLevel, All it does is add more vertices and polygons without moving them around. Did I forget something?

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • Get coordinates of arraylist

    - by opiop65
    Here's my map class: public class map{ public static final int CLEAR = 0; public static final ArrayList<Integer> STONE = new ArrayList<Integer>(); public static final int GRASS = 2; public static final int DIRT = 3; public static final int WIDTH = 32; public static final int HEIGHT = 24; public static final int TILE_SIZE = 25; // static int[][] map = new int[WIDTH][HEIGHT]; ArrayList<ArrayList<Integer>> map = new ArrayList<ArrayList<Integer>>(WIDTH * HEIGHT); enum tiles { air, grass, stone, dirt } Image air, grass, stone, dirt; Random rand = new Random(); public Map() { /* default map */ /*for(int y = 0; y < WIDTH; y++){ map[y][y] = (rand.nextInt(2)); System.out.println(map[y][y]); }*/ /*for (int y = 18; y < HEIGHT; y++) { for (int x = 0; x < WIDTH; x++) { map[x][y] = STONE; } } for (int y = 18; y < 19; y++) { for (int x = 0; x < WIDTH; x++) { map[x][y] = GRASS; } } for (int y = 19; y < 20; y++) { for (int x = 0; x < WIDTH; x++) { map[x][y] = DIRT; } }*/ for (int y = 0; y < HEIGHT; y++) { for(int x = 0; x < WIDTH; x++){ map.set(x * WIDTH + y, STONE); } } try { init(null, null); } catch (SlickException e) { e.printStackTrace(); } render(null, null, null); } public void init(GameContainer gc, StateBasedGame sbg) throws SlickException { air = new Image("res/air.png"); grass = new Image("res/grass.png"); stone = new Image("res/stone.png"); dirt = new Image("res/dirt.png"); } public void render(GameContainer gc, StateBasedGame sbg, Graphics g) { for (int x = 0; x < WIDTH; x++) { for (int y = 0; y < HEIGHT; y++) { switch (map.get(x * WIDTH + y)) { case CLEAR: air.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case STONE: stone.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case GRASS: grass.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case DIRT: dirt.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; } } } } public static boolean blocked(float x, float y) { return map[(int) x][(int) y] == STONE; } public static Rectangle blockBounds(int x, int y) { return (new Rectangle(x, y, TILE_SIZE, TILE_SIZE)); } } Specifically I am looking at this: for (int x = 0; x < WIDTH; x++) { for (int y = 0; y < HEIGHT; y++) { switch (map.get(x * WIDTH + y).intValue()) { case CLEAR: air.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case STONE: stone.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case GRASS: grass.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; case DIRT: dirt.draw(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE); break; } } } How can I access the coordinates of my arraylist map and then draw the tiles to the screen? Thanks!

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • vector rotations for branches of a 3d tree

    - by freefallr
    I'm attempting to create a 3d tree procedurally. I'm hoping that someone can check my vector rotation maths, as I'm a bit confused. I'm using an l-system (a recursive algorithm for generating branches). The trunk of the tree is the root node. It's orientation is aligned to the y axis. In the next iteration of the tree (e.g. the first branches), I might create a branch that is oriented say by +10 degrees in the X axis and a similar amount in the Z axis, relative to the trunk. I know that I should keep a rotation matrix at each branch, so that it can be applied to child branches, along with any modifications to the child branch. My questions then: for the trunk, the rotation matrix - is that just the identity matrix * initial orientation vector ? for the first branch (and subsequent branches) - I'll "inherit" the rotation matrix of the parent branch, and apply x and z rotations to that also. e.g. using glm::normalize; using glm::rotateX; using glm::vec4; using glm::mat4; using glm::rotate; vec4 vYAxis = vec4(0.0f, 1.0f, 0.0f, 0.0f); vec4 vInitial = normalize( rotateX( vYAxis, 10.0f ) ); mat4 mRotation = mat4(1.0); // trunk rotation matrix = identity * initial orientation vector mRotation *= vInitial; // first branch = parent rotation matrix * this branches rotations mRotation *= rotate( 10.0f, 1.0f, 0.0f, 0.0f ); // x rotation mRotation *= rotate( 10.0f, 0.0f, 0.0f, 1.0f ); // z rotation Are my maths and approach correct, or am I completely wrong? Finally, I'm using the glm library with OpenGL / C++ for this. Is the order of x rotation and z rotation important?

    Read the article

  • Rotations and Origins

    - by Theodore Enderby
    I was hoping someone could explain to me, or help me understand, the math behind rotations and origins. I'm working on a little top down space sim and I can rotate my ship just how I want it. Now, when I get my blasters going it'd be nice if they shared the same rotation. Here's a picture. and here's some code! blast.X = ship.X+5; blast.Y = ship.Y; blast.RotationAngle = ship.RotationAngle; blast.Origin = new Vector2(ship.Origin.X,ship.Origin.Y); I add five so the sprite adds up when facing right. I tried adding five to the blast origin but no go. Any help is much appreciated

    Read the article

  • Handling different screen densities in Android Devices?

    - by DevilWithin
    Well, i know there are plenty of different-sized screens in devices that run Android. The SDK I code with deploys to all major desktop platforms and android. I am aware i must have special cares to handle the different screen sizes and densities, but i just had an idea that would work in theory, and my question is exactly about that method, How could it FAIL ? So, what I do is to have an ortho camera of the same size for all devices, with possible tweaks, but anyway that would grant the proper positioning of all elements in all devices, right? We can assume everything is drawn in OpenGLES and input handling is converted to the proper camera coordinates. If you need me to improve the question, please tell me.

    Read the article

  • Resources on expected behaviour when manipulating 3D objects with the mouse

    - by sebf
    Hello, In my animation editor, I have a 3D gizmo that sits on the origin of a bone; the user drags the mesh around to rotate the bone. I've found that translating the 2D movements of the mouse into sensible 3D transforms is not near as simple as i'd hoped. For example what is intuitively 'up' or 'down'? How should the magnitude of rotations change with respect to dX/dY? How to implement this? What happens when the gizmo changes position or orientation with respect to the camera? ect. So far with trial and error i've written something (very) simple that works 70% of the time. I could probably continue to hack at it until I made something that works 99% of the time, but there must be someone who needed the same thing, and spent the time coming up with a much more elegant solution. Does anyone know of one?

    Read the article

  • Boat passing under a bridge in a 2D tile based RTS

    - by aleguna
    I'm writing a 2D tile based RTS. And I want to add a 'pseudo 3D' feature to it - bridges over the rivers. I havent't start any coding yet, just trying to think how it fits the collision detection model. A boat passing under the bridge and a unit moving over the bridge will eventually occupy the same cell on the map. How to prement them from colliding? Is there a common approach to solve such a problem? Or I need to implement a 3D world to do this?

    Read the article

  • Drawing of a huge model - How to regain performance?

    - by marc wellman
    I have a huge model I want to draw in my XNA application but because of its size I am experiencing a tremendous loss of performance. The model has about ~50 000 000 edges and has a size on disk of 205 MB in DirectX Format. Please don't ask whether this model has to be that big - yes it has! Is there a way to transfer the model directly to my GPU in order to let the GPU do the drawing like when transferring a VertexBuffer like this: graphicsDevice.Vertices[1].SetSource(_instanceBuffers[i], 0, _sizeofMatrix); because when I try to fill a vertexBuffer with all the vertices I am getting a OutOfMemoryException.

    Read the article

  • What's a viable way to get public properties from child objects?

    - by Raven Dreamer
    I have a GameObject (RoomOrganizer in the picture below) with a "RoomManager" script, and one or more child objects, each with a 'HasParallelagram' component attached, likeso: I've also got the following in the aforementioned "RoomManager" void Awake () { Rect tempRect; HasParallelogram tempsc; foreach (Transform child in transform) { try { tempsc = child.GetComponent<HasParallelogram>(); tempRect = tempsc.myRect; blockedZoneList.Add(new Parallelogram(tempRect)); Debug.Log(tempRect.ToString()); } catch( System.NullReferenceException) { Debug.Log("Null Reference Caught"); } } } Unfortunately, attempting to assign tempRect = tempsc.myRect causes a null pointer at run time. Am I missing some crucial step? HasParallelgram is an empty script with a public Rect set in the editor and nothing else. What's the proper way to get a child's component?

    Read the article

  • Impact of variable-length loops on GPU shaders

    - by Will
    Its popular to render procedural content inside the GPU e.g. in the demoscene (drawing a single quad to fill the screen and letting the GPU compute the pixels). Ray marching is popular: This means the GPU is executing some unknown number of loop iterations per pixel (although you can have an upper bound like maxIterations). How does having a variable-length loop affect shader performance? Imagine the simple ray-marching psuedocode: t = 0.f; while(t < maxDist) { p = rayStart + rayDir * t; d = DistanceFunc(p); t += d; if(d < epsilon) { ... emit p return; } } How are the various mainstream GPU families (Nvidia, ATI, PowerVR, Mali, Intel, etc) affected? Vertex shaders, but particularly fragment shaders? How can it be optimised?

    Read the article

  • Self learning automated movement

    - by Super1
    I am trying to make a small demo in Javascript, I have a black border and a car the car travels randomly and a line is drawn of its trail. When the user click inside the area it creates an object (we'll call this the wall). If the car hits the wall then it goes back 3 paces and tries a different route. When its hit the wall it needs to log down its location so it does NOT make that mistake again. Here is my example: http://jsfiddle.net/Jtq3E/ How can I get the car to move by itself and create a trail?

    Read the article

  • Drawing an outline around an arbitrary group of hexagons

    - by Perky
    Is there an algorithm for drawing an outline around around an arbitrary group of hexagons? The polygon outline drawn may be concave. See the images below, the green line is what I am trying to achieve. The hexagons are stored as vertices and drawn as polygons. Edit: I've uploaded images that should explain more. I want to favour convex hulls because it's conveys an area of control more quickly. Each hexagon is stored in a multidimensional array so they all have x and y coordinates, I can easily find adjacent hexagons and the opposite vertex, i.e. adjacentHexagon = getAdjacentHexagon( someHexagon, NORTHWEST ) if there isn't a hexagon immediately adjacent it will continue to search in that direction until it finds one or hits the map edges.

    Read the article

< Previous Page | 408 409 410 411 412 413 414 415 416 417 418 419  | Next Page >