Search Results

Search found 19281 results on 772 pages for 'blender game engine'.

Page 414/772 | < Previous Page | 410 411 412 413 414 415 416 417 418 419 420 421  | Next Page >

  • Is there a way to export all the images of my tweening effect in Flash?

    - by Paul
    i'm using Flash to create the animation of my character in 2D (i'm just beginning). Is it possible to make a tween effect of a character, and then automatically export all the images/frames? So far, it's a bit fastidious : i create my tweening effect, then i put a keyframe for each frame i want to copy and paste, then i select the movieclips and shapes and copy and paste them into another flash document, i position those clips at the exact same location as the previous image, then i erase the previous image and export the image... For 30 frames! Is there any faster way? Thanks

    Read the article

  • Smooth vector based jump

    - by Esa
    I started working on Wolfire's mathematics tutorials. I got the jumping working well using a step by step system, where you press a button and the cube moves to the next point on the jumping curve. Then I tried making the jumping happen during a set time period e.g the jump starts and lands within 1.5 seconds. I tried the same system I used for the step by step implementation, but it happens instantly. After some googling I found that Time.deltatime should be used, but I could not figure how. Below is my current jumping code, which makes the jump happen instantly. while (transform.position.y > 0) { modifiedJumperVelocity -= jumperDrag; transform.position += new Vector3(modifiedJumperVelocity.x, modifiedJumperVelocity.y, 0); } Where modifiedJumperVelocity is starting vector minus the jumper drag. JumperDrag is the value that is substracted from the modifiedJumperVelocity during each step of the jump. Below is an image of the jumping curve:

    Read the article

  • Logic that can traverse all possible layouts, but not checking every combination of identical pieces?

    - by George Bailey
    Suppose we have a grid of arbitrary size, which is filled by blocks of various widths and heights. There are many 2x2 blocks (meaning they take a total of 4 cells in the grid) and many 3x3 blocks, as well as some 5x4, 4x5, 2x3, etc. I was hoping I could set up a program that would look at all possible layouts, and rank them, and find the best one. Simply it would look at all possible positions of these blocks, and see what setup is the best rank. (the rank based on how many of these can be connected by a roadway system of 1x1 road blocks, and how many squares can be left empty after this is done. - wanting to fit the most blocks as possible with the least roads.) My question, is how should I traverse all the possibilities? I could take all the blocks and try them one at a time, but since all 2x2 blocks are equal, and there are a couple dozen of them, there is no point in trying every combination there, as in the following AA BBB AA BBB CCBBB CCEEE DD EEE DD EEE is exactly the same as CC EEE CC EEE AAEEE AABBB DD BBB DD BBB You notice that there are 2 3x3 blocks and 3 2x2 blocks in my two examples. Based on the model I have now, the computer would try both of these combinations, as well as many others. The problem is that it is going to try every single possible variation of my couple dozen 2x2 blocks. And that is sorely inefficient. Is there a reasonable way to take out this duplicated work, somehow getting the computer program to treat all 2x2 blocks as equal/identical, instead of one requiring rearranging/swapping of these identical blocks? Can this be done?

    Read the article

  • My frustum culling is culling from the wrong point

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] /= length; m_Planes[side][1] /= length; m_Planes[side][2] /= length; m_Planes[side][3] /= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } What am i doing wrong?

    Read the article

  • how to label a cuboid using open gl?

    - by usha
    hi this is how my 3dcuboid looks ,i have attached complete code , i want to label this cuboid using different name across sides how is it possible using opengl in android...plz help me out public class MyGLRenderer implements Renderer { Context context; Cuboid rect; private float mCubeRotation; // private static float angleCube = 0; // Rotational angle in degree for cube (NEW) // private static float speedCube = -1.5f; // Rotational speed for cube (NEW) public MyGLRenderer(Context context) { rect = new Cuboid(); this.context = context; } public void onDrawFrame(GL10 gl) { // TODO Auto-generated method stub gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); gl.glLoadIdentity(); // Reset the model-view matrix gl.glTranslatef(0.2f, 0.0f, -8.0f); // Translate right and into the screen gl.glScalef(0.8f, 0.8f, 0.8f); // Scale down (NEW) gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f); // gl.glRotatef(angleCube, 1.0f, 1.0f, 1.0f); // rotate about the axis (1,1,1) (NEW) rect.draw(gl); mCubeRotation -= 0.15f; //angleCube += speedCube; } public void onSurfaceChanged(GL10 gl, int width, int height) { // TODO Auto-generated method stub if (height == 0) height = 1; // To prevent divide by zero float aspect = (float)width / height; // Set the viewport (display area) to cover the entire window gl.glViewport(0, 0, width, height); // Setup perspective projection, with aspect ratio matches viewport gl.glMatrixMode(GL10.GL_PROJECTION); // Select projection matrix gl.glLoadIdentity(); // Reset projection matrix // Use perspective projection GLU.gluPerspective(gl, 45, aspect, 0.1f, 100.f); gl.glMatrixMode(GL10.GL_MODELVIEW); // Select model-view matrix gl.glLoadIdentity(); // Reset } public void onSurfaceCreated(GL10 gl, EGLConfig config) { // TODO Auto-generated method stub gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set color's clear-value to black gl.glClearDepthf(1.0f); // Set depth's clear-value to farthest gl.glEnable(GL10.GL_DEPTH_TEST); // Enables depth-buffer for hidden surface removal gl.glDepthFunc(GL10.GL_LEQUAL); // The type of depth testing to do gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); // nice perspective view gl.glShadeModel(GL10.GL_SMOOTH); // Enable smooth shading of color gl.glDisable(GL10.GL_DITHER); // Disable dithering for better performance }} public class Cuboid{ private FloatBuffer mVertexBuffer; private FloatBuffer mColorBuffer; private ByteBuffer mIndexBuffer; private float vertices[] = { //width,height,depth -2.5f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -2.5f, 1.0f, -1.0f, -2.5f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -2.5f, 1.0f, 1.0f }; private float colors[] = { // R,G,B,A COLOR 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f }; private byte indices[] = { // VERTEX 0,1,2,3,4,5,6,7 REPRESENTATION FOR FACES 0, 4, 5, 0, 5, 1, 1, 5, 6, 1, 6, 2, 2, 6, 7, 2, 7, 3, 3, 7, 4, 3, 4, 0, 4, 7, 6, 4, 6, 5, 3, 0, 1, 3, 1, 2 }; public Cuboid() { ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); mVertexBuffer = byteBuf.asFloatBuffer(); mVertexBuffer.put(vertices); mVertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(colors.length * 4); byteBuf.order(ByteOrder.nativeOrder()); mColorBuffer = byteBuf.asFloatBuffer(); mColorBuffer.put(colors); mColorBuffer.position(0); mIndexBuffer = ByteBuffer.allocateDirect(indices.length); mIndexBuffer.put(indices); mIndexBuffer.position(0); } public void draw(GL10 gl) { gl.glFrontFace(GL10.GL_CW); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer); gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE, mIndexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); } } public class Draw3drect extends Activity { private GLSurfaceView glView; // Use GLSurfaceView // Call back when the activity is started, to initialize the view @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); glView = new GLSurfaceView(this); // Allocate a GLSurfaceView glView.setRenderer(new MyGLRenderer(this)); // Use a custom renderer this.setContentView(glView); // This activity sets to GLSurfaceView } // Call back when the activity is going into the background @Override protected void onPause() { super.onPause(); glView.onPause(); } // Call back after onPause() @Override protected void onResume() { super.onResume(); glView.onResume(); } }

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Octree subdivision problem

    - by ChaosDev
    Im creating octree manually and want function for effectively divide all nodes and their subnodes - For example - I press button and subnodes divided - press again - all subnodes divided again. Must be like - 1 - 8 - 64. The problem is - i dont understand how organize recursive loops for that. OctreeNode in my unoptimized implementation contain pointers to subnodes(childs),parent,extra vector(contains dublicates of child),generation info and lots of information for drawing. class gOctreeNode { //necessary fields gOctreeNode* FrontBottomLeftNode; gOctreeNode* FrontBottomRightNode; gOctreeNode* FrontTopLeftNode; gOctreeNode* FrontTopRightNode; gOctreeNode* BackBottomLeftNode; gOctreeNode* BackBottomRightNode; gOctreeNode* BackTopLeftNode; gOctreeNode* BackTopRightNode; gOctreeNode* mParentNode; std::vector<gOctreeNode*> m_ChildsVector; UINT mGeneration; bool mSplitted; bool isSplitted(){return m_Splitted;} .... //unnecessary fields }; DivideNode of Octree class fill these fields, set mSplitted to true, and prepare for correctly drawing. Octree contains basic nodes(m_nodes). Basic node can be divided, but now I want recursivly divide already divided basic node with 8 subnodes. So I write this function. void DivideAllChildCells(int ix,int ih,int id) { std::vector<gOctreeNode*> nlist; std::vector<gOctreeNode*> dlist; int index = (ix * m_Height * m_Depth) + (ih * m_Depth) + (id * 1);//get index of specified node gOctreeNode* baseNode = m_nodes[index].get(); nlist.push_back(baseNode->FrontTopLeftNode); nlist.push_back(baseNode->FrontTopRightNode); nlist.push_back(baseNode->FrontBottomLeftNode); nlist.push_back(baseNode->FrontBottomRightNode); nlist.push_back(baseNode->BackBottomLeftNode); nlist.push_back(baseNode->BackBottomRightNode); nlist.push_back(baseNode->BackTopLeftNode); nlist.push_back(baseNode->BackTopRightNode); bool cont = true; UINT d = 0;//additional recursive loop param (?) UINT g = 0;//additional recursive loop param (?) LoopNodes(d,g,nlist,dlist); //Divide resulting nodes for(UINT i = 0; i < dlist.size(); i++) { DivideNode(dlist[i]); } } And now, back to the main question,I present LoopNodes, which must do all work for giving dlist nodes for splitting. void LoopNodes(UINT& od,UINT& og,std::vector<gOctreeNode*>& nlist,std::vector<gOctreeNode*>& dnodes) { //od++;//recursion depth bool f = false; //pass through childs for(UINT i = 0; i < 8; i++) { if(nlist[i]->isSplitted())//if node splitted and have childs { //pass forward through tree for(UINT j = 0; j < 8; j++) { nlist[j] = nlist[j]->m_ChildsVector[j];//set pointers to these childs } LoopNodes(od,og,nlist,dnodes); } else //if no childs { //add to split vector dnodes.push_back(nlist[i]); } } } This version of loop nodes works correctly for 2(or 1?) generations after - this will not divide neightbours nodes, only some corners. I need correct algorithm. Screenshot All I need - is correct version of LoopNodes, which can add all nodes for DivideNode.

    Read the article

  • OpenGL ES 2.0 texture distortion on large geometry

    - by Spruce
    OpenGL ES 2.0 has serious precision issues with texture sampling - I've seen topics with a similar problem, but I haven't seen a real solution to this "distorted OpenGL ES 2.0 texture" problem yet. This is not related to the texture's image format or OpenGL color buffers, it seems like it's a precision error. I don't know what specifically causes the precision to fail - it doesn't seem like it's just the size of geometry that causes this distortion, because simply scaling vertex position passed to the the vertex shader does not solve the issue. Here are some examples of the texture distortion: Distorted Texture (on OpenGL ES 2.0): http://i47.tinypic.com/3322h6d.png What the texture normally looks like (also on OpenGL ES 2.0): http://i49.tinypic.com/b4jc6c.png The texture issue is limited to small scale geometry on OpenGL ES 2.0, otherwise the texture sampling appears normal, but the grainy effect gradually worsens the further the vertex data is from the origin of XYZ(0,0,0) These texture issues do not occur on desktop OpenGL (works fine under Windows XP, Windows 7, and Mac OS X) I've only seen the problem occur on Android, iPhone, or WebGL(which is similar to OpenGL ES 2.0) All textures are power of 2 but the problem still occurs Scaling the vertex data - The values of a vertex's X Y Z location are in the range of: -65536 to +65536 floating point I realized this was large, so I tried dividing the vertex positions by 1024 to shrink the geometry and hopefully get more accurate floating point precision, but this didn't fix or lessen the texture distortion issue Scaling the modelview or scaling the projection matrix does not help Changing texture filtering options does not help Disabling mipmapping, or using GL_NEAREST/GL_LINEAR does nothing Enabling/disabling anisotropic does nothing The banding effect still occurs even when using GL_CLAMP Dividing the texture coords passed to the vertex shader and then multiplying them back to the correct values in the fragment shader, also does not work precision highp sampler2D, highp float, highp int - in the fragment or the vertex shader didn't change anything (lowp/mediump did not work either) I'm thinking this problem has to have been solved at one point - Seeing that OpenGL ES 2.0 -based games have been able to render large-scale, highly detailed geometry

    Read the article

  • Is it normal to these Xcode prompts/errors when you deploy to IOS Simulator from Unity?

    - by Greg
    Just trying out the IOS build process.... Is it normal to see: Q1 - "upgrade to latest project format - project currently in Xcode 3.1 format, this will upgrade to 3.2" - just click OK and let Xcode do it's stuff? Q2 - same as Q1 but this time for the message "Remove obsolete build settings - will remove the build setting PREBINDING" Q3 - also when deploying to "Lastest IOS Simulator" you get the Simulator target produced, but also a non-simulator target which has lots of errors. So I assume you just ignore this target and not use it in Xcode correct? (i.e. just use the simulator target that is produced) Q4 - get a lot of warning after the simulator target is built? program works ok however.... Images For Q1 and Q2: For Q4: Settings used in Unity: Errors I see in XCode:

    Read the article

  • vector rotations for branches of a 3d tree

    - by freefallr
    I'm attempting to create a 3d tree procedurally. I'm hoping that someone can check my vector rotation maths, as I'm a bit confused. I'm using an l-system (a recursive algorithm for generating branches). The trunk of the tree is the root node. It's orientation is aligned to the y axis. In the next iteration of the tree (e.g. the first branches), I might create a branch that is oriented say by +10 degrees in the X axis and a similar amount in the Z axis, relative to the trunk. I know that I should keep a rotation matrix at each branch, so that it can be applied to child branches, along with any modifications to the child branch. My questions then: for the trunk, the rotation matrix - is that just the identity matrix * initial orientation vector ? for the first branch (and subsequent branches) - I'll "inherit" the rotation matrix of the parent branch, and apply x and z rotations to that also. e.g. using glm::normalize; using glm::rotateX; using glm::vec4; using glm::mat4; using glm::rotate; vec4 vYAxis = vec4(0.0f, 1.0f, 0.0f, 0.0f); vec4 vInitial = normalize( rotateX( vYAxis, 10.0f ) ); mat4 mRotation = mat4(1.0); // trunk rotation matrix = identity * initial orientation vector mRotation *= vInitial; // first branch = parent rotation matrix * this branches rotations mRotation *= rotate( 10.0f, 1.0f, 0.0f, 0.0f ); // x rotation mRotation *= rotate( 10.0f, 0.0f, 0.0f, 1.0f ); // z rotation Are my maths and approach correct, or am I completely wrong? Finally, I'm using the glm library with OpenGL / C++ for this. Is the order of x rotation and z rotation important?

    Read the article

  • Confusion with Libgdx UI

    - by BrotherJack
    I've started with Libgdx and am currently stumbling about trying to understand how to set up the interface. I have generated the base projects in Eclipse ( < proj-name ,< proj-name -android, < proj-name -desktop, < proj-name -html), and can get the program to display a simple background, play a looping sound file, and draw a tank. I have been having some problems implementing the UI though. I want to make a collapsible interface bar at the bottom of the screen that would contain buttons for movement, and selecting weapons. I'm confused since there appears to be several ways of doing this and the documentation (or tutorials explaining it) tend to be obsolete. How would one go about this? Use a stage for the bar and actors for the widgets? I'm a little lost on this.

    Read the article

  • GLSL billboard move center of rotation

    - by Jacob Kofoed
    I have successfully set up a billboard shader that works, it can take in a quad and rotate it so it always points toward the screen. I am using this vertex-shader: void main(){ vec4 tmpPos = (MVP * bufferMatrix * vec4(0.0, 0.0, 0.0, 1.0)) + (MV * vec4( vertexPosition.x * 1.0 * bufferMatrix[0][0], vertexPosition.y * 1.0 * bufferMatrix[1][1], vertexPosition.z * 1.0 * bufferMatrix[2][2], 0.0) ); UV = UVOffset + vertexUV * UVScale; gl_Position = tmpPos; BufferMatrix is the model-matrix, it is an attribute to support Instance-drawing. The problem is best explained through pictures: This is the start position of the camera: And this is the position, looking in from 45 degree to the right: Obviously, as each character is it's own quad, the shader rotates each one around their own center towards the camera. What I in fact want is for them to rotate around a shared center, how would I do this? What I have been trying to do this far is: mat4 translation = mat4(1.0); translation = glm::translate(translation, vec3(pos)*1.f * 2.f); translation = glm::scale(translation, vec3(scale, 1.f)); translation = glm::translate(translation, vec3(anchorPoint - pos) / vec3(scale, 1.f)); Where the translation is the bufferMatrix sent to the shader. What I am trying to do is offset the center, but this might not be possible with a single matrix..? I am interested in a solution that doesn't require CPU calculations each frame, but rather set it up once and then let the shader do the billboard rotation. I realize there's many different solutions, like merging all the quads together, but I would first like to know if the approach with offsetting the center is possible. If it all seems a bit confusing, it's because I'm a little confused myself.

    Read the article

  • ScreenManagement how do I had different controls?

    - by DiasFrancisco
    I saw a question here using DataTemplates with WPF for ScreenManagement, I was curious and I gave it a try I think the ideia is amazing and very clean. Though I'm new to WPF and I read a lot of times that almost everything should be made in XAML and very little should be "coded behind". My questions resolves about using the datatemplate ideia, WHERE should the code that calls the transitions be? where should I define which commands are avaiable in which screens. For example: [ScreenA] Commands: Pressing B - Goes to state B Pressing ESC - Exits [ScreenB] Commands: Pressing A - Goes to state A Pressing SPACE - Exits where do I define the keyEventHandlers? and where do I call the next screen? I'm doing this as an hobby for learning and "if you are learning, better learn it right" :) Thank you for your time.

    Read the article

  • Safe zone implementation in Asteroids

    - by Moaz
    I would like to implement a safe zone for asteroids so that when the ship gets destroyed, it shouldn't be there unless it is safe from other asteroids. I tried to check the distance between each asteroid and the ship, and if it is above threshold, it sets a flag to the ship that's a safe zone, but sometimes it work and sometimes it doesn't. What am I doing wrong? Here's my code: for (list<Asteroid>::iterator itr_astroid = asteroids.begin(); itr_astroid!=asteroids.end(); ) { if(currentShip.m_state == Ship::Ship_Dead) { float distance = itr_astroid->getCenter().distance(Vec2f(getWindowWidth()/2,getWindowHeight()/2)); if( distance>200) { currentShip.m_saveField = true; break; } else { currentShip.m_saveField = false; itr_astroid++; } } else { itr_astroid++; } } At ship's death: if(m_state == Ship_Dead && m_saveField==true) { --m_lifeSpan; } if(m_lifeSpan<=0 && m_saveField == true) { m_state = Ship_Alive; m_Vel = Vec2f(0,0); m_Pos.x = app::getWindowWidth()/2; m_Pos.y = app::getWindowHeight()/2; m_lifeSpan = 100; }

    Read the article

  • Tools for creating assets? [closed]

    - by Agent_9191
    There are similar questions about finding existing resources that are free for use (free sprites/images, music, sound), but I'm interested in creating the resources myself. What tools do you use for asset creation/modification? Please only put one tool per answer. Also try to include the following information: Product Name Link to website Type of assets is can create (2D images, 3D images, audio, etc) OS(s) supported Cost License (if free/open source) General summary

    Read the article

  • Sending changes to a terrain heightmap over UDP

    - by Floomi
    This is a more conceptual, thinking-out-loud question than a technical one. I have a 3D heightmapped terrain as part of a multiplayer RTS that I would like to terraform over a network. The terraforming will be done by units within the gameworld; the player will paint a "target heightmap" that they'd like the current terrain to resemble and units will deform towards that on their own (a la Perimeter). Given my terrain is 257x257 vertices, the naive approach of sending heights when they change will flood the bandwidth very quickly - updating a quarter of the terrain every second will hit ~66kB/s. This is clearly way too much. My next thought was to move to a brush-based system, where you send e.g. the centre of a circle, its radius, and some function defining the influence of the brush from the centre going outwards. But even with reliable UDP the "start" and "stop" messages could still be delayed. I guess I could compare timestamps and compensate for this, although it'd likely mean that clients would deform verts too much on their local simulations and then have to smooth them back to the correct heights. I could also send absolute vert heights in the "start" and "stop" messages to guarantee correct data on the clients. Alternatively I could treat brushes in a similar way to units, and do the standard position + velocity + client-side prediction jazz on them, with the added stipulation that they deform terrain within a certain radius around them. The server could then intermittently do a pass and send (a subset of) recently updated verts to clients as and when there's bandwidth to spare. Any other suggestions, or indications that I'm on the right (or wrong!) track with any of these ideas would be greatly appreciated.

    Read the article

  • circle - rectangle collision in 2D, most efficient way

    - by john smith
    Suppose I have a circle intersecting a rectangle, what is ideally the least cpu intensive way between the two? method A calculate rectangle boundaries loop through all points of the circle and, for each of those, check if inside the rect. method B calculate rectangle boundaries check where the center of the circle is, compared to the rectangle make 9 switch/case statements for the following positions: top, bottom, left, right top left, top right, bottom left, bottom right inside rectangle check only one distance using the circle's radius depending on where the circle happens t be. I know there are other ways that are definitely better than these two, and if could point me a link to them, would be great but, exactly between those two, which one would you consider to be better, regarding both performance and quality/precision? Thanks in advance.

    Read the article

  • 2d Ice movement

    - by Jeremy Clarkson
    I am building an top-down 2d RPG like zelda. I have been trying to implement ice sliding. I have a tile with the slide property. I thought it would be easy to get working. I figured that I would read the slide property, and move the character forward until the slide property no longer exists. So I tried a loop but all it did was stop at the first tile in an infinite loop. I then took the loop out and tried taking direct control of the character to move him along the slide path but I couldn't get it to move. Is there an easy way to do an ice sliding tile based movement in libgdx. I looked for a tutorial but none exist.

    Read the article

  • Zelda-style Top-down RPG. Storing data for each tile type

    - by Delerat
    I'm creating a Zelda-style RPG using Tiled, C#, and MonoGame. When my code parses the .tmx file, it will get a number to associate with each tile type based off of their position in the tile sheet. If I ever need to change my sprite sheet, this number will change for many of the tiles. How can I guarantee that when I parse my .tmx file, I will be able to know exactly what tile type I'm getting so that I can associate the proper data with it(transparency, animated, collision, etc.)?

    Read the article

  • How to translate along Z axis in OpenTK

    - by JeremyJAlpha
    I am playing around with an OpenGL sample application I downloaded for Xamarin-Android. The sample application produces a rotating colored cube I would simply like to edit it so that the rotating cube is translated along the Z axis and disappears into the distance. I modified the code by: adding an cumulative variable to store my Z distance, adding GL.Enable(All.DepthBufferBit) - unsure if I put it in the right place, adding GL.Translate(0.0f, 0.0f, Depth) - before the rotate functions, Result: cube rotates a couple of times then disappears, it seems to be getting clipped out of the frustum. So my question is what is the correct way to use and initialize the Z buffer and get the cube to travel along the Z axis? I am sure I am missing some function calls but am unsure of what they are and where to put them. I apologise in advance as this is very basic stuff but am still learning :P, I would appreciate it if anyone could show me the best way to get the cube to still rotate but to also move along the Z axis. I have commented all my modifications in the code: // This gets called when the drawing surface is ready protected override void OnLoad (EventArgs e) { // this call is optional, and meant to raise delegates // in case any are registered base.OnLoad (e); // UpdateFrame and RenderFrame are called // by the render loop. This is takes effect // when we use 'Run ()', like below UpdateFrame += delegate (object sender, FrameEventArgs args) { // Rotate at a constant speed for (int i = 0; i < 3; i ++) rot [i] += (float) (rateOfRotationPS [i] * args.Time); }; RenderFrame += delegate { RenderCube (); }; GL.Enable(All.DepthBufferBit); //Added by Noob GL.Enable(All.CullFace); GL.ShadeModel(All.Smooth); GL.Hint(All.PerspectiveCorrectionHint, All.Nicest); // Run the render loop Run (30); } void RenderCube () { GL.Viewport(0, 0, viewportWidth, viewportHeight); GL.MatrixMode (All.Projection); GL.LoadIdentity (); if ( viewportWidth > viewportHeight ) { GL.Ortho(-1.5f, 1.5f, 1.0f, -1.0f, -1.0f, 1.0f); } else { GL.Ortho(-1.0f, 1.0f, -1.5f, 1.5f, -1.0f, 1.0f); } GL.MatrixMode (All.Modelview); GL.LoadIdentity (); Depth -= 0.02f; //Added by Noob GL.Translate(0.0f,0.0f,Depth); //Added by Noob GL.Rotate (rot[0], 1.0f, 0.0f, 0.0f); GL.Rotate (rot[1], 0.0f, 1.0f, 0.0f); GL.Rotate (rot[2], 0.0f, 1.0f, 0.0f); GL.ClearColor (0, 0, 0, 1.0f); GL.Clear (ClearBufferMask.ColorBufferBit); GL.VertexPointer(3, All.Float, 0, cube); GL.EnableClientState (All.VertexArray); GL.ColorPointer (4, All.Float, 0, cubeColors); GL.EnableClientState (All.ColorArray); GL.DrawElements(All.Triangles, 36, All.UnsignedByte, triangles); SwapBuffers (); }

    Read the article

  • How to achieve uniform speed of movement in cocos 2d?

    - by Andrey Chernukha
    I'm an absolute beginner in cocos2 , actually i started dealing with it yesterday. What i'm trying to do is moving an image along Bezier curve. This is how i do it - (void)startFly { [self runAction:[CCSequence actions: [CCBezierBy actionWithDuration:timeFlying bezier:[self getPathWithDirection:currentDirection]], [CCCallFuncN actionWithTarget:self selector:@selector(endFly)], nil]]; } My issue is that the image moves not uniformly. In the beginning it's moving slowly and then it accelerates gradually and at the end it's moving really fast. What should i do to get rid of this acceleration?

    Read the article

  • Move projectile in direction the gun is facing

    - by Manderin87
    I am attempting to have a projectile follow the direction a gun is facing. When using the following code I am unable to make the projectile go in the right direction. float speed = .5f; float dX = (float) -Math.cos(Math.toRadians(degree)) * speed; float dY = (float) Math.sin(Math.toRadians(degree)) * speed; Can anyone tell me what I am doing wrong? The degree is the direction the gun is facing in degree's.

    Read the article

  • Algorithm for creating spheres?

    - by Dan the Man
    Does anyone have an algorithm for creating a sphere proceduraly with la amount of latitude lines, lo amount of longitude lines, and a radius of r? I need it to work with Unity, so the vertex positions need to be defined and then, the triangles defined via indexes (more info). EDIT I managed to get the code working in unity. But I think I might have done something wrong. When I turn up the detailLevel, All it does is add more vertices and polygons without moving them around. Did I forget something?

    Read the article

  • Correct order of tasks in each frame for a Physics simulation

    - by Johny
    I'm playing a bit around with 2D physics. I created now some physic blocks which should collide with each other. This works fine "mostly" but sometimes one of the blocks does not react to a collision and i think that's because of my order of tasks done in each frame. At the moment it looks something like this: function GameFrame(){ foreach physicObject do AddVelocityToPosition(); DoCollisionStuff(); // Only for this object not to forget! AddGravitationToVelocity(); end RedrawScene(); } Is this the correct order of tasks in each frame?

    Read the article

  • Trying to figure out SDL pixel manipulation?

    - by NoobScratcher
    Hello so I've found code that plots a pixel in an SDL Screen Surface : void putpixels(int x, int y, int color) { unsigned int *ptr = (unsigned int*)Screen->pixels; int lineoffset = y * (Screen->pitch / 4 ); ptr[lineoffset + x ] = color; } But I have no idea what its actually doing here this is my thoughts. You make an unsigned integer to hold the unsigned int version of pixels then you make another integer to hold the line offset and it equals to multiply by pitch which is then divided by 4 ... Now why am I dividing it by 4 and what is the pitch and why do I multiply it?? Why must I change the lineoffset and add it to the x value then equal it to colors? I'm soo confused.. ;/ I found this function here - http://sol.gfxile.net/gp/ch02.html

    Read the article

< Previous Page | 410 411 412 413 414 415 416 417 418 419 420 421  | Next Page >