Search Results

Search found 13243 results on 530 pages for 'android camera'.

Page 416/530 | < Previous Page | 412 413 414 415 416 417 418 419 420 421 422 423  | Next Page >

  • Google+ Platform Office Hours: Mobile

    Google+ Platform Office Hours: Mobile This week the Google+ Platform Office Hours went mobile. Julia and Chirag as they showed Jenny three ways to share to Google+ from Android. 1:21 - Session agenda 2:20 - Sharing text and an image with the share intent 5:25 - Share with the Google+ mobile application 7:25 - Take and share a photo with the built in camera 12:08 - A question about the various Google messaging services on Android - Send feedback - goo.gl 13:05 - When does Google Play Services come out? From: GoogleDevelopers Views: 1630 29 ratings Time: 14:57 More in Science & Technology

    Read the article

  • The Best Free Programs for Using Virtual Desktops in Windows

    - by Lori Kaufman
    If you often open a lot of applications at once, a virtual desktop program can help you keep all those windows on your desktop organized. A virtual desktop program allows you to put open applications into separate virtual desktops, cutting down on your desktop clutter. We’ve collected links to and information about several free virtual desktop managers you can use to organize your Windows desktop. How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • Recover that Photo, Picture or File You Deleted Accidentally

    - by The Geek
    Have you ever accidentally deleted a photo on your camera, computer, USB drive, or anywhere else? What you might not know is that you can usually restore those pictures—even from your camera’s memory stick. Windows tries to prevent you from making a big mistake by providing the Recycle Bin, where deleted files hang around for a while—but unfortunately it doesn’t work for external USB drives, USB flash drives, memory sticks, or mapped drives. The great news is that this technique also works if you accidentally deleted the photo… from the camera itself. That’s what happened to me, and prompted writing this article. Restore that File or Photo using Recuva The first piece of software that you’ll want to try is called Recuva, and it’s extremely easy to use—just make sure when you are installing it, that you don’t accidentally install that stupid Yahoo! toolbar that nobody wants. Now that you’ve installed the software, and avoided an awful toolbar installation, launch the Recuva wizard and let’s start through the process of recovering those pictures you shouldn’t have deleted. The first step on the wizard page will let you tell Recuva to only search for a specific type of file, which can save a lot of time while searching, and make it easier to find what you are looking for. Next you’ll need to specify where the file was, which will obviously be up to wherever you deleted it from. Since I deleted mine from my camera’s SD card, that’s where I’m looking for it. The next page will ask you whether you want to do a Deep Scan. My recommendation is to not select this for the first scan, because usually the quick scan can find it. You can always go back and run a deep scan a second time. And now, you’ll see all of the pictures deleted from your drive, memory stick, SD card, or wherever you searched. Looks like what happened in Vegas didn’t stay in Vegas after all… If there are a really large number of results, and you know exactly when the file was created or modified, you can switch to the advanced view, where you can sort by the last modified time. This can help speed up the process quite a bit, so you don’t have to look through quite as many files. At this point, you can right-click on any filename, and choose to Recover it, and then save the files elsewhere on your drive. Awesome! Restore that File or Photo using DiskDigger If you don’t have any luck with Recuva, you can always try out DiskDigger, another excellent piece of software. I’ve tested both of these applications very thoroughly, and found that neither of them will always find the same files, so it’s best to have both of them in your toolkit. Note that DiskDigger doesn’t require installation, making it a really great tool to throw on your PC repair Flash drive. Start off by choosing the drive you want to recover from…   Now you can choose whether to do a deep scan, or a really deep scan. Just like with Recuva, you’ll probably want to select the first one first. I’ve also had much better luck with the regular scan, rather than the “dig deeper” one. If you do choose the “dig deeper” one, you’ll be able to select exactly which types of files you are looking for, though again, you should use the regular scan first. Once you’ve come up with the results, you can click on the items on the left-hand side, and see a preview on the right.  You can select one or more files, and choose to restore them. It’s pretty simple! Download DiskDigger from dmitrybrant.com Download Recuva from piriform.com Good luck recovering your deleted files! And keep in mind, DiskDigger is a totally free donationware software from a single, helpful guy… so if his software helps you recover a photo you never thought you’d see again, you might want to think about throwing him a dollar or two. Similar Articles Productive Geek Tips Stupid Geek Tricks: Undo an Accidental Move or Delete With a Keyboard ShortcutRestore Accidentally Deleted Files with RecuvaCustomize Your Welcome Picture Choices in Windows VistaAutomatically Resize Picture Attachments in Outlook 2007Resize Your Photos with Easy Thumbnails TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Icelandic Volcano Webcams Open Multiple Links At One Go NachoFoto Searches Images in Real-time Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi

    Read the article

  • Billboard shader without distortion

    - by Nick Wiggill
    I use the standard approach to billboarding within Unity that is OK, but not ideal: transform.LookAt(camera). The problem is that this introduces distortion toward the edges of the viewport, especially as the field of view angle grows larger. This is unlike the perfect billboarding you'd see in eg. Doom when seeing an enemy from any angle and irrespective of where they are located in screen space. Obviously, there are ways to blit an image directly to the viewport, centred around a single vertex, but I'm not hot on shaders. Does anyone have any samples of this approach (GLSL if possible), or any suggestions as to why it isn't typically done this way (vs. the aforementioned quad transformation method)? EDIT: I was confused, thanks Nathan for the heads up. Of course, Causing the quads to look at the camera does not cause them to be parallel to the view plane -- which is what I need.

    Read the article

  • GLSL Atmospheric Scattering Issue

    - by mtf1200
    I am attempting to use Sean O'Neil's shaders to accomplish atmospheric scattering. For now I am just using SkyFromSpace and GroundFromSpace. The atmosphere works fine but the planet itself is just a giant dark sphere with a white blotch that follows the camera. I think the problem might rest in the "v3Attenuation" variable as when this is removed the sphere is show (albeit without scattering). Here is the vertex shader. Thanks for the time! uniform mat4 g_WorldViewProjectionMatrix; uniform mat4 g_WorldMatrix; uniform vec3 m_v3CameraPos; // The camera's current position uniform vec3 m_v3LightPos; // The direction vector to the light source uniform vec3 m_v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels uniform float m_fCameraHeight; // The camera's current height uniform float m_fCameraHeight2; // fCameraHeight^2 uniform float m_fOuterRadius; // The outer (atmosphere) radius uniform float m_fOuterRadius2; // fOuterRadius^2 uniform float m_fInnerRadius; // The inner (planetary) radius uniform float m_fInnerRadius2; // fInnerRadius^2 uniform float m_fKrESun; // Kr * ESun uniform float m_fKmESun; // Km * ESun uniform float m_fKr4PI; // Kr * 4 * PI uniform float m_fKm4PI; // Km * 4 * PI uniform float m_fScale; // 1 / (fOuterRadius - fInnerRadius) uniform float m_fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found) uniform float m_fScaleOverScaleDepth; // fScale / fScaleDepth attribute vec4 inPosition; vec3 v3ELightPos = vec3(g_WorldMatrix * vec4(m_v3LightPos, 1.0)); vec3 v3ECameraPos= vec3(g_WorldMatrix * vec4(m_v3CameraPos, 1.0)); const int nSamples = 2; const float fSamples = 2.0; varying vec4 color; float scale(float fCos) { float x = 1.0 - fCos; return m_fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { gl_Position = g_WorldViewProjectionMatrix * inPosition; // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 v3Pos = vec3(g_WorldMatrix * inPosition); vec3 v3Ray = v3Pos - v3ECameraPos; float fFar = length(v3Ray); v3Ray /= fFar; // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(m_v3CameraPos, v3Ray); float C = m_fCameraHeight2 - m_fOuterRadius2; float fDet = max(0.0, B*B - 4.0 * C); float fNear = 0.5 * (-B - sqrt(fDet)); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = m_v3CameraPos + v3Ray * fNear; fFar -= fNear; float fDepth = exp((m_fInnerRadius - m_fOuterRadius) / m_fScaleDepth); float fCameraAngle = dot(-v3Ray, v3Pos) / fFar; float fLightAngle = dot(v3ELightPos, v3Pos) / fFar; float fCameraScale = scale(fCameraAngle); float fLightScale = scale(fLightAngle); float fCameraOffset = fDepth*fCameraScale; float fTemp = (fLightScale + fCameraScale); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * m_fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Attenuate; for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(m_fScaleOverScaleDepth * (m_fInnerRadius - fHeight)); float fScatter = fDepth*fTemp - fCameraOffset; v3Attenuate = exp(-fScatter * (m_v3InvWavelength * m_fKr4PI + m_fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } vec3 first = v3FrontColor * (m_v3InvWavelength * m_fKrESun + m_fKmESun); vec3 secondary = v3Attenuate; color = vec4((first + vec3(0.25,0.25,0.25) * secondary), 1.0); // ^^ that color is passed to the frag shader and is used as the gl_FragColor } Here is also an image of the problem image

    Read the article

  • How to Buy an SD Card: Speed Classes, Sizes, and Capacities Explained

    - by Chris Hoffman
    Memory cards are used in digital cameras, music players, smartphones, tablets, and even laptops. But not all SD cards are created equal — there are different speed classes, physical sizes, and capacities to consider. Different devices require different types of SD cards. Here are the differences you’ll need to keep in mind when picking out the right SD card for your device. Speed Class In a nutshell, not all SD cards offer the same speeds. This matters for some tasks more than it matters for others. For example, if you’re a professional photographer taking photos in rapid succession on a DSLR camera saving them in high-resolution RAW format, you’ll want a fast SD card so your camera can save them as fast as possible. A fast SD card is also important if you want to record high-resolution video and save it directly to the SD card. If you’re just taking a few photos on a typical consumer camera or you’re just using an SD card to store some media files on your smartphone, the speed isn’t as important. Manufacturers use “speed classes” to measure an SD card’s speed. The SD Association that defines the SD card standard doesn’t actually define the exact speeds associated with these classes, but they do provide guidelines. There are four different speed classes — 10, 8, 4, and 2. 10 is the fastest, while 2 is the slowest. Class 2 is suitable for standard definition video recording, while classes 4 and 6 are suitable for high-definition video recording. Class 10 is suitable for “full HD video recording” and “HD still consecutive recording.” There are also two Ultra High Speed (UHS) speed classes, but they’re more expensive and are designed for professional use. UHS cards are designed for devices that support UHS. Here are the associated logos, in order from slowest to fastest:       You’ll probably be okay with a class 4 or 6 card for typical use in a digital camera, smartphone, or tablet. Class 10 cards are ideal if you’re shooting high-resolution videos or RAW photos. Class 2 cards are a bit on the slow side these days, so you may want to avoid them for all but the cheapest digital cameras. Even a cheap smartphone can record HD video, after all. An SD card’s speed class is identified on the SD card itself. You’ll also see the speed class on the online store listing or on the card’s packaging when purchasing it. For example, in the below photo, the middle SD card is speed class 4, while the two other cards are speed class 6. If you see no speed class symbol, you have a class 0 SD card. These cards were designed and produced before the speed class rating system was introduced. They may be slower than even a class 2 card. Physical Size Different devices use different sizes of SD cards. You’ll find standard-size CD cards, miniSD cards, and microSD cards. Standard SD cards are the largest, although they’re still very small. They measure 32x24x2.1 mm and weigh just two grams. Most consumer digital cameras for sale today still use standard SD cards. They have the standard “cut corner”  design. miniSD cards are smaller than standard SD cards, measuring 21.5x20x1.4 mm and weighing about 0.8 grams. This is the least common size today. miniSD cards were designed to be especially small for mobile phones, but we now have a smaller size. microSD cards are the smallest size of SD card, measuring 15x11x1 mm and weighing just 0.25 grams. These cards are used in most cell phones and smartphones that support SD cards. They’re also used in many other devices, such as tablets. SD cards will only fit into marching slots. You can’t plug a microSD card into a standard SD card slot — it won’t fit. However, you can purchase an adapter that allows you to plug a smaller SD card into a larger SD card’s form and fit it into the appropriate slot. Capacity Like USB flash drives, hard drives, solid-state drives, and other storage media, different SD cards can have different amounts of storage. But the differences between SD card capacities don’t stop there. Standard SDSC (SD) cards are 1 MB to 2 GB in size, or perhaps 4 GB in size — although 4 GB is non-standard. The SDHC standard was created later, and allows cards 2 GB to 32 GB in size. SDXC is a more recent standard that allows cards 32 GB to 2 TB in size. You’ll need a device that supports SDHC or SDXC cards to use them. At this point, the vast majority of devices should support SDHC. In fact, the SD cards you have are probably SDHC cards. SDXC is newer and less common. When buying an SD card, you’ll need to buy the right speed class, size, and capacity for your needs. Be sure to check what your device supports and consider what speed and capacity you’ll actually need. Image Credit: Ryosuke SEKIDO on Flickr, Clive Darra on Flickr, Steven Depolo on Flickr

    Read the article

  • Billboarding + aligning with velocity direction

    - by roxlu
    I'm working on a particle system where I'm orientating the billboard using the inverted orientation matrix of my camera. This works quite well and my quad are rotated correctly towards the camera. But, now I want to to rotate the quads in such a way that they point towards the direction they are going to. In 2D this can be done by normalizing the velocity vector and using that vector for a rotation around the Z-axis (where vel.x = cos(a) and vel.y = sin(a)). But how does this work in 3D? Thanks roxlu

    Read the article

  • Interleaving Arrays in OpenGL

    - by Benjamin Danger Johnson
    In my pursuit to write code that matches todays OpenGL standards I have found that I am completely clueless about interleaving arrays. I've tried and debugged just about everywhere I can think of but I can't get my model to render using interleaved arrays (It worked when it was configuered to use multiple arrays) Now I know that all the data is properly being parsed from an obj file and information is being copied properly copied into the Vertex object array, but I still can't seem to get anything to render. Below is the code for initializing a model and drawing it (along with the Vertex struct for reference.) Vertex: struct Vertex { glm::vec3 position; glm::vec3 normal; glm::vec2 uv; glm::vec3 tangent; glm::vec3 bitangent; }; Model Constructor: Model::Model(const char* filename) { bool result = loadObj(filename, vertices, indices); glGenVertexArrays(1, &vertexArrayID); glBindVertexArray(vertexArrayID); glGenBuffers(1, &vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW); glGenBuffers(1, &elementbuffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW); } Draw Model: Model::Draw(ICamera camera) { GLuint matrixID = glGetUniformLocation(programID, "mvp"); GLuint positionID = glGetAttribLocation(programID, "position_modelspace"); GLuint uvID = glGetAttribLocation(programID, "uv"); GLuint normalID = glGetAttribLocation(programID, "normal_modelspace"); GLuint tangentID = glGetAttribLocation(programID, "tangent_modelspace"); GLuint bitangentID = glGetAttribLocation(programID, "bitangent_modelspace"); glm::mat4 projection = camera->GetProjectionMatrix(); glm::mat4 view = camera->GetViewMatrix(); glm::mat4 model = glm::mat4(1.0f); glm::mat4 mvp = projection * view * model; glUniformMatrix4fv(matrixID, 1, GL_FALSE, &mvp[0][0]); glBindVertexArray(vertexArrayID); glEnableVertexAttribArray(positionID); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glVertexAttribPointer(positionID, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), &vertices[0].position); glEnableVertexAttribArray(uvID); glVertexAttribPointer(uvID, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), &vertices[0].uv); glEnableVertexAttribArray(normalID); glVertexAttribPointer(normalID, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), &vertices[0].normal); glEnableVertexAttribArray(tangentID); glVertexAttribPointer(tangentID, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), &vertices[0].tangent); glEnableVertexAttribArray(bitangentID); glVertexAttribPointer(bitangentID, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), &vertices[0].bitangent); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer); glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_SHORT, (void*)0); glDisableVertexAttribArray(positionID); glDisableVertexAttribArray(uvID); glDisableVertexAttribArray(normalID); glDisableVertexAttribArray(tangentID); glDisableVertexAttribArray(bitangentID); }

    Read the article

  • How do you stop OgreBullet Capsule from falling over?

    - by Nathan Baggs
    I've just started implementing bullet into my Ogre project. I followed the install instructions here: http://www.ogre3d.org/tikiwiki/OgreBullet+Tutorial+1 And the rest if the tutorial here: http://www.ogre3d.org/tikiwiki/OgreBullet+Tutorial+2 I got that to work fine however now I wanted to extend it to a handle a first person camera. I created a CapsuleShape and a Rigid Body (like the tutorial did for the boxes) however when I run the game the capsule falls over and rolls around on the floor, causing the camera swing wildly around. I need a way to fix the capsule to always stay upright, but I have no idea how Below is the code I'm using. (part of) Header File OgreBulletDynamics::DynamicsWorld *mWorld; // OgreBullet World OgreBulletCollisions::DebugDrawer *debugDrawer; std::deque<OgreBulletDynamics::RigidBody *> mBodies; std::deque<OgreBulletCollisions::CollisionShape *> mShapes; OgreBulletCollisions::CollisionShape *character; OgreBulletDynamics::RigidBody *characterBody; Ogre::SceneNode *charNode; Ogre::Camera* mCamera; Ogre::SceneManager* mSceneMgr; Ogre::RenderWindow* mWindow; main file bool MinimalOgre::go(void) { ... mCamera = mSceneMgr->createCamera("PlayerCam"); mCamera->setPosition(Vector3(0,0,0)); mCamera->lookAt(Vector3(0,0,300)); mCamera->setNearClipDistance(5); mCameraMan = new OgreBites::SdkCameraMan(mCamera); OgreBulletCollisions::CollisionShape *Shape; Shape = new OgreBulletCollisions::StaticPlaneCollisionShape(Vector3(0,1,0), 0); // (normal vector, distance) OgreBulletDynamics::RigidBody *defaultPlaneBody = new OgreBulletDynamics::RigidBody( "BasePlane", mWorld); defaultPlaneBody->setStaticShape(Shape, 0.1, 0.8); // (shape, restitution, friction) // push the created objects to the deques mShapes.push_back(Shape); mBodies.push_back(defaultPlaneBody); character = new OgreBulletCollisions::CapsuleCollisionShape(1.0f, 1.0f, Vector3(0, 1, 0)); charNode = mSceneMgr->getRootSceneNode()->createChildSceneNode(); charNode->attachObject(mCamera); charNode->setPosition(mCamera->getPosition()); characterBody = new OgreBulletDynamics::RigidBody("character", mWorld); characterBody->setShape( charNode, character, 0.0f, // dynamic body restitution 10.0f, // dynamic body friction 10.0f, // dynamic bodymass Vector3(0,0,0), Quaternion(0, 0, 1, 0)); mShapes.push_back(character); mBodies.push_back(characterBody); ... }

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • 3d transformation of game world keeping gameplay 2d - COCOS2D 2.0

    - by samfisher
    Using: COCOS2D + iOS. I want to rotate the game world, may be loading another .tmx file for another dimensions when user want to switch dimension. the effect what I am looking for is something like this:CLICK HERE What I have thought of till now: rotating CCCamera will be mandatory. Question: How will I have the other part of the level in place while the camera rotates/rotating? I can load a CCSprite and rotate it accordingly to the 3rd dimension. phew..!! Question: When the camera and world is rotated, will the player controls work properly.. I think not...? I think a better option would be to checkout with COCOS3D... there I could implement 3d world... right?? Question: Not sure how well 2d dynamics will work there as I want to user Box2d as physics engine.. could anyone provide suggestions? Regards, Sam

    Read the article

  • Desktop Fun: Starscapes Wallpaper Collection Series 2

    - by Asian Angel
    New worlds filled with alien ruins, covered in perpetual twilight, ripe with agricultural harvests, and more are waiting for intrepid explorers like you to explore them. Journey to the far ends of the cosmos and experience new wonders on your desktop with the second in our series of Starscapes Wallpaper collections. How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • Optical Illusion Freezes Water In Place [Video]

    - by Jason Fitzpatrick
    This clever optical illusion uses sound frequency and a digital camera to “freeze” water in time and space. YouTube user MrBibio explains the hack: Creating the illusion of a static flow of water using sound. Of course this isn’t my idea and plenty more refined examples already exist. I tried this same experiment years ago but using a strobe light, but it’s harsh on the eyes after a while and hard to video successfully. It only dawned on me shortly before making this that for video purposes, no strobe light is required. This is because the frame rate and shutter of the camera is doing a similar job to the strobe. The speaker-as-frequency-generator model is definitely easier on the eyes than similar experiments that rely on high-speed strobes. How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • 2D OBB collision detection, resolving collisions?

    - by Milo
    I currently use OBBs and I have a vehicle that is a rigid body and some buildings. Here is my update() private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); vehicle.update(16.6666f / 1000.0f); ArrayList<Building> buildings = city.getBuildings(); for(Building b : buildings) { if(vehicle.getRect().overlaps(b.getRect())) { vehicle.update(-17.0f / 1000.0f); break; } } } The collision detection works well. What doesn't is how they are dealt with. My goal is simple. If the vehicle hits a building, it should stop, and never go into the building. When I apply negative torque to reverse the car should not feel buggy and move away from the building. I don't want this to look buggy. This is my rigid body class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setCenter(c.x, c.y); forces = new Vector2D(0,0); //clear forces //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { Matrix mat = new Matrix(); float[] Vector2Ds = new float[2]; Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { Matrix mat = new Matrix(); float[] Vectors = new float[2]; Vectors[0] = world.x; Vectors[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vectors); return new Vector2D(Vectors[0], Vectors[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { Vector2D tangent = new Vector2D(-worldOffset.y, worldOffset.x); return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces = Vector2D.add(forces ,worldForce); //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } } Essentially, when any rigid body hits a building it should exhibit the same behavior. How is collision solving usually done? Thanks

    Read the article

  • Collision detection - Smooth wall sliding, no bounce effect

    - by Joey
    I'm working on a basic collision detection system that provides point - OBB collision detection. I have around 200 cubes in my environment and I check (for now) each of them in turn and see if it collides. If it does I return the colliding face's normal, save the old player position and do some trigonometry to return a new player position for my wall sliding. edit I'll define my meaning of wall sliding: If a player walks in a vertical slope and has a slight horizontal rotation to the left or the right and keeps walking forward in the wall the player should slide a little to the right/left while continually walking towards the wall till he left the wall. Thus, sliding along the wall. Everything works fine and with multiple objects as well but I still have one problem I can't seem to figure out: smooth wall sliding. In my current implementation sliding along the walls make my player bounce like a mad man (especially noticable with gravity on and moving forward). I have a velocity/direction vector, a normal vector from the collided plane and an old and new player position. First I negate the normal vector and get my new velocity vector by substracting the inverted normal from my direction vector (which is the vector to slide along the wall) and I add this vector to my new Player position and recalculate the direction vector (in case I have multiple collisions). I know I am missing some step but I can't seem to figure it out. Here is my code for the collision detection (run every frame): Vector direction; Vector newPos(camera.GetOriginX(), camera.GetOriginY(), camera.GetOriginZ()); direction = newPos - oldPos; // Direction vector // Check for collision with new position for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { // Get inverse normal (direction STRAIGHT INTO wall) Vector invNormal = normal.Negative(); Vector wallDir = direction - invNormal; // We know INTO wall, and DIRECTION to wall. Substract these and you got slide WALL direction newPos = oldPos + wallDir; direction = newPos - oldPos; } } Any help would be greatly appreciated! FIX I eventually got things up and running how they should thanks to Krazy, I'll post the updated code listing in case someone else comes upon this problem! for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { Vector invNormal = normal.Negative(); invNormal = invNormal * (direction * normal).Length(); // Change normal to direction's length and normal's axis Vector wallDir = direction - invNormal; newPos = oldPos + wallDir; direction = newPos - oldPos; } }

    Read the article

  • How to use lemodev highscore plugin for unity?

    - by user3889649
    I am trying to add a server-sided highscore system to my game in unity. I have downloaded the free lemodev highscore plugin from the asset store but I cant figure out how to use it. I know where to put my server info and so on but other what are you supposed to do ? I added the main camera prefab that came with the package to my scene but other than adding an additional camera it did precisely nothing ( at least it seems that way ). Could anyone look into it and tell me how to use it ? The developer's website seems to have no information on the subject.

    Read the article

  • The Making of Middle Earth [Video]

    - by Jason Fitzpatrick
    The Lord of the Rings movie franchise was filmed in stunning New Zealand locations. The Hobbit continues that tradition; check out this mini-documentary to see the scouting process and take a sneak peek at the film. The Making of Middle Earth [via Mashable] How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • The How-To Geek Guide to Audio Editing: Basic Noise Removal

    - by YatriTrivedi
    Laying down some vocals?  Starting your own podcast?  Here’s how to remove noise from a messy audio track in Audacity quickly and easily. This is the second part in our series covering how to edit audio and create music using your PC. Be sure to check out the first part in the series, where we covered the basics of using Audacity, and then check out how to add MP3 format support as well Latest Features How-To Geek ETC HTG Projects: How to Create Your Own Custom Papercraft Toy How to Combine Rescue Disks to Create the Ultimate Windows Repair Disk What is Camera Raw, and Why Would a Professional Prefer it to JPG? The How-To Geek Guide to Audio Editing: The Basics How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 Take Better Panoramic Photos with Any Camera Make Creating App Tabs Easier in Firefox Peach and Zelda Discuss the Benefits and Perks of Being Kidnapped [Video] The Life of Gadgets in Price and Popularity [Infographic] Apture Highlights Turns Your Cursor into a Search Tool Add Classic Sci-Fi Goodness to Your Desktop with the Matrix Theme for Windows 7

    Read the article

  • A Tribute to Curiosity [Video]

    - by Jason Fitzpatrick
    This beautifully put together video tribute to the Mars Curiosity Rover includes touching interviews with many of the men and women who dedicated themselves to building and deploying it. [via Geeks Are Sexy] HTG Explains: Does Your Android Phone Need an Antivirus? How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder?

    Read the article

  • Rotate view matrix based on touch coordinates

    - by user1055947
    I'm working on an Android game where I need to rotate the camera around the origin based on the user dragging their finger. My view matrix has initial position of sitting on the negative z and facing origin. I have succeeded in moving the camera through rotation left or right, up or down based on the user dragging the finger, but my problem is obviously that after I drag my finger up/down and rotate say 90 degrees so my intial position of -z is now +y and still facing origin, if I drag my finger left/right I want to rotate from +y to +x, but what happens is it rotates around the pole +y. This is to be expected as I am mapping 2D touch drag coords to 3D space, but I dont know where to start trying to do what I want. Perhaps someone can point me in the right direction, I've been googling for a while now but I don't know what I want to do is called! Edit __ What I was looking for is called an ArcBall, google it for lots of info on it.

    Read the article

  • The Fellowship of the Ringwraiths [Video]

    - by Asian Angel
    While we all know what happened during the events of the first LOTR movie for the Fellowship, there were some unanswered questions about the Ringwraiths and their activities. Here finally is your opportunity to see what really happened… Fellowship of the Ringwraiths [via Neatorama] How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • Desktop Fun: Winter 2012 Wallpaper Collection [Bonus Size]

    - by Asian Angel
    The frostiest time of year is here once again and we have the perfect collection of snowy backgrounds for your favorite computer. Turn your desktop into a winter wonderland with our Winter 2012 Wallpaper collection. HTG Explains: Does Your Android Phone Need an Antivirus? How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder?

    Read the article

  • Making XNA Play Nice With 3DS Max, Boundiing Spheres

    - by Jason R. Mick
    I'm using 3DS Max 2010 with the KW x-porter plugin, which outputs a .X file (just downloaded the very latest version). Been getting some odd results: http://www.picvalley.net/u/2930/2265240220441812321333990933PAStFeSONWQslOrMQC5q.PNG Looks like the culling is screwed up. Note, that models I make in Milkshape don't seem to be having these problems. I've also tried to export an FBX file from 3DS Max 2010 and have been getting similar results. What are your suggestions in terms of exporting *.3DS models to a workable XNA form? What tools do you use?. To be clear, the model in question has none of these defects when viewed from similar angles in 3DS Max 2010. http://www.picvalley.net/u/2563/151728957814855401111333991302mSvEJ03Zv22GwHFgIhiV.PNG Any ideas on this oddity would also be appreciated! Edit 1 -- Add'l issue Forgot to mention, that the model otherwise seems alright, but that rotation seems to double -- in other words, when I scroll my camera view left to right, the model (whose draw I give the camera for the view and perspective matrices w/ BasicEffect seems to rotate twice as much as models I draw natively in XNA

    Read the article

  • Pre order Nokia Lumia 900 from AT&T for $99.99 and Walmart for $49.99

    - by Gopinath
    Nokia Lumia 900, the flagship Windows Phone OS smartphone from Nokia is available for pre-order from AT&T Stores. With a two year contract, you can grab the phone by paying $99.99 online and they are expected to ship a day or two earlier than their official launch in AT&T stores across US. Walmart in an aggressive move, is selling Nokia Lumia 900 for just $49.99 with a two year contract. So you save $50 more. Earlier in January of this year, Nokia unveiled its plans of Lumia 900 launch exclusively for American market. Nokia Lumia 900 features a 4.3 inch Clear Black display, sporting a resolution of 800 x 480 pixels, 1.4 GHz Snapdragon processor, Windows Phone 7.5 (Mango) OS, 8 megapixel rear camera with f2.2/28mm Carl Zeiss lens and dual LED flash, auto-focus and HD (720p) video recording, 1 megapixel front-facing camera for video calls, 512 MB RAM, 16 GB internal memory, 14.5 GB user memory and more. Pre-order Nokia Lumia 900 from AT&T and Walmart

    Read the article

  • FM Radio without Internet?

    - by WitchCraft
    Question: Is it possible to use FM radio WITHOUT internet connection or special devices ? On my Android phone, I can plug in the headphones, which are in turn used as antenna. Since Android is Linux and Ubuntu is also Linux, it should be possible to do this on a plain old Ubuntu notebook (13.04), too. Is it ? If yes, which application can I use for FM-Radio ? Note: I repeat: Live FM-Radio WITHOUT internet connection at the time of listening :)

    Read the article

< Previous Page | 412 413 414 415 416 417 418 419 420 421 422 423  | Next Page >