Search Results

Search found 7490 results on 300 pages for 'algorithm analysis'.

Page 42/300 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Applying iterative algorithm to a set of rows from database

    - by Corvin
    Hello, this question may seem too basic to some, but please bear with be, it's been a while since I dealt with decent database programming. I have an algorithm that I need to program in PHP/MySQL to work on a website. It performs some computations iteratively on an array of objects (it ranks the objects based on their properties). In each iteration the algorithm runs through all collection a couple of times, accessing various data from different places of the whole collection. The algorithm needs several hundred iterations to complete. The array comes from a database. The straightforward solution that I see is to take the results of a database query and create an object for each row of the query, put the objects to an array and pass the array to my algorithm. However, I'm concerned with efficacy of such solution when I have to work with an array of several thousand of items because what I do is essentially mirror the results of a query to memory. On the other hand, making database query a couple of times on each iteration of the algorithm also seems wrong. So, my question is - what is the correct architectural solution for a problem like this? Is it OK to mirror the query results to memory? If not, which is the best way to work with query results in such an algorithm? Thanks!

    Read the article

  • Importing Analysis Services 2008 KPI's in a PerformancePoint scorecard

    - by Colin
    I am trying to import a KPI from Analysis Services into a PerformancePoint Scorecard, and when I do, The Dashboard Designer throws an error: An unknown error has occurred. If the problem persists contact an administrator. There may be additional information in the server application event log. When I examine the event log, I find the following exception: System.IO.FileNotFoundException: Could not load file or assembly 'Microsoft.AnalysisServices, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91' or one of its dependencies. The system cannot find the file specified. File name: 'Microsoft.AnalysisServices, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91' at Microsoft.PerformancePoint.Scorecards.Server.ImportExportHelper.GetImportableAsKpis(IBpm pmService, DataSource asDataSource) at Microsoft.PerformancePoint.Scorecards.Server.PmServer.GetImportableAsKpis(DataSource dataSource) I have found this thread which recommends reinstalling Microsoft ADOMD.NET but the installer for that won't run because the server already has a newer version of the product (The server is running SQL Server Analysis Services 2008 which includes Microsoft.AnalysisServices.AdomdClient.dll version 9.0.3042.0) Anyone have any ideas (short of finding the DLL myself and manually installing it to the GAC)?

    Read the article

  • Java library for HTML analysis

    - by Raj
    Hi, (I've seen similar questions, but I think none of them cater to my specific needs, hence...) I would like to know if there is a Java library for analysis of real-world (read: incomplete, ill-formed) HTML. By analysis, I mean things like: figuring out the most prominent color in an HTML chunk changing that color to some other color (hence, has to support modification of the HTML as well) pruning out unwanted tags fixing up the HTML to result in a well formed HTML snippet Parts of the last two are done by libraries such as Jericho, and jTidy. 'Plugins' on top of these would be great. Thanks in advance!

    Read the article

  • Exclude complete namespace from FxCop code analysis?

    - by hangy
    Is it possible to exclude a complete namespace from all FxCop analysis while still analyzing the rest of the assembly using the SuppressMessageAttribute? In my current case, I have a bunch of classes generated by LINQ to SQL which cause a lot of FxCop issues, and obviously, I will not modify all of those to match FxCop standards, as a lot of those modifications would be gone if I re-generated the classes. I know that FxCop has a project option to suppress analysis on generated code, but it does not seem to recognize the entity and context classes created by LINQ 2 SQL as generated code.

    Read the article

  • SQL Server - Schema/Code Analysis Rules - What would your rules include?

    - by Randy Minder
    We're using Visual Studio Database Edition (DBPro) to manage our schema. This is a great tool that, among the many things it can do, can analyse our schema and T-SQL code based on rules (much like what FxCop does with C# code), and flag certain things as warnings and errors. Some example rules might be that every table must have a primary key, no underscore's in column names, every stored procedure must have comments etc. The number of rules built into DBPro is fairly small, and a bit odd. Fortunately DBPro has an API that allows the developer to create their own. I'm curious as to the types of rules you and your DB team would create (both schema rules and T-SQL rules). Looking at some of your rules might help us decide what we should consider. Thanks - Randy

    Read the article

  • Thoughts on Static Code Analysis Warning CA1806 for TryParse calls

    - by Tim
    I was wondering what people's thoughts were on the CA1806 (DoNotIgnoreMethodResults) Static Code Analysis warning when using FxCop. I have several cases where I use Int32.TryParse to pull in internal configuration information that was saved in a file. I end up with a lot of code that looks like: Int32.TryParse(someString, NumberStyles.Integer, CultureInfo.InvariantCulture, out intResult); MSDN says the default result of intResult is zero if something fails, which is exactly what I want. Unfortunately, this code will trigger CA1806 when performing static code analysis. It seems like a lot of redundant/useless code to fix the errors with something like the following: bool success = Int32.TryParse(someString, NumberStyles.Integer, CultureInfo.InvariantCulture, out intResult); if (!success) { intResult= 0; } Should I suppress this message or bite the bullet and add all this redundant error checking? Or maybe someone has a better idea for handling a case like this? Thanks!

    Read the article

  • Add title to meta analysis forest plot

    - by Timothy Alston
    I am meta-analysing some studies and drawing a forest plot for my results. However I can`t seem to get the forest plot to display the title. An example of my code is: require(meta) parameter1<-metaprop(sm="PLOGIT", event=c(4,16,3,2,10,1,0,2), n=c(90,402,89,29,153,86,21,48), level = 0.95, studlab=c("study 1", "study 2", "study 3", "study 4", "study 5", "study 6", "study 7", "study 8"), title="meta analysis 1") forest(parameter1) When it produces the forest plot, the title "meta analysis 1" is missing. How can I add this in? Thanks in advance, Timothy

    Read the article

  • MS Analysis Services OLAP API for Python

    - by Kaloyan Todorov
    I am looking for a way to connect to a MS Analysis Services OLAP cube, run MDX queries, and pull the results into Python. In other words, exactly what Excel does. Is there a solution in Python that would let me do that? Someone with a similar question going pointed to Django's ORM. As much as I like the framework, this is not what I am looking for. I am also not looking for a way to pull rows and aggregate them -- that's what Analysis Services is for in the first place. Ideas? Thanks.

    Read the article

  • How does the Amazon Recommendation feature work?

    - by Rachel
    What technology goes in behind the screens of Amazon recommendation technology? I believe that Amazon recommendation is currently the best in the market, but how do they provide us with such relevant recommendations? Recently, we have been involved with similar recommendation kind of project, but would surely like to know about the in and outs of the Amazon recommendation technology from a technical standpoint. Any inputs would be highly appreciated. Update: This patent explains how personalized recommendations are done but it is not very technical, and so it would be really nice if some insights could be provided. From the comments of Dave, Affinity Analysis forms the basis for such kind of Recommendation Engines. Also here are some good reads on the Topic Demystifying Market Basket Analysis Market Basket Analysis Affinity Analysis Suggested Reading: Data Mining: Concepts and Technique

    Read the article

  • Data structure for pattern matching.

    - by alvonellos
    Let's say you have an input file with many entries like these: date, ticker, open, high, low, close, <and some other values> And you want to execute a pattern matching routine on the entries(rows) in that file, using a candlestick pattern, for example. (See, Doji) And that pattern can appear on any uniform time interval (let t = 1s, 5s, 10s, 1d, 7d, 2w, 2y, and so on...). Say a pattern matching routine can take an arbitrary number of rows to perform an analysis and contain an arbitrary number of subpatterns. In other words, some patterns may require 4 entries to operate on. Say also that the routine (may) later have to find and classify extrema (local and global maxima and minima as well as inflection points) for the ticker over a closed interval, for example, you could say that a cubic function (x^3) has the extrema on the interval [-1, 1]. (See link) What would be the most natural choice in terms of a data structure? What about an interface that conforms a Ticker object containing one row of data to a collection of Ticker so that an arbitrary pattern can be applied to the data. What's the first thing that comes to mind? I chose a doubly-linked circular linked list that has the following methods: push_front() push_back() pop_front() pop_back() [] //overloaded, can be used with negative parameters But that data structure seems very clumsy, since so much pushing and popping is going on, I have to make a deep copy of the data structure before running an analysis on it. So, I don't know if I made my question very clear -- but the main points are: What kind of data structures should be considered when analyzing sequential data points to conform to a pattern that does NOT require random access? What kind of data structures should be considered when classifying extrema of a set of data points?

    Read the article

  • Common request: export #Tabular model and data to #PowerPivot

    - by Marco Russo (SQLBI)
    I received this request in many courses, messages and also forum discussions: having an Analysis Services Tabular model, it would be nice being able to extract a correspondent PowerPivot data model. In order of priority, here are the specific feature people (including me) would like to see: Create an empty PowerPivot workbook with the same data model of a Tabular model Change the connections of the tables in the PowerPivot workbook extracting data from the Tabular data model Every table should have an EVALUATE ‘TableName’ query in DAX Apply a filter to data extracted from every table For example, you might want to extract all data for a single country or year or customer group Using the same technique of applying filter used for role based security would be nice Expose an API to automate the process of creating a PowerPivot workbook Use case: prepare one workbook for every employee containing only its data, that he can use offline Common request for salespeople who want a mini-BI tool to use in front of the customer/lead/supplier, regardless of a connection available This feature would increase the adoption of PowerPivot and Tabular (and, therefore, Business Intelligence licenses instead of Standard), and would probably raise the sales of Office 2013 / Office 365 driven by ISV, who are the companies who requests this feature more. If Microsoft would do this, it would be acceptable it only works on Office 2013. But if a third-party will do that, it will make sense (for their revenues) to cover both Excel 2010 and Excel 2013. Another important reason for this feature is that the “Offline cube” feature that you have in Excel is not available when your PivotTable is connected to a Tabular model, but it can only be used when you connect to Analysis Services Multidimensional. If you think this is an important features, you can vote this Connect item.

    Read the article

  • Parallelize incremental processing in Tabular #ssas #tabular

    - by Marco Russo (SQLBI)
    I recently came in a problem trying to improve the parallelism of Tabular processing. As you know, multiple tables can be processed in parallel, whereas the processing of several partitions within the same table cannot be parallelized. When you perform an incremental update by adding only new rows to existing table, what you really do is adding rows to a partition, so adding rows to many tables means adding rows to several partitions. The particular condition you have in this case is that every partition in which you add rows belongs to a different table. Adding rows implies using the ProcessAdd command; its QueryBinding parameter specifies a SQL syntax to read new rows, otherwise the original query specified for the partition will be used, and it could generate duplicated data if you don’t have a dynamic behavior on the SQL side. If you create the required XMLA code manually, you will find that the QueryBinding node that should be part of the ProcessAdd command has to be moved out from ProcessAdd in case you are using a Batch command with more than one Process command (which is the reason why you want to use a single batch: run multiple process operations in parallel!). If you use AMO (Analysis Management Objects) you will find that this combination is not supported, even if you don’t have a syntax error compiling the code, but you might obtain this error at execution time: The syntax for the 'Process' command is incorrect. The 'Bindings' keyword cannot appear under a 'Process' command if the 'Process' command is a part of a 'Batch' command and there are more than one 'Process' commands in the 'Batch' or the 'Batch' command contains any out of line related information. In this case, the 'Bindings' keyword should be a part of the 'Batch' command only. If this is happening to you, the best solution I’ve found is manipulating the XMLA code generated by AMO moving the Binding nodes in the right place. A more detailed description of the issue and the code required to send a correct XMLA batch to Analysis Services is available in my article Parallelize ProcessAdd with AMO. By the way, the same technique (and code) can be used also if you have the same problem in a Multidimensional model.

    Read the article

  • Creating ground in a 2D runner game

    - by user739711
    It may be a repetitive uestion but I could not find any specific answer to my query How to create A slanted/curved ground in a 2d runner game. The user will see side view like the old game "Mario" If I use tiled based map I can have only rectangular objects. What is the best way to create tilted ground? Should I use tiled based map, or should I define corner points in the map and create the ground programatically? And what are the difficulties in creating curved ground.

    Read the article

  • Is Google Analytics Part Of Google's Search Engine Algorithm

    - by ub3rst4r
    I was wondering if anyone knows if Google uses the data it receives from Google Analytics to help determine a websites SERP (Search Engine Rank Position). For example, if my website is getting 1000 users visiting my website from Canada and only 100 users visiting my website from the USA, does that mean my website will be ranked higher on Google.ca and lower on Google.com? And, if a website is using Google Analytics will it be ranked higher for the organic search engine keywords?

    Read the article

  • How could you parallelise a 2D boids simulation

    - by Sycren
    How could you program a 2D boids simulation in such a way that it could use processing power from different sources (clusters, gpu). In the above example, the non-coloured particles move around until they cluster (yellow) and stop moving. The problem is that all the entities could potentially interact with each other although an entity in the top left is unlikely to interact with one in the bottom right. If the domain was split into different segments, it may speed the whole thing up, But if an entity wanted to cross into another segment there may be problems. At the moment this simulation works with 5000 entities with a good frame rate, I would like to try this with millions if possible. Would it be possible to use quad trees to further optimise this? Any other suggestions?

    Read the article

  • Map Generation Algorithms for Minecraft Clone

    - by Danjen
    I'm making a Minecraft clone for the sake of it (with some inspriation from Dwarf Fortress) and had a few questions about the way the world generation is handled. Things I want it to cover: Biomes such as hills, mountains, forests, etc. Caves/caverns/tunnels Procedural (so it stretches to infinity... is wrap-around a possibility?) Breaking the map into smaller chunks Moddable (ie, new terrain types) Multiplayer compatible In particular, I've seen things such as Perlin Noise, Heightmaps, and Marching Cubes thrown around. These are like different tools to use, but I don't know when or why I would use them. Are there any other techniques that are useful for map generation? I realize this is borderline subjective and open-ended, but I am looking for some more insight into the processes involved.

    Read the article

  • Find Nearest Object

    - by ultifinitus
    I have a fairly sizable game engine created, and I'm adding some needed features, such as this, how do I find the nearest object from a list of points? In this case, I could simply use the Pythagorean theorem to find the distance, and check the results. I know I can't simply add x and y, because that's the distance to the object, if you only took right angle turns. However I'm wondering if there's something else I could do? I also have a collision system, where essentially I turn objects into smaller objects on a smaller grid, kind of like a minimap, and only if objects exist in the same gridspace do I check for collisions, I could do the same thing, only make the gridspace larger to check for closeness. (rather than checking every. single. object) however that would take additional setup in my base class and clutter up the already cluttered object. TL;DR Question: Is there something efficient and accurate that I can use to detect which object is closest, based on a list of points and sizes?

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Is there a significant hit to a non .com TLDs exact match domain (EMD) names after Google's Panda update?

    - by ElHaix
    In this article, there is a good overview of exact match domain names and how they affect SEO after Google's Panda update. The last graph shows the Non-com EMD Influence, where it is suggested that a .com tld will perform better than a non-.com one. However, let's consider local search. In the US, .com's work great. However, let's say you're in Canada, and you have a .ca EMD, all with local, Canadian results. Would the expectation be that the .com equivalent still perform better? As a user I would expect the .ca results to be more relevant, and I'm wondering if anyone else has experience with this?

    Read the article

  • Best Upper Bound & Best Lower Bound of an Algorithm

    - by Nayefc
    I am studying for a final exam and I came past a question I had on an earlier test. The questions asks us to find the minimum value in an unsorted array of integers. We must provide the best upper bound and the best lower bound that you can for the problem in the worst case. First, in such an example, the upper and lower bound are the same (hence, we can talk in terms of Big-Theta). In the worst case, we would have to go through the whole list as the minimum value would be at the end of the list. Therefore, the answer is Big-Theta(n). Is this a correct & good explanation?

    Read the article

  • LibGDX Boid Seek Behaviour

    - by childonline
    I'm trying to make a swarm of boids which seek out the mouse position and move towards it, but I'm having a bit of a problem. The boids just seem to want to go to upper-right corner of the game window. The mouse position seems influence the behavior a bit, but not enough to make the boid turn towards it. I suspect there is a problem with the way LibGDX handles its coordinate system, but I'm not sure how to fix it I've uploaded the eclipse project here! Also here are the relevant bits of my code, in case you see something obviously wrong: public Agent(){ _texture = GdxGame.TEX_AGENT; TextureRegion region = new TextureRegion(_texture, 0, 0, 32, 32); TextureRegion region2 = new TextureRegion(GdxGame.TEX_TARGET, 0, 0, 32, 32); _sprite = new Sprite(region); _sprite.setSize(.05f, .05f); _sprite_target = new Sprite(region2); _sprite_target.setSize(.1f, .1f); _max_velocity = 0.05f; _max_speed = 0.005f; _velocity = new Vector2(0, 0); _desired_velocity = new Vector2(0, 0); _steering = new Vector2(0, 0); _position = new Vector2(-_sprite.getWidth()/2, -_sprite.getHeight()/2); _mass = 10f; } public void Update(float deltaTime){ _target = new Vector2(Gdx.input.getX(), Gdx.input.getY()); _desired_velocity = ((_target.sub(_position)).nor()).scl(_max_velocity,_max_velocity); _steering = ((_desired_velocity.sub(_velocity)).limit(_max_speed)).div(_mass); _velocity = (_velocity.add(_steering)).limit(_max_speed); _position = _position.add(_velocity); _sprite.setPosition(_position.x, _position.y); _sprite_target.setPosition(Gdx.input.getX(), Gdx.input.getY()); } I've used this tutorial here. Thanks!

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >