Search Results

Search found 21759 results on 871 pages for 'int 0'.

Page 432/871 | < Previous Page | 428 429 430 431 432 433 434 435 436 437 438 439  | Next Page >

  • what does "do" do here? (java)

    - by David
    I saw this bit of code on the interents somewhere. I'm wondering what thedo is for. public class LoopControl { public static void main(String[] args) { int count = 0; do { if(count % 2 == 0) { for(int j = 0; j < count; j++) { System.out.print(j+1); if(j < count-1) System.out.print(", "); } System.out.println(); } count++; } while(count <= 5); } }

    Read the article

  • how to declare object variable name in loop

    - by user3717895
    public class Node{ Node p,l,r; int height; String s; { /** class body**/ } } String[] S=new String[5000]; int i=0; while (i<5000){ Node x=new Node(); x=S[i]; } I want to make 5000 Node object. above code assign same variable name x every time but i want different variable name . then how to declare 5000 class variable name without declaring it manually. is there something by which i can create 5000 Node class object with ease.

    Read the article

  • Java - Basic use of arrays

    - by javaisjusttoohard
    This is a basic question but I do need some help. Given two arrays of ints, a and b, return true if they have the same first element or they have the same last element. Both arrays will be length 1 or more. commonEnd({1, 2, 3}, {7, 3}) ? true commonEnd({1, 2, 3}, {7, 3, 2}) ? false commonEnd({1, 2, 3}, {1, 3}) ? true I have the following code but it wont compile: public boolean commonEnd(int[] a, int[] b) { if(a[0] == b[0] || a[a.length-1] ==b[b.length-1]) return true; }

    Read the article

  • Add periods in a string [closed]

    - by Garling Beard
    I'm unable to determine why I don't get my expected output, given this code: int periods = (location.Length / 2) - 1; for (int index = 2, i = 0; i < periods; index += 3, ++i ) { location = location.Insert(index, "."); } And a location of "C5032AC", I expect that location will equal "C.50.32.A.C" after my loop terminates; it is instead "C5.03.2AC". Can anyone explain what I'm missing here?

    Read the article

  • Call to daemon in a /etc/init.d script is blocking, not running in background

    - by tony
    I have a Perl script that I want to daemonize. Basically this perl script will read a directory every 30 seconds, read the files that it finds and then process the data. To keep it simple here consider the following Perl script (called synpipe_server, there is a symbolic link of this script in /usr/sbin/) : #!/usr/bin/perl use strict; use warnings; my $continue = 1; $SIG{'TERM'} = sub { $continue = 0; print "Caught TERM signal\n"; }; $SIG{'INT'} = sub { $continue = 0; print "Caught INT signal\n"; }; my $i = 0; while ($continue) { #do stuff print "Hello, I am running " . ++$i . "\n"; sleep 3; } So this script basically prints something every 3 seconds. Then, as I want to daemonize this script, I've also put this bash script (also called synpipe_server) in /etc/init.d/ : #!/bin/bash # synpipe_server : This starts and stops synpipe_server # # chkconfig: 12345 12 88 # description: Monitors all production pipelines # processname: synpipe_server # pidfile: /var/run/synpipe_server.pid # Source function library. . /etc/rc.d/init.d/functions pname="synpipe_server" exe="/usr/sbin/synpipe_server" pidfile="/var/run/${pname}.pid" lockfile="/var/lock/subsys/${pname}" [ -x $exe ] || exit 0 RETVAL=0 start() { echo -n "Starting $pname : " daemon ${exe} RETVAL=$? PID=$! echo [ $RETVAL -eq 0 ] && touch ${lockfile} echo $PID > ${pidfile} } stop() { echo -n "Shutting down $pname : " killproc ${exe} RETVAL=$? echo if [ $RETVAL -eq 0 ]; then rm -f ${lockfile} rm -f ${pidfile} fi } restart() { echo -n "Restarting $pname : " stop sleep 2 start } case "$1" in start) start ;; stop) stop ;; status) status ${pname} ;; restart) restart ;; *) echo "Usage: $0 {start|stop|status|restart}" ;; esac exit 0 So, (if I have well understood the doc for daemon) the Perl script should run in the background and the output should be redirected to /dev/null if I execute : service synpipe_server start But here is what I get instead : [root@master init.d]# service synpipe_server start Starting synpipe_server : Hello, I am running 1 Hello, I am running 2 Hello, I am running 3 Hello, I am running 4 Caught INT signal [ OK ] [root@master init.d]# So it starts the Perl script but runs it without detaching it from the current terminal session, and I can see the output printed in my console ... which is not really what I was expecting. Moreover, the PID file is empty (or with a line feed only, no pid returned by daemon). Does anyone have any idea of what I am doing wrong ? EDIT : maybe I should say that I am on a Red Hat machine. Scientific Linux SL release 5.4 (Boron) Would it do the job if instead of using the daemon function, I use something like : nohup ${exe} >/dev/null 2>&1 & in the init script ?

    Read the article

  • External USB drive is failing

    - by dma_k
    I have an external USB 2.0 drive WD My Book Mirror Edition, running in RAID 1 (mirroring) mode. A while ago the hard drive started to fail: it stops responding (directories are not listed returning an error after a big timeout). Sometimes it works for weeks before a failure, sometimes – few hours. Small write operations (like removing few files or editing a small file) do not harm, but when copying large files to the drive over the network, or creating the archive locally, the kernel dumps. Also interesting to note that once kernel has failed, Linux does not want to reboot normally (reboot hangs); when Linux box is shutdown with power button, WD drive does not go to sleep mode (as it usually does): leds continue to run, pressing and holding the "shutdown" button on drive's back panel does not do anything; only unplugging the power cord helps. Here goes the boot log: Aug 16 00:32:21 kernel: [ 1.514106] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver Aug 16 00:32:21 kernel: [ 1.657738] ehci_hcd 0000:00:1d.7: PCI INT A -> GSI 23 (level, low) -> IRQ 23 Aug 16 00:32:21 kernel: [ 1.673747] ehci_hcd 0000:00:1d.7: setting latency timer to 64 Aug 16 00:32:21 kernel: [ 1.673751] ehci_hcd 0000:00:1d.7: EHCI Host Controller Aug 16 00:32:21 kernel: [ 1.725224] ehci_hcd 0000:00:1d.7: new USB bus registered, assigned bus number 1 Aug 16 00:32:21 kernel: [ 1.741647] ehci_hcd 0000:00:1d.7: using broken periodic workaround Aug 16 00:32:21 kernel: [ 1.761790] ehci_hcd 0000:00:1d.7: cache line size of 32 is not supported Aug 16 00:32:21 kernel: [ 1.761873] ehci_hcd 0000:00:1d.7: irq 23, io mem 0xfdfff000 Aug 16 00:32:21 kernel: [ 1.796043] ehci_hcd 0000:00:1d.7: USB 2.0 started, EHCI 1.00 Aug 16 00:32:21 kernel: [ 1.879069] usb usb1: New USB device found, idVendor=1d6b, idProduct=0002 Aug 16 00:32:21 kernel: [ 1.895446] usb usb1: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Aug 16 00:32:21 kernel: [ 1.911796] usb usb1: Product: EHCI Host Controller Aug 16 00:32:21 kernel: [ 1.928015] usb usb1: Manufacturer: Linux 2.6.32-5-686 ehci_hcd Aug 16 00:32:21 kernel: [ 1.944331] usb usb1: SerialNumber: 0000:00:1d.7 Aug 16 00:32:21 kernel: [ 1.961285] usb usb1: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 1.994412] hub 1-0:1.0: USB hub found Aug 16 00:32:21 kernel: [ 2.010864] hub 1-0:1.0: 8 ports detected Aug 16 00:32:21 kernel: [ 2.085939] uhci_hcd: USB Universal Host Controller Interface driver Aug 16 00:32:21 kernel: [ 2.191945] uhci_hcd 0000:00:1d.0: PCI INT A -> GSI 23 (level, low) -> IRQ 23 Aug 16 00:32:21 kernel: [ 2.226029] uhci_hcd 0000:00:1d.0: setting latency timer to 64 Aug 16 00:32:21 kernel: [ 2.226034] uhci_hcd 0000:00:1d.0: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.243237] uhci_hcd 0000:00:1d.0: new USB bus registered, assigned bus number 2 Aug 16 00:32:21 kernel: [ 2.260390] uhci_hcd 0000:00:1d.0: irq 23, io base 0x0000fe00 Aug 16 00:32:21 kernel: [ 2.277517] usb usb2: New USB device found, idVendor=1d6b, idProduct=0001 Aug 16 00:32:21 kernel: [ 2.294815] usb usb2: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Aug 16 00:32:21 kernel: [ 2.312173] usb usb2: Product: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.329534] usb usb2: Manufacturer: Linux 2.6.32-5-686 uhci_hcd Aug 16 00:32:21 kernel: [ 2.346828] usb usb2: SerialNumber: 0000:00:1d.0 Aug 16 00:32:21 kernel: [ 2.412989] usb usb2: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 2.430651] usb 1-2: new high speed USB device using ehci_hcd and address 2 Aug 16 00:32:21 kernel: [ 2.449046] hub 2-0:1.0: USB hub found Aug 16 00:32:21 kernel: [ 2.466514] hub 2-0:1.0: 2 ports detected Aug 16 00:32:21 kernel: [ 2.484639] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 19 (level, low) -> IRQ 19 Aug 16 00:32:21 kernel: [ 2.537750] uhci_hcd 0000:00:1d.1: setting latency timer to 64 Aug 16 00:32:21 kernel: [ 2.537756] uhci_hcd 0000:00:1d.1: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.555085] uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 3 Aug 16 00:32:21 kernel: [ 2.572231] uhci_hcd 0000:00:1d.1: irq 19, io base 0x0000fd00 Aug 16 00:32:21 kernel: [ 2.589593] usb usb3: New USB device found, idVendor=1d6b, idProduct=0001 Aug 16 00:32:21 kernel: [ 2.606869] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Aug 16 00:32:21 kernel: [ 2.624134] usb usb3: Product: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.641329] usb usb3: Manufacturer: Linux 2.6.32-5-686 uhci_hcd Aug 16 00:32:21 kernel: [ 2.658505] usb usb3: SerialNumber: 0000:00:1d.1 Aug 16 00:32:21 kernel: [ 2.675843] usb usb3: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 2.692864] hub 3-0:1.0: USB hub found Aug 16 00:32:21 kernel: [ 2.709651] hub 3-0:1.0: 2 ports detected Aug 16 00:32:21 kernel: [ 2.727378] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 18 (level, low) -> IRQ 18 Aug 16 00:32:21 kernel: [ 2.768252] uhci_hcd 0000:00:1d.2: setting latency timer to 64 Aug 16 00:32:21 kernel: [ 2.768258] uhci_hcd 0000:00:1d.2: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.806679] uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 4 Aug 16 00:32:21 kernel: [ 2.824117] uhci_hcd 0000:00:1d.2: irq 18, io base 0x0000fc00 Aug 16 00:32:21 kernel: [ 2.841405] usb 1-2: New USB device found, idVendor=1058, idProduct=1104 Aug 16 00:32:21 kernel: [ 2.858448] usb 1-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 Aug 16 00:32:21 kernel: [ 2.875347] usb 1-2: Product: My Book Aug 16 00:32:21 kernel: [ 2.892113] usb 1-2: Manufacturer: Western Digital Aug 16 00:32:21 kernel: [ 2.908915] usb 1-2: SerialNumber: 575532553130303530353538 Aug 16 00:32:21 kernel: [ 2.943242] usb usb4: New USB device found, idVendor=1d6b, idProduct=0001 Aug 16 00:32:21 kernel: [ 2.960405] usb usb4: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Aug 16 00:32:21 kernel: [ 2.977615] usb usb4: Product: UHCI Host Controller Aug 16 00:32:21 kernel: [ 2.994687] usb usb4: Manufacturer: Linux 2.6.32-5-686 uhci_hcd Aug 16 00:32:21 kernel: [ 3.011711] usb usb4: SerialNumber: 0000:00:1d.2 Aug 16 00:32:21 kernel: [ 3.029589] usb usb4: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 3.082027] sd 2:0:0:0: [sda] Attached SCSI disk Aug 16 00:32:21 kernel: [ 3.103953] usb 1-2: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 3.122625] hub 4-0:1.0: USB hub found Aug 16 00:32:21 kernel: [ 3.140484] hub 4-0:1.0: 2 ports detected Aug 16 00:32:21 kernel: [ 3.161680] uhci_hcd 0000:00:1d.3: PCI INT D -> GSI 16 (level, low) -> IRQ 16 Aug 16 00:32:21 kernel: [ 3.181257] uhci_hcd 0000:00:1d.3: setting latency timer to 64 Aug 16 00:32:21 kernel: [ 3.181263] uhci_hcd 0000:00:1d.3: UHCI Host Controller Aug 16 00:32:21 kernel: [ 3.198614] uhci_hcd 0000:00:1d.3: new USB bus registered, assigned bus number 5 Aug 16 00:32:21 kernel: [ 3.216012] uhci_hcd 0000:00:1d.3: irq 16, io base 0x0000fb00 Aug 16 00:32:21 kernel: [ 3.249877] Uniform CD-ROM driver Revision: 3.20 Aug 16 00:32:21 kernel: [ 3.267765] usb usb5: New USB device found, idVendor=1d6b, idProduct=0001 Aug 16 00:32:21 kernel: [ 3.284947] usb usb5: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Aug 16 00:32:21 kernel: [ 3.302023] usb usb5: Product: UHCI Host Controller Aug 16 00:32:21 kernel: [ 3.319215] usb usb5: Manufacturer: Linux 2.6.32-5-686 uhci_hcd Aug 16 00:32:21 kernel: [ 3.336298] usb usb5: SerialNumber: 0000:00:1d.3 Aug 16 00:32:21 kernel: [ 3.368377] Initializing USB Mass Storage driver... Aug 16 00:32:21 kernel: [ 3.390652] usbcore: registered new interface driver hiddev Aug 16 00:32:21 kernel: [ 3.408109] scsi4 : SCSI emulation for USB Mass Storage devices Aug 16 00:32:21 kernel: [ 3.425281] sr 0:0:1:0: Attached scsi CD-ROM sr0 Aug 16 00:32:21 kernel: [ 3.438978] sr 0:0:1:0: Attached scsi generic sg0 type 5 Aug 16 00:32:21 kernel: [ 3.456328] usbcore: registered new interface driver usb-storage Aug 16 00:32:21 kernel: [ 3.474564] usb-storage: device found at 2 Aug 16 00:32:21 kernel: [ 3.474567] usb-storage: waiting for device to settle before scanning Aug 16 00:32:21 kernel: [ 3.475320] sd 2:0:0:0: Attached scsi generic sg1 type 0 Aug 16 00:32:21 kernel: [ 3.492587] USB Mass Storage support registered. Aug 16 00:32:21 kernel: [ 3.510930] usb usb5: configuration #1 chosen from 1 choice Aug 16 00:32:21 kernel: [ 3.531076] hub 5-0:1.0: USB hub found Aug 16 00:32:21 kernel: [ 3.548399] hub 5-0:1.0: 2 ports detected Aug 16 00:32:21 kernel: [ 3.591743] input: Western Digital My Book as /devices/pci0000:00/0000:00:1d.7/usb1/1-2/1-2:1.1/input/input2 Aug 16 00:32:21 kernel: [ 3.609515] generic-usb 0003:1058:1104.0001: input,hidraw0: USB HID v1.11 Device [Western Digital My Book] on usb-0000:00:1d.7-2/input1 Aug 16 00:32:21 kernel: [ 3.627466] usbcore: registered new interface driver usbhid Aug 16 00:32:21 kernel: [ 8.581664] usb-storage: device scan complete Aug 16 00:32:21 kernel: [ 8.624270] scsi 4:0:0:0: Direct-Access WD My Book 1008 PQ: 0 ANSI: 4 Aug 16 00:32:21 kernel: [ 8.655135] scsi 4:0:0:1: Enclosure WD My Book Device 1008 PQ: 0 ANSI: 4 Aug 16 00:32:21 kernel: [ 8.675393] sd 4:0:0:0: Attached scsi generic sg2 type 0 Aug 16 00:32:21 kernel: [ 8.698669] scsi 4:0:0:1: Attached scsi generic sg3 type 13 Aug 16 00:32:21 kernel: [ 8.723370] sd 4:0:0:0: [sdb] 1953513472 512-byte logical blocks: (1.00 TB/931 GiB) Aug 16 00:32:21 kernel: [ 8.750477] sd 4:0:0:0: [sdb] Write Protect is off Aug 16 00:32:21 kernel: [ 8.769411] sd 4:0:0:0: [sdb] Mode Sense: 10 00 00 00 Aug 16 00:32:21 kernel: [ 8.769414] sd 4:0:0:0: [sdb] Assuming drive cache: write through Aug 16 00:32:21 kernel: [ 8.822971] sd 4:0:0:0: [sdb] Assuming drive cache: write through Aug 16 00:32:21 kernel: [ 8.841978] sdb: sdb1 Aug 16 00:32:21 kernel: [ 8.905580] sd 4:0:0:0: [sdb] Assuming drive cache: write through Aug 16 00:32:21 kernel: [ 8.924173] sd 4:0:0:0: [sdb] Attached SCSI disk Aug 16 00:32:21 kernel: [ 11.600492] XFS mounting filesystem sdb1 Aug 16 00:32:21 kernel: [ 12.222948] Ending clean XFS mount for filesystem: sdb1 After a while the following appears in a log: Aug 16 09:30:56 kernel: [32359.112029] usb 1-2: reset high speed USB device using ehci_hcd and address 2 Aug 16 09:31:59 kernel: [32422.112035] usb 1-2: reset high speed USB device using ehci_hcd and address 2 Aug 16 09:33:00 kernel: [32483.112029] usb 1-2: reset high speed USB device using ehci_hcd and address 2 And then it is followed by few kernel dumps, which I think, are not good: Aug 16 09:33:40 kernel: [32520.428027] INFO: task xfssyncd:1002 blocked for more than 120 seconds. Aug 16 09:33:40 kernel: [32520.462689] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Aug 16 09:33:40 kernel: [32520.497422] xfssyncd D c3d84a60 0 1002 2 0x00000000 Aug 16 09:33:40 kernel: [32520.532117] f6c9aa80 00000046 c1132742 c3d84a60 00000286 c1418100 c1418100 00000000 Aug 16 09:33:40 kernel: [32520.566867] f6c9ac3c c2808100 00000000 f653b18b 00001d76 00000001 f6c9aa80 c3c3f0e0 Aug 16 09:33:40 kernel: [32520.601343] 08e59242 f6c9ac3c 2e41392b 00000000 08e59242 00000000 c3f7fb48 0067385a Aug 16 09:33:40 kernel: [32520.635533] Call Trace: Aug 16 09:33:40 kernel: [32520.668991] [<c1132742>] ? cfq_set_request+0x0/0x290 Aug 16 09:33:40 kernel: [32520.702804] [<c126b532>] ? io_schedule+0x5f/0x98 Aug 16 09:33:40 kernel: [32520.736555] [<c1128be0>] ? get_request_wait+0xcb/0x146 Aug 16 09:33:40 kernel: [32520.770360] [<c10437ba>] ? autoremove_wake_function+0x0/0x2d Aug 16 09:33:40 kernel: [32520.804110] [<c112907c>] ? __make_request+0x2cc/0x3d9 Aug 16 09:33:40 kernel: [32520.837713] [<c1128230>] ? blk_peek_request+0x135/0x143 Aug 16 09:33:40 kernel: [32520.871265] [<f8582987>] ? scsi_dispatch_cmd+0x185/0x1e5 [scsi_mod] Aug 16 09:33:40 kernel: [32520.904407] [<c1127cf1>] ? generic_make_request+0x266/0x2b4 Aug 16 09:33:40 kernel: [32520.937007] [<c10cf821>] ? bvec_alloc_bs+0x95/0xaf Aug 16 09:33:40 kernel: [32520.969033] [<c1127dfb>] ? submit_bio+0xbc/0xd6 Aug 16 09:33:40 kernel: [32521.000485] [<c10cffd1>] ? bio_add_page+0x28/0x2e Aug 16 09:33:40 kernel: [32521.031403] [<f8918d38>] ? _xfs_buf_ioapply+0x206/0x22b [xfs] Aug 16 09:33:40 kernel: [32521.061888] [<f89197bd>] ? xfs_buf_iorequest+0x38/0x60 [xfs] Aug 16 09:33:40 kernel: [32521.091845] [<f8907230>] ? xlog_bdstrat_cb+0x16/0x3d [xfs] Aug 16 09:33:40 kernel: [32521.121222] [<f8905781>] ? XFS_bwrite+0x32/0x64 [xfs] Aug 16 09:33:40 kernel: [32521.150007] [<f89059be>] ? xlog_sync+0x20b/0x311 [xfs] Aug 16 09:33:40 kernel: [32521.178214] [<f89112fc>] ? xfs_trans_ail_tail+0x12/0x27 [xfs] Aug 16 09:33:40 kernel: [32521.205914] [<f8906261>] ? xlog_state_sync_all+0xa2/0x141 [xfs] Aug 16 09:33:40 kernel: [32521.233074] [<f8906611>] ? _xfs_log_force+0x51/0x68 [xfs] Aug 16 09:33:40 kernel: [32521.259664] [<c103abaf>] ? process_timeout+0x0/0x5 Aug 16 09:33:40 kernel: [32521.285662] [<f8906636>] ? xfs_log_force+0xe/0x27 [xfs] Aug 16 09:33:40 kernel: [32521.311171] [<f89202df>] ? xfs_sync_worker+0x17/0x5c [xfs] Aug 16 09:33:40 kernel: [32521.336117] [<f891fbb7>] ? xfssyncd+0x134/0x17d [xfs] Aug 16 09:33:40 kernel: [32521.360498] [<f891fa83>] ? xfssyncd+0x0/0x17d [xfs] Aug 16 09:33:40 kernel: [32521.384211] [<c1043588>] ? kthread+0x61/0x66 Aug 16 09:33:40 kernel: [32521.407890] [<c1043527>] ? kthread+0x0/0x66 Aug 16 09:33:40 kernel: [32521.430876] [<c1003d47>] ? kernel_thread_helper+0x7/0x10 Aug 16 09:33:40 kernel: [32521.453394] INFO: task flush-8:16:12945 blocked for more than 120 seconds. Aug 16 09:33:40 kernel: [32521.476116] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Aug 16 09:33:40 kernel: [32521.498579] flush-8:16 D 00000000 0 12945 2 0x00000000 Aug 16 09:33:40 kernel: [32521.520649] f4e4d540 00000046 e412e940 00000000 00000002 c1418100 c1418100 c14136ac Aug 16 09:33:40 kernel: [32521.542426] f4e4d6fc c2808100 00000000 00000000 000008b4 00000001 f4e4d540 c3c3f0e0 Aug 16 09:33:40 kernel: [32521.563745] 02e905a8 f4e4d6fc 007a5399 00000000 02e905a8 00000000 f4e2db48 00670b98 Aug 16 09:33:40 kernel: [32521.585077] Call Trace: Aug 16 09:33:40 kernel: [32521.605790] [<c126b532>] ? io_schedule+0x5f/0x98 Aug 16 09:33:40 kernel: [32521.626184] [<c1128be0>] ? get_request_wait+0xcb/0x146 Aug 16 09:33:40 kernel: [32521.646133] [<c10437ba>] ? autoremove_wake_function+0x0/0x2d Aug 16 09:33:40 kernel: [32521.665659] [<c112907c>] ? __make_request+0x2cc/0x3d9 Aug 16 09:33:40 kernel: [32521.684716] [<f891796e>] ? xfs_convert_page+0x30a/0x331 [xfs] Aug 16 09:33:40 kernel: [32521.703366] [<c1127cf1>] ? generic_make_request+0x266/0x2b4 Aug 16 09:33:40 kernel: [32521.721644] [<c10cf821>] ? bvec_alloc_bs+0x95/0xaf Aug 16 09:33:40 kernel: [32521.739465] [<c1127dfb>] ? submit_bio+0xbc/0xd6 Aug 16 09:33:40 kernel: [32521.756896] [<c10cfa45>] ? bio_alloc_bioset+0x7b/0xba Aug 16 09:33:40 kernel: [32521.774046] [<f8917af0>] ? xfs_submit_ioend_bio+0x3b/0x44 [xfs] Aug 16 09:33:40 kernel: [32521.790694] [<f8917ba3>] ? xfs_submit_ioend+0xaa/0xc4 [xfs] Aug 16 09:33:40 kernel: [32521.806736] [<f891817d>] ? xfs_page_state_convert+0x5c0/0x61c [xfs] Aug 16 09:33:40 kernel: [32521.822859] [<c113705b>] ? __lookup_tag+0x8e/0xee Aug 16 09:33:40 kernel: [32521.838958] [<f891840d>] ? xfs_vm_writepage+0x91/0xc4 [xfs] Aug 16 09:33:40 kernel: [32521.855039] [<c108bbcc>] ? __writepage+0x8/0x22 Aug 16 09:33:40 kernel: [32521.871067] [<c108c17b>] ? write_cache_pages+0x1af/0x29f Aug 16 09:33:40 kernel: [32521.886616] [<c108bbc4>] ? __writepage+0x0/0x22 Aug 16 09:33:40 kernel: [32521.901593] [<c108c285>] ? generic_writepages+0x1a/0x21 Aug 16 09:33:40 kernel: [32521.916455] [<f8918338>] ? xfs_vm_writepages+0x0/0x38 [xfs] Aug 16 09:33:40 kernel: [32521.931484] [<c108c2a5>] ? do_writepages+0x19/0x25 Aug 16 09:33:40 kernel: [32521.946648] [<c10c80d9>] ? writeback_single_inode+0xc7/0x273 Aug 16 09:33:40 kernel: [32521.961675] [<c10c8c44>] ? writeback_inodes_wb+0x3dd/0x49c Aug 16 09:33:40 kernel: [32521.976831] [<c10c8e18>] ? wb_writeback+0x115/0x178 Aug 16 09:33:40 kernel: [32521.991778] [<c10c901f>] ? wb_do_writeback+0x121/0x131 Aug 16 09:33:40 kernel: [32522.006538] [<c103abaf>] ? process_timeout+0x0/0x5 Aug 16 09:33:40 kernel: [32522.021091] [<c10c9050>] ? bdi_writeback_task+0x21/0x89 Aug 16 09:33:40 kernel: [32522.035493] [<c10979e5>] ? bdi_start_fn+0x59/0xa4 Aug 16 09:33:40 kernel: [32522.049765] [<c109798c>] ? bdi_start_fn+0x0/0xa4 Aug 16 09:33:40 kernel: [32522.063792] [<c1043588>] ? kthread+0x61/0x66 Aug 16 09:33:40 kernel: [32522.077612] [<c1043527>] ? kthread+0x0/0x66 Aug 16 09:33:40 kernel: [32522.091260] [<c1003d47>] ? kernel_thread_helper+0x7/0x10 Aug 16 09:33:40 kernel: [32522.104966] INFO: task smartctl:13098 blocked for more than 120 seconds. Aug 16 09:33:40 kernel: [32522.118883] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Aug 16 09:33:40 kernel: [32522.133012] smartctl D 00000020 0 13098 13097 0x00000000 Aug 16 09:33:40 kernel: [32522.147221] e50b9540 00000086 c11d28a8 00000020 00000770 c1418100 c1418100 c14136ac Aug 16 09:33:40 kernel: [32522.161720] e50b96fc c2808100 00000000 e53e8800 00000000 00000020 c3cec000 c13886c0 Aug 16 09:33:40 kernel: [32522.176217] f99dab68 e50b96fc 007a4f1e 00000001 c4082f24 c4082ed8 00000001 c3c3f0e0 Aug 16 09:33:40 kernel: [32522.190737] Call Trace: Aug 16 09:33:40 kernel: [32522.205038] [<c11d28a8>] ? __netdev_alloc_skb+0x14/0x2d Aug 16 09:33:40 kernel: [32522.219605] [<c126b799>] ? schedule_timeout+0x20/0xb0 Aug 16 09:33:40 kernel: [32522.234144] [<c112820d>] ? blk_peek_request+0x112/0x143 Aug 16 09:33:40 kernel: [32522.248649] [<f85873b6>] ? scsi_request_fn+0x3c1/0x47a [scsi_mod] Aug 16 09:33:40 kernel: [32522.263233] [<c103aba8>] ? del_timer+0x55/0x5c Aug 16 09:33:40 kernel: [32522.277773] [<c126b6a2>] ? wait_for_common+0xa4/0x100 Aug 16 09:33:40 kernel: [32522.292342] [<c102cd8d>] ? default_wake_function+0x0/0x8 Aug 16 09:33:40 kernel: [32522.306958] [<c112b3d1>] ? blk_execute_rq+0x8b/0xb2 Aug 16 09:33:40 kernel: [32522.321569] [<c112b2ac>] ? blk_end_sync_rq+0x0/0x23 Aug 16 09:33:40 kernel: [32522.336070] [<c112b58b>] ? blk_recount_segments+0x13/0x20 Aug 16 09:33:40 kernel: [32522.350583] [<c1127307>] ? blk_rq_bio_prep+0x44/0x74 Aug 16 09:33:40 kernel: [32522.365059] [<c112b0b2>] ? blk_rq_map_kern+0xc5/0xee Aug 16 09:33:40 kernel: [32522.379439] [<c112e2a5>] ? sg_scsi_ioctl+0x221/0x2aa Aug 16 09:33:40 kernel: [32522.393801] [<c112e672>] ? scsi_cmd_ioctl+0x344/0x39a Aug 16 09:33:40 kernel: [32522.408140] [<c1024c87>] ? update_curr+0x106/0x1b3 Aug 16 09:33:40 kernel: [32522.422566] [<c1024c87>] ? update_curr+0x106/0x1b3 Aug 16 09:33:40 kernel: [32522.436832] [<f87676aa>] ? sd_ioctl+0x90/0xb5 [sd_mod] Aug 16 09:33:40 kernel: [32522.451228] [<c112c35f>] ? __blkdev_driver_ioctl+0x53/0x63 Aug 16 09:33:40 kernel: [32522.465689] [<c112cbbf>] ? blkdev_ioctl+0x850/0x891 Aug 16 09:33:40 kernel: [32522.479982] [<c1020474>] ? __wake_up_common+0x34/0x59 Aug 16 09:33:40 kernel: [32522.494138] [<c10244cd>] ? complete+0x28/0x36 Aug 16 09:33:40 kernel: [32522.507986] [<c1086c64>] ? find_get_page+0x1f/0x81 Aug 16 09:33:40 kernel: [32522.521671] [<c10abed5>] ? add_partial+0xe/0x40 Aug 16 09:33:40 kernel: [32522.535285] [<c1086e68>] ? lock_page+0x8/0x1d Aug 16 09:33:40 kernel: [32522.548797] [<c1087432>] ? filemap_fault+0xb5/0x2e6 Aug 16 09:33:40 kernel: [32522.562141] [<c109941c>] ? __do_fault+0x381/0x3b1 Aug 16 09:33:40 kernel: [32522.575441] [<c10d0c30>] ? block_ioctl+0x27/0x2c Aug 16 09:33:40 kernel: [32522.588708] [<c10d0c09>] ? block_ioctl+0x0/0x2c Aug 16 09:33:40 kernel: [32522.601858] [<c10bcd78>] ? vfs_ioctl+0x1c/0x5f Aug 16 09:33:40 kernel: [32522.614917] [<c10bd30c>] ? do_vfs_ioctl+0x4aa/0x4e5 Aug 16 09:33:40 kernel: [32522.627961] [<c10350db>] ? __do_softirq+0x115/0x151 Aug 16 09:33:40 kernel: [32522.640901] [<c126e270>] ? do_page_fault+0x2f1/0x307 Aug 16 09:33:40 kernel: [32522.653803] [<c10bd388>] ? sys_ioctl+0x41/0x58 Aug 16 09:33:40 kernel: [32522.666674] [<c10030fb>] ? sysenter_do_call+0x12/0x28 Then again few messages reset high speed USB device using ehci_hcd and address 2. I have browsed and read similar error reports here and there and I tried: I have upgraded the kernel from v2.6.26-2 to 2.6.32-5, which has not solved the problem. They say, this might a cable problem. I have tried to replace the USB-to-miniUSB cable (that connects external drive with computer) with another one. No changes. Somebody suggests to try another USB port. I have only 4 external USB ports, tried another one with no success. They say to try uhci_hcd. I have unmounted the device, unloaded ehci_hcd and mounted again. The difference was that now in log I get reset full speed USB device using uhci_hcd and address 2 and similar kernel dumps after a while. They say to echo 128 > /sys/block/sdb/device/max_sectors. I tried it with ehci_hcd with no success (note: I have issued this command after the drive was mounted but before using it actively). I have lauched smartmond and checking periodically the output of smartctl: drive temperature is OK, number of bad sectors and uncorrectable errors is 0. Nothing suspicious is reported by S.M.A.R.T. except maybe the following: Aug 16 12:40:12 kernel: [43715.314566] program smartctl is using a deprecated SCSI ioctl, please convert it to SG_IO Aug 16 12:40:13 kernel: [43715.705622] program smartctl is using a deprecated SCSI ioctl, please convert it to SG_IO Of course, I have not tried all combinations of above. But unfortunately, I am run out of cardinal ideas. If anybody can advice something specific about the problem, you are very welcome.

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • SQL SERVER – Introduction to Rollup Clause

    - by pinaldave
    In this article we will go over basic understanding of Rollup clause in SQL Server. ROLLUP clause is used to do aggregate operation on multiple levels in hierarchy. Let us understand how it works by using an example. Consider a table with the following structure and data: CREATE TABLE tblPopulation ( Country VARCHAR(100), [State] VARCHAR(100), City VARCHAR(100), [Population (in Millions)] INT ) GO INSERT INTO tblPopulation VALUES('India', 'Delhi','East Delhi',9 [...]

    Read the article

  • [News] S?rie d'articles sur Silverlight 4 et RIA Services de Brad Abrams

    Brad Abrams, un des co-fondateurs de .NET et de la CLR livre ici une s?rie d'articles tr?s int?ressants sur le couple Silverlight 4 et RIA Services : "I thought it would be worthwhile to highlight some of the key features of the platform and tools that make Silverlight a fantastic platform for building business applications. I?ll avoid gratuitous video and dancing hippos and focus on just the bread and butter of business applications (...)"

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View – Part 2

    - by pinaldave
    Earlier, I have written an article about SQL SERVER – Index Created on View not Used Often – Observation of the View. I received an email from one of the readers, asking if there would no problems when we create the Index on the base table. Well, we need to discuss this situation in two different cases. Before proceeding to the discussion, I strongly suggest you read my earlier articles. To avoid the duplication, I am not going to repeat the code and explanation over here. In all the earlier cases, I have explained in detail how Index created on the View is not utilized. SQL SERVER – Index Created on View not Used Often – Limitation of the View 12 SQL SERVER – Index Created on View not Used Often – Observation of the View SQL SERVER – Indexed View always Use Index on Table As per earlier blog posts, so far we have done the following: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View However, the blog reader who emailed me suggests the extension of the said logic, which is as follows: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View Create Index on the Base Table Write SELECT with ORDER BY on View After doing the last two steps, the question is “Will the query on the View utilize the Index on the View, or will it still use the Index of the base table?“ Let us first run the Create example. USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO -- Create Index on Original Table -- On Column ID1 CREATE UNIQUE CLUSTERED INDEX [IX_OriginalTable] ON mySampleTable ( ID1 ASC ) GO -- On Column ID2 CREATE UNIQUE NONCLUSTERED INDEX [IX_OriginalTable_ID2] ON mySampleTable ( ID2 ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO Now let us see the execution plans for both of the SELECT statement. Before Index on Base Table (with Index on View): After Index on Base Table (with Index on View): Looking at both executions, it is very clear that with or without, the View is using Indexes. Alright, I have written 11 disadvantages of the Views. Now I have written one case where the View is using Indexes. Anybody who says that I am being harsh on Views can say now that I found one place where Index on View can be helpful. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, SQLServer, T SQL, Technology

    Read the article

  • Transparency and AlphaBlending

    - by TechTwaddle
    In this post we'll look at the AlphaBlend() api and how it can be used for semi-transparent blitting. AlphaBlend() takes a source device context and a destination device context (DC) and combines the bits in such a way that it gives a transparent effect. Follow the links for the msdn documentation. So lets take a image like, and AlphaBlend() it on our window. The code to do so is below, (under the WM_PAINT message of WndProc) HBITMAP hBitmap=NULL, hBitmapOld=NULL; HDC hMemDC=NULL; BLENDFUNCTION bf; hdc = BeginPaint(hWnd, &ps); hMemDC = CreateCompatibleDC(hdc); hBitmap = LoadBitmap(g_hInst, MAKEINTRESOURCE(IDB_BITMAP1)); hBitmapOld = SelectObject(hMemDC, hBitmap); bf.BlendOp = AC_SRC_OVER; bf.BlendFlags = 0; bf.SourceConstantAlpha = 80; //transparency value between 0-255 bf.AlphaFormat = 0;    AlphaBlend(hdc, 0, 25, 240, 100, hMemDC, 0, 0, 240, 100, bf); SelectObject(hMemDC, hBitmapOld); DeleteDC(hMemDC); DeleteObject(hBitmap); EndPaint(hWnd, &ps);   The code above creates a memory DC (hMemDC) using CreateCompatibleDC(), loads a bitmap onto the memory DC and AlphaBlends it on the device DC (hdc), with a transparency value of 80. The result is: Pretty simple till now. Now lets try to do something a little more exciting. Lets get two images involved, each overlapping the other, giving a better demonstration of transparency. I am also going to add a few buttons so that the user can increase or decrease the transparency by clicking on the buttons. Since this is the first time I played around with GDI apis, I ran into something that everybody runs into sometime or the other, flickering. When clicking the buttons the images would flicker a lot, I figured out why and used something called double buffering to avoid flickering. We will look at both my first implementation and the second implementation just to give the concept a little more depth and perspective. A few pre-conditions before I dive into the code: - hBitmap and hBitmap2 are handles to the two images obtained using LoadBitmap(), these variables are global and are initialized under WM_CREATE - The two buttons in the application are labeled Opaque++ (make more opaque, less transparent) and Opaque-- (make less opaque, more transparent) - DrawPics(HWND hWnd, int step=0); is the function called to draw the images on the screen. This is called from under WM_PAINT and also when the buttons are clicked. When Opaque++ is clicked the 'step' value passed to DrawPics() is +20 and when Opaque-- is clicked the 'step' value is -20. The default value of 'step' is 0 Now lets take a look at my first implementation: //this funciton causes flicker, cos it draws directly to screen several times void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL;     BLENDFUNCTION bf;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     //create a memory DC     hMemDC = CreateCompatibleDC(hdc);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents of screen     if (step < 0)     {         RECT rect = {0, 0, 240, 200};         FillRect(hdc, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     BitBlt(hdc, 0, 25, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hdc, 0, 75, 240, 100, hMemDC, 0, 0, 240, 100, bf);     DeleteDC(hMemDC);     ReleaseDC(hWnd, hdc); }   In the code above, we first get the window DC using GetDC() and create a memory DC using CreateCompatibleDC(). Then we select hBitmap2 onto the memory DC and Blt it on the window DC (hdc). Next, we select the other image, hBitmap, onto memory DC and AlphaBlend() it over window DC. As I told you before, this implementation causes flickering because it draws directly on the screen (hdc) several times. The video below shows what happens when the buttons were clicked rapidly: Well, the video recording tool I use captures only 15 frames per second and so the flickering is not visible in the video. So you're gonna have to trust me on this, it flickers (; To solve this problem we make sure that the drawing to the screen happens only once and to do that we create an additional memory DC, hTempDC. We perform all our drawing on this memory DC and finally when it is ready we Blt hTempDC on hdc, and the images are displayed in one go. Here is the code for our new DrawPics() function: //no flicker void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL, hTempDC=NULL;     BLENDFUNCTION bf;     HBITMAP hBitmapTemp=NULL, hBitmapOld=NULL;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     hMemDC = CreateCompatibleDC(hdc);     hTempDC = CreateCompatibleDC(hdc);     hBitmapTemp = CreateCompatibleBitmap(hdc, 240, 150);     hBitmapOld = (HBITMAP)SelectObject(hTempDC, hBitmapTemp);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents     if (step < 0)     {         RECT rect = {0, 0, 240, 150};         FillRect(hTempDC, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     //Blt hBitmap2 directly to hTempDC     BitBlt(hTempDC, 0, 0, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hTempDC, 0, 50, 240, 100, hMemDC, 0, 0, 240, 100, bf);     //now hTempDC is ready, blt it directly on hdc     BitBlt(hdc, 0, 25, 240, 150, hTempDC, 0, 0, SRCCOPY);     SelectObject(hTempDC, hBitmapOld);     DeleteObject(hBitmapTemp);     DeleteDC(hMemDC);     DeleteDC(hTempDC);     ReleaseDC(hWnd, hdc); }   This function is very similar to the first version, except for the use of hTempDC. Another point to note is the use of CreateCompatibleBitmap(). When a memory device context is created using CreateCompatibleDC(), the context is exactly one monochrome pixel high and one monochrome pixel wide. So in order for us to draw anything onto hTempDC, we first have to set a bitmap on it. We use CreateCompatibleBitmap() to create a bitmap of required dimension (240x150 above), and then select this bitmap onto hTempDC. Think of it as utilizing an extra canvas, drawing everything on the canvas and finally transferring the contents to the display in one scoop. And with this version the flickering is gone, video follows:   If you want the entire solutions source code then leave a message, I will share the code over SkyDrive.

    Read the article

  • Collision in Tiled Map - LibGDX

    - by user43353
    I have collision code that deals with left or right or top or bottom. I am using Tiled Map with LibGDX. Question is: How do I detect collision with other cells by all 4 sides, and not specifically by left/right or top/bottom. Here is my top/bottom and left/right collision code: private boolean isCellBlocked(float x, float y) { Cell cell = collisionLayer.getCell((int) (x / collisionLayer.getTileWidth()), (int) (y / collisionLayer.getTileHeight())); return cell != null && cell.getTile() != null && cell.getTile().getProperties().containsKey(blockedKey); } public boolean collidesRight() { for(float step = 0; step < getHeight(); step += collisionLayer.getTileHeight() / 2) if(isCellBlocked(getX() + getWidth(), getY() + step)) return true; return false; } public boolean collidesLeft() { for(float step = 0; step < getHeight(); step += collisionLayer.getTileHeight() / 2) if(isCellBlocked(getX(), getY() + step)) return true; return false; } public boolean collidesTop() { for(float step = 0; step < getWidth(); step += collisionLayer.getTileWidth() / 2) if(isCellBlocked(getX() + step, getY() + getHeight())) return true; return false; } public boolean collidesBottom() { for(float step = 0; step < getWidth(); step += collisionLayer.getTileWidth() / 2) if(isCellBlocked(getX() + step, getY())) return true; return false; } What I'm trying to achieve is simple: I'm trying to make code that will detect by all 4 sides, collidesRight + collidesLeft + collidesTop + collidesBottom in one boolean. For some reason, I cant seem to figure it out. I tried to use Rectangles (the Java Class) on the specific tile I want to be detected, but was messy and I have multiple maps. Having a Rectangle (from Java's API) around the player is no problem. It's just the tiles I want to be detected are the main issues as they cause messy code when used with the Rectangle class. Im trying to minimize the amount of code....

    Read the article

  • Qml and QfileSystemModel interaction problem

    - by user136432
    I'm having some problem in realizing an interaction between QML and C++ to obtain a very basic file browser that is shown within a ListView. I tried to use as model for my data the QT class QFileSystemModel, but it did't work as I expected, probably I didn't fully understand the QT class documentation about the use of this model or the example I found on the internet. Here is the code that I am using: File main.cpp #include <QModelIndex> #include <QFileSystemModel> #include <QQmlContext> #include <QApplication> #include "qtquick2applicationviewer.h" int main(int argc, char *argv[]) { QApplication app(argc, argv); QFileSystemModel* model = new QFileSystemModel; model->setRootPath("C:/"); model->setFilter(QDir::Files | QDir::AllDirs); QtQuick2ApplicationViewer viewer; // Make QFileSystemModel* available for QML use. viewer.rootContext()->setContextProperty("myFileModel", model); viewer.setMainQmlFile(QStringLiteral("qml/ProvaQML/main.qml")); viewer.showExpanded(); return app.exec(); } File main.qml Rectangle { id: main width: 800 height: 600 ListView { id: view property string root_path: "C:/Users" x: 40 y: 20 width: parent.width - (2*x) height: parent.height - (2*y) VisualDataModel { id: myVisualModel model: myFileModel // Get the model QFileSystemModel exposed from C++ delegate { Rectangle { width: 210; height: 20; radius: 5; border.width: 2; border.color: "orange"; color: "yellow"; Text { text: fileName; x: parent.x + 10; } MouseArea { anchors.fill: parent onDoubleClicked: { myVisualModel.rootIndex = myVisualModel.modelIndex(index) } } } } } highlight: Rectangle { color: "lightsteelblue"; radius: 5 } focus: true } } The first problem with this code is that first elements that I can see within my list are my PC logical drives even if I set a specific path. Then when I first double click on drive "C:\" it shows the list of files and directories on that path, but when I double click on a directory a second time the screen flickers for one moment and then it shows again the PC logical drives. Can anyone tell me how should I use the QFileSystemModel class with a ListView QML object? Thanks in advance! Carlo

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View

    - by pinaldave
    I always enjoy writing about concepts on Views. Views are frequently used concepts, and so it’s not surprising that I have seen so many misconceptions about this subject. To clear such misconceptions, I have previously written the article SQL SERVER – The Limitations of the Views – Eleven and more…. I also wrote a follow up article wherein I demonstrated that without even creating index on the basic table, the query on the View will not use the View. You can read about this demonstration over here: SQL SERVER – Index Created on View not Used Often – Limitation of the View 12. I promised in that post that I would also write an article where I would demonstrate the condition where the Index will be used. I got many responses suggesting that I can do that with using NOEXPAND; I agree. I have already written about this in my original summary article. Here is a way for you to see how Index created on View can be utilized. We will do the following steps on this exercise: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO When we check the execution plan for this , we find it clearly that the Index created on the View is utilized. ORDER BY clause uses the Index created on the View. I hope this makes the puzzle simpler on how the Index is used on the View. Again, I strongly recommend reading my earlier series about the limitations of the Views found here: SQL SERVER – The Limitations of the Views – Eleven and more…. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, T SQL, Technology

    Read the article

  • Built-in card-reader doesn't work. HP Compaq nx6325 notebook

    - by user10940
    I have a HP-Compaq nx6325 notebook with an built-in card-reader (SD, MS/Pro, MMC, SM, XD) and the ubuntu (10.10.) don't see it. I've tried to install it manually, with this steps (and with this tifmxx driver), but doesn't work. The compile log: $ echo /home/tvera/downloads/cr_install /home/tvera/downloads/cr_install $ make -C /lib/modules/2.6.35-25-generic/build M=/home/tvera/downloads/cr_install make[1]: Entering directory `/usr/src/linux-headers-2.6.35-25-generic' CC [M] /home/tvera/downloads/cr_install/tifm_core.o In file included from /home/tvera/downloads/cr_install/tifm_core.c:12: /home/tvera/downloads/cr_install/linux/tifm.h:128: error: field ‘cdev’ has incomplete type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_uevent’: /home/tvera/downloads/cr_install/tifm_core.c:69: warning: passing argument 1 of ‘add_uevent_var’ from incompatible pointer type include/linux/kobject.h:244: note: expected ‘struct kobj_uevent_env *’ but argument is of type ‘char **’ /home/tvera/downloads/cr_install/tifm_core.c:69: warning: passing argument 2 of ‘add_uevent_var’ makes pointer from integer without a cast include/linux/kobject.h:244: note: expected ‘const char *’ but argument is of type ‘int’ /home/tvera/downloads/cr_install/tifm_core.c: At top level: /home/tvera/downloads/cr_install/tifm_core.c:161: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_free’: /home/tvera/downloads/cr_install/tifm_core.c:170: warning: type defaults to ‘int’ in declaration of ‘__mptr’ /home/tvera/downloads/cr_install/tifm_core.c:170: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: At top level: /home/tvera/downloads/cr_install/tifm_core.c:177: error: unknown field ‘release’ specified in initializer /home/tvera/downloads/cr_install/tifm_core.c:178: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_alloc_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:190: error: implicit declaration of function ‘class_device_initialize’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_add_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:211: error: ‘BUS_ID_SIZE’ undeclared (first use in this function) /home/tvera/downloads/cr_install/tifm_core.c:211: error: (Each undeclared identifier is reported only once /home/tvera/downloads/cr_install/tifm_core.c:211: error: for each function it appears in.) /home/tvera/downloads/cr_install/tifm_core.c:212: error: implicit declaration of function ‘class_device_add’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_remove_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:237: error: implicit declaration of function ‘class_device_del’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_free_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:243: error: implicit declaration of function ‘class_device_put’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_alloc_device’: /home/tvera/downloads/cr_install/tifm_core.c:275: error: ‘struct device’ has no member named ‘bus_id’ /home/tvera/downloads/cr_install/tifm_core.c:275: error: ‘BUS_ID_SIZE’ undeclared (first use in this function) make[2]: *** [/home/tvera/downloads/cr_install/tifm_core.o] Error 1 make[1]: *** [_module_/home/tvera/downloads/cr_install] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-2.6.35-25-generic' make: *** [all] Error 2 The output of lsusb: Bus 001 Device 005: ID 05e3:0702 Genesys Logic, Inc. USB 2.0 IDE Adapter Bus 003 Device 003: ID 0458:003a KYE Systems Corp. (Mouse Systems) NetScroll+ Mini Traveler Bus 003 Device 002: ID 08ff:2580 AuthenTec, Inc. AES2501 Fingerprint Sensor Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • LinqToXML removing empty xmlns attributes &amp; adding attributes like xmlns:xsi, xsi:schemaLocation

    - by Rohit Gupta
    Suppose you need to generate the following XML: 1: <GenevaLoader xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2: xsi:schemaLocation="http://www.advent.com/SchemaRevLevel401/Geneva masterschema.xsd" 3: xmlns="http://www.advent.com/SchemaRevLevel401/Geneva"> 4: <PriceRecords> 5: <PriceRecord> 6: </PriceRecord> 7: </PriceRecords> 8: </GenevaLoader> Normally you would write the following C# code to accomplish this: 1: const string ns = "http://www.advent.com/SchemaRevLevel401/Geneva"; 2: XNamespace xnsp = ns; 3: XNamespace xsi = XNamespace.Get("http://www.w3.org/2001/XMLSchema-instance"); 4:  5: XElement root = new XElement( xnsp + "GenevaLoader", 6: new XAttribute(XNamespace.Xmlns + "xsi", xsi.NamespaceName), 7: new XAttribute( xsi + "schemaLocation", "http://www.advent.com/SchemaRevLevel401/Geneva masterschema.xsd")); 8:  9: XElement priceRecords = new XElement("PriceRecords"); 10: root.Add(priceRecords); 11:  12: for(int i = 0; i < 3; i++) 13: { 14: XElement price = new XElement("PriceRecord"); 15: priceRecords.Add(price); 16: } 17:  18: doc.Save("geneva.xml"); The problem with this approach is that it adds a additional empty xmlns arrtribute on the “PriceRecords” element, like so : 1: <GenevaLoader xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.advent.com/SchemaRevLevel401/Geneva masterschema.xsd" xmlns="http://www.advent.com/SchemaRevLevel401/Geneva"> 2: <PriceRecords xmlns=""> 3: <PriceRecord> 4: </PriceRecord> 5: </PriceRecords> 6: </GenevaLoader> The solution is to add the xmlns NameSpace in code to each child and grandchild elements of the root element like so : 1: XElement priceRecords = new XElement( xnsp + "PriceRecords"); 2: root.Add(priceRecords); 3:  4: for(int i = 0; i < 3; i++) 5: { 6: XElement price = new XElement(xnsp + "PriceRecord"); 7: priceRecords.Add(price); 8: }

    Read the article

  • "exception at 0x53C227FF (msvcr110d.dll)" with SOIL library

    - by Sean M.
    I'm creating a game in C++ using OpenGL, and decided to go with the SOIL library for image loading, as I have used it in the past to great effect. The problem is, in my newest game, trying to load an image with SOIL throws the following runtime error: This error points to this part: // SOIL.c int query_NPOT_capability( void ) { /* check for the capability */ if( has_NPOT_capability == SOIL_CAPABILITY_UNKNOWN ) { /* we haven't yet checked for the capability, do so */ if( (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_ARB_texture_non_power_of_two" ) ) ) //############ it points here ############// { /* not there, flag the failure */ has_NPOT_capability = SOIL_CAPABILITY_NONE; } else { /* it's there! */ has_NPOT_capability = SOIL_CAPABILITY_PRESENT; } } /* let the user know if we can do non-power-of-two textures or not */ return has_NPOT_capability; } Since it points to the line where SOIL tries to access the OpenGL extensions, I think that for some reason SOIL is trying to load the texture before an OpenGL context is created. The problem is, I've gone through the entire solution, and there is only one place where SOIL has to load a texture, and it happens long after the OpenGL context is created. This is the part where it loads the texture... //Init glfw if (!glfwInit()) { fprintf(stderr, "GLFW Initialization has failed!\n"); exit(EXIT_FAILURE); } printf("GLFW Initialized.\n"); //Process the command line arguments processCmdArgs(argc, argv); //Create the window glfwWindowHint(GLFW_SAMPLES, g_aaSamples); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); g_mainWindow = glfwCreateWindow(g_screenWidth, g_screenHeight, "Voxel Shipyard", g_fullScreen ? glfwGetPrimaryMonitor() : nullptr, nullptr); if (!g_mainWindow) { fprintf(stderr, "Could not create GLFW window!\n"); closeOGL(); exit(EXIT_FAILURE); } glfwMakeContextCurrent(g_mainWindow); printf("Window and OpenGL rendering context created.\n"); //Create the internal rendering components prepareScreen(); //Init glew glewExperimental = GL_TRUE; int err = glewInit(); if (err != GLEW_OK) { fprintf(stderr, "GLEW initialization failed!\n"); fprintf(stderr, "%s\n", glewGetErrorString(err)); closeOGL(); exit(EXIT_FAILURE); } printf("GLEW initialized.\n"); <-- Sucessfully creates an OpenGL context //Initialize the app g_app = new App(); g_app->PreInit(); g_app->Init(); g_app->PostInit(); <-- Loads the texture (after the context is created) ...and debug printing to the console CONFIRMS that the OpenGL context was created before the texture loading was attempted. So my question is if anyone is familiar with this specific error, or knows if there is a specific instance as to why SOIL would think OpenGL isn't initialized yet.

    Read the article

  • SQL SERVER – Detecting Leap Year in T-SQL using SQL Server 2012 – IIF, EOMONTH and CONCAT Function

    - by pinaldave
    Note: Tomorrow is February 29th. This blog post is dedicated to coming tomorrow – a special day :) Subu: “How can I find leap year in using SQL Server 2012?“ Pinal: “Are you asking me how to year 2012 is leap year using T-SQL – search online and you will find many example of the same.” Subu: “No. I am asking – How can I find leap year in using SQL Server 2012?“ Pinal: “Oh so you are asking – How can I find leap year in using SQL Server 2012?“ Subu: “Yeah - How can I find leap year in using SQL Server 2012?“ Pinal: “Let me do that for you – How can you find leap year in using SQL Server 2012?“ Indeed a fun conversation. Honestly, only reason I pasted our conversation here is – it was fun. What he was asking is that how to do it using new functions introduced in SQL Server 2012. Here is the article I have written which introduces all the new functions in SQL Server 2012 Summary of All the Analytic Functions – MSDN and SQLAuthority and 14 New Functions – A Quick Guide. There are many functions written to figure out to figure out if any year is Leap Year or not. The same I have written using T-SQL function over here. CREATE FUNCTION dbo.IsLeapYear (@year INT) RETURNS INT AS BEGIN RETURN(IIF(DATEPART(dd,(EOMONTH(CONCAT(@year,'0201')))) = 29,1,0)) END GO What I really like is that I was able to use three newly introduced function in SQL Server 2012 in above script. You can read more about them here. IIF, EOMONTH and CONCAT. You can validate above query by running following script. SELECT dbo.IsLeapYear('2011') 'IsLeapYear'; SELECT dbo.IsLeapYear('2012') 'IsLeapYear'; GO You will get result 1 if the year is leap year and 0 if year is not leap year. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL DateTime, SQL Function, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • What's the recommended way to configure a Synaptics touchpad device?

    - by htorque
    I want to increase the scroll area by moving the so-called RightEdge a bit towards the middle. Right now I'm doing this via a one-liner that's called at session start (added via gnome-session-properties): xinput --set-prop --type=int --format=32 11 252 1781 5125 1646 4582 This works fine, but feels like a hack. What's the recommended way to edit/set touchpad device properties like this one? Few years ago I'd have put that into the xorg.conf, but this seems to be discouraged nowadays.

    Read the article

  • AutoAudit 1.10c

    - by Paul Nielsen
    AutoAudit is a free SQL Server (2005, 2008) Code-Gen utility that creates Audit Trail Triggers with: · Created, Modified, and RowVersion (incrementing INT) columns to table · Creates View to reconstruct deleted rows · Creates UDF to reconstruct Row History · Schema Audit Trigger to track schema changes · Re-code-gens triggers when Alter Table changes the table Version 1.10c Adds: · Createdby and ModifiedBy columns. Pass the user to the column and AutoAudit records that username instead of the Suser_Sname...(read more)

    Read the article

  • Setting up OpenGL camera with off-center perspective

    - by user5484
    Hi, I'm using OpenGL ES (in iOS) and am struggling with setting up a viewport with an off-center distance point. Consider a game where you have a character in the left hand side of the screen, and some controls alpha'd over the left-hand side. The "main" part of the screen is on the right, but you still want to show whats in the view on the left. However when the character moves "forward" you want the character to appear to be going "straight", or "up" on the device, and not heading on an angle to the point that is geographically at the mid-x position in the screen. Here's the jist of how i set my viewport up where it is centered in the middle: // setup the camera // glMatrixMode(GL_PROJECTION); glLoadIdentity(); const GLfloat zNear = 0.1; const GLfloat zFar = 1000.0; const GLfloat fieldOfView = 90.0; // can definitely adjust this to see more/less of the scene GLfloat size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect; rect.origin = CGPointMake(0.0, 0.0); rect.size = CGSizeMake(backingWidth, backingHeight); glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glMatrixMode(GL_MODELVIEW); // rotate the whole scene by the tilt to face down on the dude const float tilt = 0.3f; const float yscale = 0.8f; const float zscale = -4.0f; glTranslatef(0.0, yscale, zscale); const int rotationMinDegree = 0; const int rotationMaxDegree = 180; glRotatef(tilt * (rotationMaxDegree - rotationMinDegree) / 2, 1.0f, 0.0f, 0.0f); glTranslatef(0, -yscale, -zscale); static float b = -25; //0; static float c = 0; // rotate by to face in the direction of the dude float a = RADIANS_TO_DEGREES(-atan2f(-gCamera.orientation.x, -gCamera.orientation.z)); glRotatef(a, 0.0, 1.0, 0.0); // and move to where it is glTranslatef(-gCamera.pos.x, -gCamera.pos.y, -gCamera.pos.z); // draw the rest of the scene ... I've tried a variety of things to make it appear as though "the dude" is off to the right: - do a translate after the frustrum to the x direction - do a rotation after the frustrum about the up/y-axis - move the camera with a biased lean to the left of the dude Nothing i do seems to produce good results, the dude will either look like he's stuck on an angle, or the whole scene will appear tilted. I'm no OpenGL expert, so i'm hoping someone can suggest some ideas or tricks on how to "off-center" these model views in OpenGL. Thanks!

    Read the article

< Previous Page | 428 429 430 431 432 433 434 435 436 437 438 439  | Next Page >