Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 450/1027 | < Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • Animation Trouble with Java Swing Timer - Also, JFrame Will Not Exit_On_Close

    - by forgotton_semicolon
    So, I am using a Java Swing Timer because putting the animation code in a run() method of a Thread subclass caused an insane amount of flickering that is really a terrible experience for any video game player. Can anyone give me any tips on: Why there is no animation... Why the JFrame will not close when it is coded to Exit_On_Close 2 times My code is here: import java.awt.; import java.awt.event.; import javax.swing.*; import java.net.URL; //////////////////////////////////////////////////////////////// TFQ public class TFQ extends JFrame { DrawingsInSpace dis; //========================================================== constructor public TFQ() { dis = new DrawingsInSpace(); JPanel content = new JPanel(); content.setLayout(new FlowLayout()); this.setContentPane(dis); this.setDefaultCloseOperation(EXIT_ON_CLOSE); this.setTitle("Plasma_Orbs_Off_Orion"); this.setSize(500,500); this.pack(); //... Create timer which calls action listener every second.. // Use full package qualification for javax.swing.Timer // to avoid potential conflicts with java.util.Timer. javax.swing.Timer t = new javax.swing.Timer(500, new TimePhaseListener()); t.start(); } /////////////////////////////////////////////// inner class Listener thing class TimePhaseListener implements ActionListener, KeyListener { // counter int total; // loop control boolean Its_a_go = true; //position of our matrix int tf = -400; //sprite directions int Sprite_Direction; final int RIGHT = 1; final int LEFT = 2; //for obstacle Rectangle mega_obstacle = new Rectangle(200, 0, 20, HEIGHT); public void actionPerformed(ActionEvent e) { //... Whenever this is called, repaint the screen dis.repaint(); addKeyListener(this); while (Its_a_go) { try { dis.repaint(); if(Sprite_Direction == RIGHT) { dis.matrix.x += 2; } // end if i think if(Sprite_Direction == LEFT) { dis.matrix.x -= 2; } } catch(Exception ex) { System.out.println(ex); } } // end while i think } // end actionPerformed @Override public void keyPressed(KeyEvent arg0) { // TODO Auto-generated method stub } @Override public void keyReleased(KeyEvent arg0) { // TODO Auto-generated method stub } @Override public void keyTyped(KeyEvent event) { // TODO Auto-generated method stub if (event.getKeyChar()=='f'){ Sprite_Direction = RIGHT; System.out.println("matrix should be animating now "); System.out.println("current matrix position = " + dis.matrix.x); } if (event.getKeyChar()=='d') { Sprite_Direction = LEFT; System.out.println("matrix should be going in reverse"); System.out.println("current matrix position = " + dis.matrix.x); } } } //================================================================= main public static void main(String[] args) { JFrame SafetyPins = new TFQ(); SafetyPins.setVisible(true); SafetyPins.setSize(500,500); SafetyPins.setResizable(true); SafetyPins.setLocationRelativeTo(null); SafetyPins.setDefaultCloseOperation(EXIT_ON_CLOSE); } } class DrawingsInSpace extends JPanel { URL url1_plasma_orbs; URL url2_matrix; Image img1_plasma_orbs; Image img2_matrix; // for the plasma_orbs Rectangle bbb = new Rectangle(0,0, 0, 0); // for the matrix Rectangle matrix = new Rectangle(-400, 60, 430, 200); public DrawingsInSpace() { //load URLs try { url1_plasma_orbs = this.getClass().getResource("plasma_orbs.png"); url2_matrix = this.getClass().getResource("matrix.png"); } catch(Exception e) { System.out.println(e); } // attach the URLs to the images img1_plasma_orbs = Toolkit.getDefaultToolkit().getImage(url1_plasma_orbs); img2_matrix = Toolkit.getDefaultToolkit().getImage(url2_matrix); } public void paintComponent(Graphics g) { super.paintComponent(g); // draw the plasma_orbs g.drawImage(img1_plasma_orbs, bbb.x, bbb.y,this); //draw the matrix g.drawImage(img2_matrix, matrix.x, matrix.y, this); } } // end class enter code here

    Read the article

  • How can I use the dualforward parameter in my unity shader to use lightmaps and normal maps together?

    - by Raphaeltm
    I'm using the free version of unity and I would like to combine lightmaps with specularity and normal maps. After doing a -bunch- of research, I've figured out that there doesn't seem to be any easy way to do this in the free version of unity, which doesn't support deferred rendering/easy use of dual lightmaps. However, it looks like it's possible, by writing a custom shader, using the "dualforward" parameter in a shader, switching the lightmapping mode to "dual lightmaps" and turning on "Use in forward ren." (basically, writing a shader that specifies the use of dual lightmaps, which should allow for a combination of lightmaps and normal maps) So I downloaded the source code for the default shaders (because all I need is a normal specular bumped shader) and added "dualforward" to the parameters: Shader "Bumped Specular Dual Lightmaps" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1) _Shininess ("Shininess", Range (0.03, 1)) = 0.078125 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {} _BumpMap ("Normalmap", 2D) = "bump" {} } SubShader { Tags { "RenderType"="Opaque" } LOD 400 CGPROGRAM #pragma surface surf BlinnPhong dualforward sampler2D _MainTex; sampler2D _BumpMap; fixed4 _Color; half _Shininess; struct Input { float2 uv_MainTex; float2 uv_BumpMap; }; void surf (Input IN, inout SurfaceOutput o) { fixed4 tex = tex2D(_MainTex, IN.uv_MainTex); o.Albedo = tex.rgb * _Color.rgb; o.Gloss = tex.a; o.Alpha = tex.a * _Color.a; o.Specular = _Shininess; o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)); } ENDCG } FallBack "Specular" } This, however, doesn't seem to work. When I keep the "dualforward" param, every object that uses it seems to be lit by the one directional light in the scene. When I remove the "dualforward" param, it they look like normal lightmapped objects with no normal maps or specularity. I noticed that the support for "dualforward" seems to be new in v.3.4.2, so I made sure to download it (I was running 3.4.1), but it still doesn't work. Anybody have any advice for me?

    Read the article

  • How to categorize textures into atlases

    - by Esa
    I am going to use texture atlasing for the first time in my games, and at first it seemed like a great idea to split textures into atlases by categorizing them by terrain themes e.g ForestTextures, WinterTextures etc. But that could cause a problem when for example a flower has to use transparency shader and other models use a diffuse shader. So those cannot be atlased into the same texture. Thus, would atlasing textures into themes as mentioned before and then splitting them by shader like ForestDiffuse and ForestTransparent be good? Or is there a better way to categorize and build them?

    Read the article

  • Interpolation gives the appearance of collisions

    - by Akroy
    I'm implementing a simple 2D platformer with a constant speed update of the game logic, but with the rendering done as fast as the machine can handle. I interpolate positions between actual game updates by just using the position and velocity of objects at the last update. This makes things look really smooth in general, but when something hits a wall/floor, it appears to go through the wall for a moment before being positioned correctly. This is because the interpolator is not taking walls into account, so it guesses the position into walls until the actual game update fixes it. Are there any particularly elegant solutions for this? Simply increasing the update rate seems like a band-aid solution, and I'm trying to avoid increasing the system reqs. I could also check for collisions in the actual interpolator, but that seems like heavy overhead, and then I'm no longer dividing the drawing and the game updating.

    Read the article

  • Camera movement and threshold not working

    - by irish guy mcconagheh
    I have a platformer that is in progress, part of this has a camera which I only want to move when the character moves out of a certain threshold, to try to accomplish this I have the following if statement: if(((Mathf.Abs(target.transform.position.x))-(Mathf.Abs(transform.position.x)))>thres){ x = moveTo(transform.position.x, target.position.x, trackSpeed); } in unity/c#. In pseudocode it means if((absolute value of player x) - (absolute value of camera x) is greater than the threshold){ move { however this does not seem to work correctly. it appears to work for the first couple of times the threshold is reached, however the distance between the camera and the player has to increase every time for the camera to move. I do not believe the movement of the camera is the problem, however the code for it is as follows: private float moveTo(float n, float target, float accel) { if (n == target) { return n; } else { float dir = Mathf.Sign(target - n); n += accel * Time.deltaTime * dir; return (dir == Mathf.Sign(target-n))? n: target; } } }

    Read the article

  • OpenGL ES, orthopgraphics projection and viewport

    - by DarkDeny
    I want to make some simple 2D game on iOS to familiarize myself with OpenGL ES. I started with Ray Wenderlich tutorial (How To Create A Simple 2D iPhone Game with OpenGL ES 2.0 and GLKit). That tutorial is quite good, but I miss some parts of a puzzle. Ray creates orthographic projection using some magic numbers like 480 and 320. It is not clear to me why did he take these numbers, and as far as I can see - sprite is not mapped to the ipad simulator screen one-to-one pixel. I tried to play with parameters with which ortho matrix is created, but I cannot figure out what math is here. How can I calculate numbers (bottom, top, left, right, close, far) which will be parameters to orthographic projection matrix creation and have sprite on the screen shown in its original size?

    Read the article

  • How stoper one annimation model on XNA?

    - by Mehdi Bugnard
    I met a Difficulty for one stoper annimation. Everything works great starter for the animation. But I do not see how stoper and can continue the annimation paused. The "animationPlayer.StartClip (clip)" is used to choke the annimation but impossible to find a way to stoper Thans's a lot Here is my code to use. protected override void LoadContent() { //Model - Player model_player = Content.Load<Model>("Models\\Player\\models"); // Look up our custom skinning information. SkinningData skinningData = model_player.Tag as SkinningData; if (skinningData == null) throw new InvalidOperationException ("This model does not contain a SkinningData tag."); // Create an animation player, and start decoding an animation clip. animationPlayer = new AnimationPlayer(skinningData); AnimationClip clip = skinningData.AnimationClips["ArmLowAction_006"]; animationPlayer.StartClip(clip); } protected overide update(GameTime gameTime) { KeyboardState key = Keyboard.GetState(); // If player don't move -> stop anim if (!key.IsKeyDown(Keys.W) && !keyStateOld.IsKeyUp(Keys.S) && !keyStateOld.IsKeyUp(Keys.A) && !keyStateOld.IsKeyUp(Keys.D)) { //animation stop ? not exist ? animationPlayer.Stop(); isPlayerStop = true; } else { if(isPlayerStop == true) { isPlayerStop = false; animationPlayer.StartClip(Clip); } }

    Read the article

  • Formula for three competing heroes, each has one they can beat and one they're beaten by

    - by Georgiadis Abraam
    I am trying to design a game for a project I have, The main idea is: 3 Types of heroes 3 Stats per hero There are no levels involved so the differences must be located on stats. Fight logic - The logic of fight is that type1hero has good chances winning type2hero, type2hero has good chances type3hero and type3hero has good chances winning type1hero. For over a week I am trying to find a stats based formula that will allow me to fix this but I can't, I was meddling with numbers yesterday and it was decent but I can't extract the formula out of it. Could you please guide me or give me hints on how should I start creating formulas on a Non lvl game that fulfills the fight logic?

    Read the article

  • Multiple Vertex Buffers per Mesh

    - by Daniel
    I've run into the situation where the size of my mesh with all its vertices and indices, is larger than the (optimal) vertex buffer object upper limit (~8MB). I was wondering if I can sub-divide the mesh across multiple vertex buffers, and somehow retain validity of the indices. Ie a triangle with a indice at the first vertex, and an indice at the last (ie in seperate VBOs). All the while maintaining this within Vertex Array Objects. My thoughts are, save myself the hassle, and for meshes (messes :P) such as this, just use the necessary size ( 8MB); which is what I do at the moment. But ideally my buffer manager (wip) at the moment is using optimal sizes; I may just have to make a special case then... Any ideas? If necessary, a simple C++ code example is appreciated. Note: I have also cross-posted this on stackoverflow, as I was not sure as to which it would be more suitable (its partly a design question).

    Read the article

  • Variables in static library are never initialized. Why?

    - by Coyote
    I have a bunch of variables that should be initialized then my game launches, but must of them are never initialized. Here is an example of the code: MyClass.h class MyClass : public BaseObject { DECLARE_CLASS_RTTI(MyClass, BaseObject); ... }; MyClass.cpp REGISTER_CLASS(MyClass) Where REGISTER_CLASS is a macro defined as follow #define REGISTER_CLASS(className)\ class __registryItem##className : public __registryItemBase {\ virtual className* Alloc(){ return NEW className(); }\ virtual BaseObject::RTTI& GetRTTI(){ return className::RTTI; }\ }\ \ const __registryItem##className __registeredItem##className(#className); and __registryItemBase looks like this: class __registryItemBase { __registryItemBase(const _string name):mName(name){ ClassRegistry::Register(this); } const _string mName; virtual BaseObject* Alloc() = 0; virtual BaseObject::RTTI& GetRTTI() = 0; } Now the code is similar to what I currently have and what I have works flawlessly, all the registered classes are registered to a ClassManager before main(...) is called. I'm able to instantiate and configure components from scripts and auto-register them to the right system etc... The problem arrises when I create a static library (currently for the iPhone, but I fear it will happen with android as well). In that case the code in the .cpp files is never registered. Why is the resulting code not executed when it is in the library while the same code in the program's binary is always executed? Bonus questions: For this to work in the static library, what should I do? Is there something I am missing? Do I need to pass a flag when building the lib? Should I create another structure and init all the __registeredItem##className using that structure?

    Read the article

  • Handling window resize with arbitrary aspect ratios

    - by DormoTheNord
    I'm currently making a 2D game using SFML. I want the aspect ratio to be maintained when the user resizes the window. I also want the game to work with any arbitrary aspect ratio (like any media player would). Here is the code I have so far: void os::GameEngine::setCameraViewport() { sf::FloatRect tempViewport; float viewAspectRatio = (float)aspectRatio.x / aspectRatio.y; float screenAspectRatio = (float)gameWindow.getSize().x / gameWindow.getSize().y; if (viewAspectRatio > screenAspectRatio) { // Viewport is wider than screen, fit on X } else if (viewAspectRatio < screenAspectRatio) { // Screen is wider than viewport, fit on Y } else // window aspect ratio matches view aspect ratio { tempViewport.height = 1; tempViewport.width = 1; tempViewport.left = 0; tempViewport.top = 0; } viewport = tempViewport; camera.setViewport(viewport); gameWindow.setView(camera); } The problem is I'm having trouble with the logic to determine the properties of the viewport.

    Read the article

  • Position Reconstruction from Depth by inverting Perspective Projection

    - by user1294203
    I had some trouble reconstructing position from depth sampled from the depth buffer. I use the equivalent of gluPerspective in GLM. The code in GLM is: template GLM_FUNC_QUALIFIER detail::tmat4x4 perspective ( valType const & fovy, valType const & aspect, valType const & zNear, valType const & zFar ) { valType range = tan(radians(fovy / valType(2))) * zNear; valType left = -range * aspect; valType right = range * aspect; valType bottom = -range; valType top = range; detail::tmat4x4 Result(valType(0)); Result[0][0] = (valType(2) * zNear) / (right - left); Result[1][2] = (valType(2) * zNear) / (top - bottom); Result[2][3] = - (zFar + zNear) / (zFar - zNear); Result[2][4] = - valType(1); Result[3][5] = - (valType(2) * zFar * zNear) / (zFar - zNear); return Result; } There doesn't seem to be any errors in the code. So I tried to invert the projection, the formula for the z and w coordinates after projection are: and dividing z' with w' gives the post-projective depth (which lies in the depth buffer), so I need to solve for z, which finally gives: Now, the problem is I don't get the correct position (I have compared the one reconstructed with a rendered position). I then tried using the respective formula I get by doing the same for this Matrix. The corresponding formula is: For some reason, using the above formula gives me the correct position. I really don't understand why this is the case. Have I done something wrong? Could someone enlighten me please?

    Read the article

  • Move a 2D square on y axis on android GLES2

    - by Dan
    I am trying to create a simple game for android, to start i am trying to make the square move down the y axis but the way i am doing it dosent move the square at all and i cant find any tutorials for GLES20 The on draw frame function in the render class updates the users position based on accleration dew to gravity, gets the transform matrix from the user class which is used to move the square down, then the program draws it. All that happens is that the square is drawn, no motion happens public void onDrawFrame(GL10 gl) { user.update(0.0, phy.AccelerationDewToGravity); GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT); // Re draws black background GLES20.glVertexAttribPointer(maPositionHandle, 3, GLES20.GL_FLOAT, false, 12, user.SquareVB);//triangleVB); GLES20.glEnableVertexAttribArray(maPositionHandle); GLES20.glUniformMatrix4fv(maPositionHandle, 1, false, user.getTransformMatrix(), 0); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); } The update function in the player class is public void update(double vh, double vv) { Vh += vh; // Increase horrzontal Velosity Vv += vv; // Increase vertical velosity //Matrix.translateM(mMMatrix, 0, (int)Vh, (int)Vv, 0); Matrix.translateM(mMMatrix, 0, mMMatrix, 0, (float)Vh, (float)Vv, 0); }

    Read the article

  • How can I deal with actor translations and other "noise" in third-party motion capture data?

    - by Charles
    I'm working on a game, and I've run into a problem with motion capture data. My team is using 3DS Max 2011 and trying to put free motion capture files on our models. The problem we're having is it has become extremely hard to find motion capture data that stays in place. We've found some great motion captures of things like walking and jumping but the actors themselves move within the data, so when we attach these animations to our models and bring them into XNA, the models walk forward even when they should technically be standing still (and then there's also the problem of them resetting at the end of the animation). How can we clean up, at runtime or asset-processing time, the animation in these motion capture files?

    Read the article

  • Any significant performance cost to using BlendState.Premultiplied?

    - by Donutz
    Normally I guess you'd use BlendState.AlphaBlend because normally when you load your textures through the pipeline they're already premultiplied. However, if you're loading textures at runtime from PNGs or some such, you have to loop through the pixels and premultiply them, which can take a long time if you've got a lot of textures to load. So it looks (haven't tried it) like using BlendState.Premultiplied instead of BlendState.AlphaBlend should handle non-premultiplied textures and produce the same visual result, without all the startup costs. I have to wonder if there's a non-obvious cost to doing this, like a huge drop in performance or something. Anyone know?

    Read the article

  • XNA 4.0, Combining model draw calls

    - by MayContainNuts
    I have the following problem: The levels in my game are made up of a Large Quantity of small Models and because of that I am experiencing frame rate problems. I already did some research and came to the conclusion that the amount of draw calls I am making must be the root of my problems. I've looked around for a while now and couldn't quite find a satisfying solution. I can't cull any of those models, in a worst case scenario there could be 1000 of them visible at the same time. I also looked at Hardware geometry Instancing, but I don't think that's quite what I'm looking for, because the level consists of a lot of different parts. So, what I'd like to do is combining 100 or 200 of these Models into a single large one and draw it as a whole 'chunk'. The whole geometry is static so it wouldn't have to be changed after combining, but different parts of it would have to use different textures (I think I can accomplish that with a texture atlas). But I have no idea how to to that, so does anybody have any suggestions?

    Read the article

  • Drawing of a huge model - How to regain performance?

    - by marc wellman
    I have a huge model I want to draw in my XNA application but because of its size I am experiencing a tremendous loss of performance. The model has about ~50 000 000 edges and has a size on disk of 205 MB in DirectX Format. Please don't ask whether this model has to be that big - yes it has! Is there a way to transfer the model directly to my GPU in order to let the GPU do the drawing like when transferring a VertexBuffer like this: graphicsDevice.Vertices[1].SetSource(_instanceBuffers[i], 0, _sizeofMatrix); because when I try to fill a vertexBuffer with all the vertices I am getting a OutOfMemoryException.

    Read the article

  • Facebook Game database design

    - by facebook-100000781341887
    Hi, I'm currently develop a facebook mafia like PHP game(of course, a light weight version), here is a simplify database(MySQL) of the game id-a <int3> <for index> uid <chr15> <facebook uid> HP <int3> <health point> exp <int3> <experience> money <int3> <money> list_inventory <chr5> <the inventory user hold...some special here, talk next> ... and 20 other fields just like reputation, num of combat... *the number next to the type is the size(byte) of the type For the list_inventory, there have 40 inventorys in my game, (actually, I have 5 these kind of list in my database), and each user can only contain 1 qty of each inventory, therefore, I assign 5 char for this field and each bit of char as 1 item(5 char * 8 bit = 40 slot), and I will do some manipulation by PHP to extract the data from this 5 byte. OK, I was thinking on this, if this game contains 100,000 user, and only 10% are active, therefore, if use my method, for the space use, 5 byte * 100,000 = 500 KB if I use another method, create a table user_hold_inventory, if the user have the inventory, then insert a record into this table, so, for 10,000 active user, I assume they got all item, but for other, I assume they got no item, here is the fields of the new table id-b <int3> <for index> id-a <int3> <id of the user table> inv_no <int1> <inventory that user hold> for the space use, ([id] (3+3) byte + [inv_no] 1 byte ) * [active user] 10,000 * [all inventory] * 40 = 2.8 MB seems method 2 have use more space, but it consume less CPU power. Please comment these 2 method or please correct me if there have another better method rather than what I think. Another question is, my database contain 26 fields, but I counted 5 of them are not change frquently, should I need to separate it on the other table or not? So many words, thanks for reading :)

    Read the article

  • How can I gain access to a player instance in a Minecraft mod?

    - by Andrew Graber
    I'm creating Minecraft mod with a pickaxe that takes away experience when you break a block. The method for taking away experience from a player is addExperience on EntityPlayer, so I need to get an instance of EntityPlayer for the player using my pickaxe when the pickaxe breaks a block, so that I can remove the appropriate amount of experience. My pickaxe class currently looks like this: public class ExperiencePickaxe extends ItemPickaxe { public ExperiencePickaxe(int ItemID, EnumToolMaterial material){ super(ItemID, material); } public boolean onBlockDestroyed(ItemStack par1ItemStack, World par2World, int par3, int par4, int par5, int par6, EntityLiving par7EntityLiving) { if ((double)Block.blocksList[par3].getBlockHardness(par2World, par4, par5, par6) != 0.0D) { EntityPlayer e = new EntityPlayer(); // create an instance e.addExperience(-1); } return true; } } Obviously, I cannot actually create a new EntityPlayer since it is an abstract class. How can I get access to the player using my pickaxe?

    Read the article

  • How to make room reflection using Cubemap

    - by MaT
    I am trying to use a cube map of the inside of a room to create some reflections on walls, ceiling and floor. But when I use the cube map, the reflected image is not correct. The point of view seems to be false. To be correct I use a different cube map for each walls, floor or ceiling. The cube map is calculated from the center of the plane looking at the room. Are there specialized techniques to achieve such effect ? Thanks a lot !

    Read the article

  • Omni-directional light shadow mapping with cubemaps in WebGL

    - by Winged
    First of all I must say, that I have read a lot of posts describing an usage of cubemaps, but I'm still confused about how to use them. My goal is to achieve a simple omni-directional (point) light type shading in my WebGL application. I know that there is a lot more techniques (like using Two-Hemispheres or Camera Space Shadow Mapping) which are way more efficient, but for an educational purpose cubemaps are my primary goal. Till now, I have adapted a simple shadow mapping which works with spotlights (with one exception: I don't know how to cut off the glitchy part beyond the reach of a single shadow map texture): glitchy shadow mapping<<< So for now, this is how I understand the usage of cubemaps in shadow mapping: Setup a framebuffer (in case of cubemaps - 6 framebuffers; 6 instead of 1 because every usage of framebufferTexture2D slows down an execution which is nicely described here <<<) and a texture cubemap. Also in WebGL depth components are not well supported, so I need to render it to RGBA first. this.texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_CUBE_MAP, this.texture); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.LINEAR); for (var face = 0; face < 6; face++) gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, gl.RGBA, this.size, this.size, 0, gl.RGBA, gl.UNSIGNED_BYTE, null); gl.bindTexture(gl.TEXTURE_CUBE_MAP, null); this.framebuffer = []; for (face = 0; face < 6; face++) { this.framebuffer[face] = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer[face]); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + face, this.texture, 0); gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, this.depthbuffer); var e = gl.checkFramebufferStatus(gl.FRAMEBUFFER); // Check for errors if (e !== gl.FRAMEBUFFER_COMPLETE) throw "Cubemap framebuffer object is incomplete: " + e.toString(); } Setup the light and the camera (I'm not sure if should I store all of 6 view matrices and send them to shaders later, or is there a way to do it with just one view matrix). Render the scene 6 times from the light's position, each time in another direction (X, -X, Y, -Y, Z, -Z) for (var face = 0; face < 6; face++) { gl.bindFramebuffer(gl.FRAMEBUFFER, shadow.buffer.framebuffer[face]); gl.viewport(0, 0, shadow.buffer.size, shadow.buffer.size); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); camera.lookAt( light.position.add( cubeMapDirections[face] ) ); scene.draw(shadow.program); } In a second pass, calculate the projection a a current vertex using light's projection and view matrix. Now I don't know If should I calculate 6 of them, because of 6 faces of a cubemap. ScaleMatrix pushes the projected vertex into the 0.0 - 1.0 region. vDepthPosition = ScaleMatrix * uPMatrixFromLight * uVMatrixFromLight * vWorldVertex; In a fragment shader calculate the distance between the current vertex and the light position and check if it's deeper then the depth information read from earlier rendered shadow map. I know how to do it with a 2D Texture, but I have no idea how should I use cubemap texture here. I have read that texture lookups into cubemaps are performed by a normal vector instead of a UV coordinate. What vector should I use? Just a normalized vector pointing to the current vertex? For now, my code for this part looks like this (not working yet): float shadow = 1.0; vec3 depth = vDepthPosition.xyz / vDepthPosition.w; depth.z = length(vWorldVertex.xyz - uLightPosition) * linearDepthConstant; float shadowDepth = unpack(textureCube(uDepthMapSampler, vWorldVertex.xyz)); if (depth.z > shadowDepth) shadow = 0.5; Could you give me some hints or examples (preferably in WebGL code) how I should build it?

    Read the article

  • vector rotations for branches of a 3d tree

    - by freefallr
    I'm attempting to create a 3d tree procedurally. I'm hoping that someone can check my vector rotation maths, as I'm a bit confused. I'm using an l-system (a recursive algorithm for generating branches). The trunk of the tree is the root node. It's orientation is aligned to the y axis. In the next iteration of the tree (e.g. the first branches), I might create a branch that is oriented say by +10 degrees in the X axis and a similar amount in the Z axis, relative to the trunk. I know that I should keep a rotation matrix at each branch, so that it can be applied to child branches, along with any modifications to the child branch. My questions then: for the trunk, the rotation matrix - is that just the identity matrix * initial orientation vector ? for the first branch (and subsequent branches) - I'll "inherit" the rotation matrix of the parent branch, and apply x and z rotations to that also. e.g. using glm::normalize; using glm::rotateX; using glm::vec4; using glm::mat4; using glm::rotate; vec4 vYAxis = vec4(0.0f, 1.0f, 0.0f, 0.0f); vec4 vInitial = normalize( rotateX( vYAxis, 10.0f ) ); mat4 mRotation = mat4(1.0); // trunk rotation matrix = identity * initial orientation vector mRotation *= vInitial; // first branch = parent rotation matrix * this branches rotations mRotation *= rotate( 10.0f, 1.0f, 0.0f, 0.0f ); // x rotation mRotation *= rotate( 10.0f, 0.0f, 0.0f, 1.0f ); // z rotation Are my maths and approach correct, or am I completely wrong? Finally, I'm using the glm library with OpenGL / C++ for this. Is the order of x rotation and z rotation important?

    Read the article

  • A good way to build a game loop in OpenGL

    - by Jeff
    I'm currently beginning to learn OpenGL at school, and I've started making a simple game the other day (on my own, not for school). I'm using freeglut, and am building it in C, so for my game loop I had really just been using a function I made passed to glutIdleFunc to update all the drawing and physics in one pass. This was fine for simple animations that I didn't care too much about the frame rate, but since the game is mostly physics based, I really want to (need to) tie down how fast it's updating. So my first attempt was to have my function I pass to glutIdleFunc (myIdle()) to keep track of how much time has passed since the previous call to it, and update the physics (and currently graphics) every so many milliseconds. I used timeGetTime() to do this (by using <windows.h>). And this got me to thinking, is using the idle function really a good way of going about the game loop? My question is, what is a better way to implement the game loop in OpenGL? Should I avoid using the idle function?

    Read the article

  • (Unity)Getting a mirrored mesh from my data structure

    - by Steve
    Here's the background: I'm in the beginning stages of an RTS game in Unity. I have a procedurally generated terrain with a perlin-noise height map, as well as a function to generate a river. The problem is that the graphical creation of the map is taking the data structure of the map and rotating it by 180 degrees. I noticed this problem when i was creating my rivers. I would set the River's height to flat, and noticed that the actual tiles that were flat in the graphical representation were flipped and mirrored. Here's 3 screenshots of the map from different angles: http://imgur.com/a/VLHHq As you can see, if you flipped (graphically) the river by 180 degrees on the z axis, it would fit where the terrain is flattened. I have a suspicion it is being caused by a misunderstanding on my part of how vertices work. Alas, here is a snippet of the code that is used: This code here creates a new array of Tile objects, which hold the information for each tile, including its type, coordinate, height, and it's 4 vertices public DTileMap (int size_x, int size_y) { this.size_x = size_x; this.size_y = size_y; //Initialize Map_Data Array of Tile Objects map_data = new Tile[size_x, size_y]; for (int j = 0; j < size_y; j++) { for (int i = 0; i < size_x; i++) { map_data [i, j] = new Tile (); map_data[i,j].coordinate.x = (int)i; map_data[i,j].coordinate.y = (int)j; map_data[i,j].vertices[0] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -j * GTileMap.TileMap.tileSize); map_data[i,j].vertices[1] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[2] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[3] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); } } This code sets the river tiles to height 0 foreach (Tile t in map_data) { if (t.realType == "Water") { t.vertices[0].y = 0f; t.vertices[1].y = 0f; t.vertices[2].y = 0f; t.vertices[3].y = 0f; } } And below is the code to generate the actual graphics from the data: public void BuildMesh () { DTileMap.DTileMap map = new DTileMap.DTileMap (size_x, size_z); int numTiles = size_x * size_z; int numTris = numTiles * 2; int vsize_x = size_x + 1; int vsize_z = size_z + 1; int numVerts = vsize_x * vsize_z; // Generate the mesh data Vector3[] vertices = new Vector3[ numVerts ]; Vector3[] normals = new Vector3[numVerts]; Vector2[] uv = new Vector2[numVerts]; int[] triangles = new int[ numTris * 3 ]; int x, z; for (z=0; z < vsize_z; z++) { for (x=0; x < vsize_x; x++) { normals [z * vsize_x + x] = Vector3.up; uv [z * vsize_x + x] = new Vector2 ((float)x / size_x, 1f - (float)z / size_z); } } for (z=0; z < vsize_z; z+=1) { for (x=0; x < vsize_x; x+=1) { if (x == vsize_x - 1 && z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z - 1].vertices [3]; } else if (z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z - 1].vertices [2]; } else if (x == vsize_x - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z].vertices [1]; } else { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [0]; vertices [z * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [1]; vertices [(z+1) * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [2]; vertices [(z+1) * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [3]; } } } } for (z=0; z < size_z; z++) { for (x=0; x < size_x; x++) { int squareIndex = z * size_x + x; int triOffset = squareIndex * 6; triangles [triOffset + 0] = z * vsize_x + x + 0; triangles [triOffset + 2] = z * vsize_x + x + vsize_x + 0; triangles [triOffset + 1] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 3] = z * vsize_x + x + 0; triangles [triOffset + 5] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 4] = z * vsize_x + x + 1; } } // Create a new Mesh and populate with the data Mesh mesh = new Mesh (); mesh.vertices = vertices; mesh.triangles = triangles; mesh.normals = normals; mesh.uv = uv; // Assign our mesh to our filter/renderer/collider MeshFilter mesh_filter = GetComponent<MeshFilter> (); MeshCollider mesh_collider = GetComponent<MeshCollider> (); mesh_filter.mesh = mesh; mesh_collider.sharedMesh = mesh; calculateMeshTangents (mesh); BuildTexture (map); } If this looks familiar to you, its because i got most of it from Quill18. I've been slowly adapting it for my uses. And please include any suggestions you have for my code. I'm still in the very early prototyping stage.

    Read the article

< Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >