Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 448/1027 | < Previous Page | 444 445 446 447 448 449 450 451 452 453 454 455  | Next Page >

  • DX11 - Weird shader behavior with and without branching

    - by Martin Perry
    I have found problem in my shader code, which I dont´t know how to solve. I want to rewrite this code without "ifs" tmp = evaluate and result is 0 or 1 (nothing else) if (tmp == 1) val = X1; if (tmp == 0) val = X2; I rewite it this way, but this piece of code doesn ´t word correctly tmp = evaluate and result is 0 or 1 (nothing else) val = tmp * X1 val = !tmp * X2 However if I change it to: tmp = evaluate and result is 0 or 1 (nothing else) val = tmp * X1 if (!tmp) val = !tmp * X2 It works fine... but it is useless because of "if", which need to be eliminated I honestly don´t understand it Posted Image . I tried compilation with NO and FULL optimalization, result is same

    Read the article

  • Accelerating 2d object collision with other objects [on hold]

    - by Silent Cave
    Making my very first attempt at game programming with SDL/OpenGL. So I made an object Actor witch can move in all four sides with acceleration. And there are bunch of other rectangles to collide to. the image Movement and collision detection alghorythms work just fine by itself, but when combined to prevent the green rectangle from crossing black rectangles, it gives me a kind of funny resault. Let me show you the code first: from Actor.h class Actor{ public: SDL_Rect * dim; alphaColor * col; float speed; float xlGrav, xrGrav, yuGrav, ydGrav; float acceleration; bool left,right,up,down; Actor(SDL_Rect * dim,alphaColor * col, float speed, float acceleration); bool colides(const SDL_Rect & rect); bool check_for_collisions(const std::vector<SDL_Rect*> & gameObjects ); }; from actor.cpp bool Actor::colides(const SDL_Rect & rect){ if (dim->x + dim->w < rect.x) return false; if (dim->x > rect.x + rect.w) return false; if (dim->y + dim->h < rect.y) return false; if (dim->y > rect.y + rect.h) return false; return true; } movement logic from main.cpp if (actor->left){ if(actor->xlGrav < actor->speed){ actor->xlGrav += actor->speed*actor->acceleration; }else actor->xlGrav = actor->speed; actor->dim->x -= actor->xlGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->x += actor->xlGrav; actor->xlGrav = 0; } } if (!actor->left){ if(actor->xlGrav - actor->speed*actor->acceleration > 0){ actor->xlGrav -= actor->speed*actor->acceleration; }else actor->xlGrav = 0; actor->dim->x -= actor->xlGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->x += actor->xlGrav; actor->xlGrav = 0; } } if (actor->right){ if(actor->xrGrav < actor->speed){ actor->xrGrav += actor->speed*actor->acceleration; }else actor->xrGrav = actor->speed; actor->dim->x += actor->xrGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->x -= actor->xrGrav; actor->xrGrav = 0; } } if (!actor->right){ if(actor->xrGrav - actor->speed*actor->acceleration > 0){ actor->xrGrav -= actor->speed*actor->acceleration; }else actor->xrGrav = 0; actor->dim->x += actor->xrGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->x -= actor->xrGrav; actor->xrGrav = 0; } } if (actor->up){ if(actor->yuGrav < actor->speed){ actor->yuGrav += actor->speed*actor->acceleration; }else actor->yuGrav = actor->speed; actor->dim->y -= actor->yuGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->y += actor->yuGrav; actor->yuGrav = 0; } } if (!actor->up){ if(actor->yuGrav - actor->speed*actor->acceleration > 0){ actor->yuGrav -= actor->speed*actor->acceleration; }else actor->yuGrav = 0; actor->dim->y -= actor->yuGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->y += actor->yuGrav; actor->yuGrav = 0; } } if (actor->down){ if(actor->ydGrav < actor->speed){ actor->ydGrav += actor->speed*actor->acceleration; }else actor->ydGrav = actor->speed; actor->dim->y += actor->ydGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->y -= actor->ydGrav; actor->ydGrav = 0; } } if (!actor->down){ if(actor->ydGrav - actor->speed*actor->acceleration > 0){ actor->ydGrav -= actor->speed*actor->acceleration; }else actor->ydGrav = 0; actor->dim->y += actor->ydGrav; if(actor->check_for_collisions(gameObjects)){ actor->dim->y -= actor->ydGrav; actor->ydGrav = 0; } } So, if the green box approaches an obstacle from up or left, everything goes as planned - object stops, and it's acceleration drops to zero. But if it comes from bottom or right, it enters into obstacles inner space and starts strangely dance, I'd rather say move in inverted controls. What do I fail to see?

    Read the article

  • Would someone please explain Octree Collisions to me?

    - by A-Type
    I've been reading everything I can find on the subject and I feel like the pieces are just about to fall into place, but I just can't quite get it. I'm making a space game, where collisions will occur between planets, ships, asteroids, and the sun. Each of these objects can be subdivided into 'chunks', which I have implemented to speed up rendering (the vertices can and will change often at runtime, so I've separated the buffers). These subdivisions also have bounding primitives to test for collision. All of these objects are made of blocks (yeah, it's that kind of game). Blocks can also be tested for rough collisions, though they do not have individual bounding primitives for memory reasons. I think the rough testing seems to be sufficient, though. So, collision needs to be fairly precise; at block resolution. Some functions rely on two blocks colliding. And, of course, attacking specific blocks is important. Now what I am struggling with is filtering my collision pairs. As I said, I've read a lot about Octrees, but I'm having trouble applying it to my situation as many tutorials are vague with very little code. My main issues are: Are Octrees recalculated each frame, or are they stored in memory and objects are shuffled into different divisions as they move? Despite all my reading I still am not clear on this... the vagueness of it all has been frustrating. How far do Octrees subdivide? Planets in my game are quite large, while asteroids are smaller. Do I subdivide to the size of the planet, or asteroid (where planet is in multiple divisions)? Or is the limit something else entirely, like number of elements in the division? Should I load objects into the octrees as 'chunks' or in the whole, then break into chunks later? This could be specific to my implementation, I suppose. I was going to ask about how big my root needed to be, but I did manage to find this question, and the second answer seems sufficient for me. I'm afraid I don't really get what he means by adding new nodes and doing subdivisions upon adding new objects, probably because I'm confused about whether the tree is maintained in memory or recalculated per-frame.

    Read the article

  • Where to start learning OpenGL with C++?

    - by NERDcustard
    I'm 16 years old and my name is Norbert. I have learnt C++ and made some cool text based games and such but I would love to start graphic's programming. I'm a decent artiest (I will have some of my work bellow) I know the base of C++ but I really would like to get into OpenGL. I need someone to show me some good tutorials for OpenGl with C++ so I can really get into game dev. My goal is to be able to program a simple 2d game by the end of the year and I have lots of time to do so. I'm en-rolled in a game dev next year and really need some help with starting off. http://imgur.com/QZjKX http://imgur.com/3CZy7

    Read the article

  • Is there a simple way to stop enemies standing in the same spot?

    - by Iain
    So: top-down game, my enemies chase the player, when they get within a certain distance they stand still and fire. If they're all coming from the same direction they all end up standing in the same spot (i.e. standing "within" each other), as I'm not currently doing collision detection between enemies - they are free to pass over each other. What's a simple way around this? Either some form of collision detection or some ai?

    Read the article

  • Annoying flickering of vertices and edges (possible z-fighting)

    - by Belgin
    I'm trying to make a software z-buffer implementation, however, after I generate the z-buffer and proceed with the vertex culling, I get pretty severe discrepancies between the vertex depth and the depth of the buffer at their projected coordinates on the screen (i.e. zbuffer[v.xp][v.yp] != v.z, where xp and yp are the projected x and y coordinates of the vertex v), sometimes by a small fraction of a unit and sometimes by 2 or 3 units. Here's what I think is happening: Each triangle's data structure holds the plane's (that is defined by the triangle) coefficients (a, b, c, d) computed from its three vertices from their normal: void computeNormal(Vertex *v1, Vertex *v2, Vertex *v3, double *a, double *b, double *c) { double a1 = v1 -> x - v2 -> x; double a2 = v1 -> y - v2 -> y; double a3 = v1 -> z - v2 -> z; double b1 = v3 -> x - v2 -> x; double b2 = v3 -> y - v2 -> y; double b3 = v3 -> z - v2 -> z; *a = a2*b3 - a3*b2; *b = -(a1*b3 - a3*b1); *c = a1*b2 - a2*b1; } void computePlane(Poly *p) { double x = p -> verts[0] -> x; double y = p -> verts[0] -> y; double z = p -> verts[0] -> z; computeNormal(p -> verts[0], p -> verts[1], p -> verts[2], &p -> a, &p -> b, &p -> c); p -> d = p -> a * x + p -> b * y + p -> c * z; } The z-buffer just holds the smallest depth at the respective xy coordinate by somewhat casting rays to the polygon (I haven't quite got interpolation right yet so I'm using this slower method until I do) and determining the z coordinate from the reversed perspective projection formulas (which I got from here: double z = -(b*Ez*y + a*Ez*x - d*Ez)/(b*y + a*x + c*Ez - b*Ey - a*Ex); Where x and y are the pixel's coordinates on the screen; a, b, c, and d are the planes coefficients; Ex, Ey, and Ez are the eye's (camera's) coordinates. This last formula does not accurately give the exact vertices' z coordinate at their projected x and y coordinates on the screen, probably because of some floating point inaccuracy (i.e. I've seen it return something like 3.001 when the vertex's z-coordinate was actually 2.998). Here is the portion of code that hides the vertices that shouldn't be visible: for(i = 0; i < shape.nverts; ++i) { double dist = shape.verts[i].z; if(z_buffer[shape.verts[i].yp][shape.verts[i].xp].z < dist) shape.verts[i].visible = 0; else shape.verts[i].visible = 1; } How do I solve this issue? EDIT I've implemented the near and far planes of the frustum, with 24 bit accuracy, and now I have some questions: Is this what I have to do this in order to resolve the flickering? When I compare the z value of the vertex with the z value in the buffer, do I have to convert the z value of the vertex to z' using the formula, or do I convert the value in the buffer back to the original z, and how do I do that? What are some decent values for near and far? Thanks in advance.

    Read the article

  • Make an object slide around an obstacle

    - by Isaiah
    I have path areas set up in a game I'm making for canvas/html5 and have got it working to keep the player within these areas. I have a function isOut(boundary, x, y) that returns true if the point is outside the boundary. What I do is check only the new position x/y separately with the corresponding old position x/y. Then if each one is out I assign them the past value from the frame before. The old positions are kept in a variable from a closure I made. like this: opos = [x,y];//old position npos = [x,y];//new position if(isOut(bound, npos[0], opos[1])){ npos[0] = opos[0]; //assign it the old x position } if(isOut(bound, opos[0], npos[1])){ npos[1] = opos[1]; //assign it the old y position } It looks nice and works good at certain angles, but if your boundary has diagonal regions it results in jittery motion. What's happening is the y pos exits the area while x doesn't and continues pushing the player to the side, once it has moved the player to the side a bit the player can move forward and then the y exits again and the whole process repeats. Anyone know how I may be able to achieve a smoother slide? I have access to the player's velocity vector, the angle, and the speed(when used with the angle). I can move the play with either angle/speed or x/yvelocities as I've built in backups to translate one to the other if either have been altered manually.

    Read the article

  • Stop a rotating object at a specified angle?

    - by Krummelz
    I'm working in JavaScript with HTML5 and the canvas. I have an object which is rotating at a certain speed, and I need the object's rotation to slow down gradually and the front of the object to stop at a specified angle. (I'm using radians, not degrees.) I have a variable to keep track of the angle which the object is facing, as it rotates. How would I go about getting the object to come to rest, facing the direction I want it to?

    Read the article

  • How to play the sound of an object sliding on another object for a variable duration

    - by Antoine
    I would like to add sound effects to a basic 2D game. For example, a stone sphere is rolling on wood surface. Let's say I have a 2 second audio recording of this. How could I use the sample to add sound for an arbitrary duration ? So far I have two solutions in mind: a/ record the sound for an amount of time that is greater than the maximum expected duration, and play only a part of it; b/ extract a small portion of the sample and play it in a loop for the duration of the move; however I'm not sure if it makes sense with an audio wave.

    Read the article

  • How should I plan the inheritance structure for my game?

    - by Eric Thoma
    I am trying to write a platform shooter in C++ with a really good class structure for robustness. The game itself is secondary; it is the learning process of writing it that is primary. I am implementing an inheritance tree for all of the objects in my game, but I find myself unsure on some decisions. One specific issue that it bugging me is this: I have an Actor that is simply defined as anything in the game world. Under Actor is Character. Both of these classes are abstract. Under Character is the Philosopher, who is the main character that the user commands. Also under Character is NPC, which uses an AI module with stock routines for friendly, enemy and (maybe) neutral alignments. So under NPC I want to have three subclasses: FriendlyNPC, EnemyNPC and NeutralNPC. These classes are not abstract, and will often be subclassed in order to make different types of NPC's, like Engineer, Scientist and the most evil Programmer. Still, if I want to implement a generic NPC named Kevin, it would nice to be able to put him in without making a new class for him. I could just instantiate a FriendlyNPC and pass some values for the AI machine and for the dialogue; that would be ideal. But what if Kevin is the one benevolent Programmer in the whole world? Now we must make a class for him (but what should it be called?). Now we have a character that should inherit from Programmer (as Kevin has all the same abilities but just uses the friendly AI functions) but also should inherit from FriendlyNPC. Programmer and FriendlyNPC branched away from each other on the inheritance tree, so inheriting from both of them would have conflicts, because some of the same functions have been implemented in different ways on the two of them. 1) Is there a better way to order these classes to avoid these conflicts? Having three subclasses; Friendly, Enemy and Neutral; from each type of NPC; Engineer, Scientist, and Programmer; would amount to a huge number of classes. I would share specific implementation details, but I am writing the game slowly, piece by piece, and so I haven't implemented past Character yet. 2) Is there a place where I can learn these programming paradigms? I am already trying to take advantage of some good design patterns, like MVC architecture and Mediator objects. The whole point of this project is to write something in good style. It is difficult to tell what should become a subclass and what should become a state (i.e. Friendly boolean v. Friendly class). Having many states slows down code with if statements and makes classes long and unwieldy. On the other hand, having a class for everything isn't practical. 3) Are there good rules of thumb or resources to learn more about this? 4) Finally, where does templating come in to this? How should I coordinate templates into my class structure? I have never actually taken advantage of templating honestly, but I hear that it increases modularity, which means good code.

    Read the article

  • Playing part of a sfx audio file in HTML5 using WebAudio

    - by Matthew James Davis
    I have compiled all of my sound effects into one sequenced .ogg file. I have the start and stop times for each sound effect. How do I play the individual effects? That is, how do I play part of an audio file. More specificially, I've created a dictionary { 'sword_hit': { src: 'sfx.ogg', start: 265, // ms length: 212 // ms } } that my play_sound() function can use to look up 'sword_hit' and play the correct audio file at the correct start time for the correct duration. I simply need to know how to tell the WebAudio API to start playing at start ms and only play for length ms.

    Read the article

  • Velocity collision detection (2D)

    - by ultifinitus
    Alright, so I have made a simple game engine (see youtube) And my current implementation of collision resolution has a slight problem, involving the velocity of a platform. Basically I run through all of the objects necessary to detect collisions on and resolve those collisions as I find them. Part of that resolution is setting the player's velocity = the platform's velocity. Which works great! Unless I have a row of platforms moving at different velocities or a platform between a stack of tiles.... (current system) bool player::handle_collisions() { collisions tcol; bool did_handle = false; bool thisObjectHandle = false; for (int temp = 0; temp < collideQueue.size(); temp++) { thisObjectHandle = false; tcol = get_collision(prevPos.x,y,get_img()->get_width(),get_img()->get_height(), collideQueue[temp]->get_position().x,collideQueue[temp]->get_position().y, collideQueue[temp]->get_img()->get_width(),collideQueue[temp]->get_img()->get_height()); if (prevPos.y >= collideQueue[temp]->get_prev_pos().y + collideQueue[temp]->get_img()->get_height()) if (tcol.top > 0) { add_pos(0,tcol.top); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); thisObjectHandle = did_handle = true; } if (prevPos.y + get_img()->get_height() <= collideQueue[temp]->get_prev_pos().y) if (tcol.bottom > 0) { add_pos(collideQueue[temp]->get_vel().x,-tcol.bottom); set_vel(get_vel().x/*collideQueue[temp]->get_vel().x*/,collideQueue[temp]->get_vel().y); ableToJump = true; jumpTimes = maxjumpable; thisObjectHandle = did_handle = true; } /// /// ADD CODE FROM NEXT CODE BLOCK HERE (on forum, not in code) /// } for (int temp = 0; temp < collideQueue.size(); temp++) { thisObjectHandle = false; tcol = get_collision(x,y,get_img()->get_width(),get_img()->get_height(), collideQueue[temp]->get_position().x,collideQueue[temp]->get_position().y, collideQueue[temp]->get_img()->get_width(),collideQueue[temp]->get_img()->get_height()); if (prevPos.x + get_img()->get_width() <= collideQueue[temp]->get_prev_pos().x) if (tcol.left > 0) { add_pos(-tcol.left,0); set_vel(collideQueue[temp]->get_vel().x,get_vel().y); thisObjectHandle = did_handle = true; } if (prevPos.x >= collideQueue[temp]->get_prev_pos().x + collideQueue[temp]->get_img()->get_width()) if (tcol.right > 0) { add_pos(tcol.right,0); set_vel(collideQueue[temp]->get_vel().x,get_vel().y); thisObjectHandle = did_handle = true; } } return did_handle; } (if I add the following code {where the comment to do so is}, which is glitchy, the above problem doesn't happen, though it brings others) if (!thisObjectHandle) { if (tcol.bottom > tcol.top) { add_pos(collideQueue[temp]->get_vel().x,-tcol.bottom); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); } else if (tcol.top > tcol.bottom) { add_pos(0,tcol.top); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); } } How would you change my system to prevent this?

    Read the article

  • Designing Videogame Character Parodies [duplicate]

    - by David Dimalanta
    This question already has an answer here: Is it legal to add a cameo appearance of a known video game character in my game? 2 answers Was it okay to make a playable character when making a videogame despite its resemblance? For example, I'm making a 3rd-person action-platform genre and I have to make a character design resembling like Megaman but not exactly the same as him since there is little alternate in color, details, and facial features.

    Read the article

  • Error loading PCX image in FreeImage library

    - by khanhhh89
    I'm using FreeImage in C++ for loading texuture from the PCX image. My FreeImage code is as following: FREE_IMAGE_FORMAT fif = FIF_UNKNOWN; //pointer to the image data BYTE* bits(0); fif = FreeImage_GetFileType(m_fileName.c_str(), 0); if (FreeImage_FIFSupportsReading(fif)) dib = FreeImage_Load(fif, m_fileName.c_str()); //retrieve the image data bits = FreeImage_GetBits(dib); //get the image width and height width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); My problem is the width and height variable are both 512, while the bits array is an empty string, which make the following OPENGL call corrupt: glTexImage2D(m_textureTarget, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, bits); While debugging, I notice that the "fif" variable (which contains the format of the image) is JPEG, while the Image is actually PCX. I wonder whether or not the FreeImage recognize the wrong format (from PCX to JPEG), so tha the bits array is an empty string. I hope to see your explanation about this problem. Thanks so much

    Read the article

  • Problems with moving 2D circle/box collision detection

    - by dario3004
    This is my first game ever and I'm a newbie in computer physics. I've got this code for the collision detection and it works fine for BOTTOM and TOP collision.It miss the collision detection with the paddle's edge and angles so I've (roughly) tried to implement it. Main method that is called for bouncing, it checks if it bounce with wall, or with top (+ right/left side) or with bottom (+ right/left side): protected void handleBounces(float px, float py) { handleWallBounce(px, py); if(mBall.y < getHeight()/4){ if (handleRedFastBounce(mRed, px, py)) return; if (handleRightSideBounce(mRed,px,py)) return; if (handleLeftSideBounce(mRed,px,py)) return; } if(mBall.y > getHeight()/4 * 3){ if (handleBlueFastBounce(mBlue, px, py)) return; if (handleRightSideBounce(mBlue,px,py)) return; if (handleLeftSideBounce(mBlue,px,py)) return; } } This is the code for the BOTTOM bounce: protected boolean handleRedFastBounce(Paddle paddle, float px, float py) { if (mBall.goingUp() == false) return false; // next position tx = mBall.x; ty = mBall.y - mBall.getRadius(); // actual position ptx = px; pty = py - mBall.getRadius(); dyp = ty - paddle.getBottom(); xc = tx + (tx - ptx) * dyp / (ty - pty); if ((ty < paddle.getBottom() && pty > paddle.getBottom() && xc > paddle.getLeft() && xc < paddle.getRight())) { mBall.x = xc; mBall.y = paddle.getBottom() + mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } else return false; } As long as I understood it should be something like this: So I tried to make the "left side" and "right side" bounce method: protected boolean handleLeftSideBounce(Paddle paddle, float px, float py){ // next position tx = mBall.x + mBall.getRadius(); ty = mBall.y; // actual position ptx = px + mBall.getRadius(); pty = py; dyp = tx - paddle.getLeft(); yc = ty + (pty - ty) * dyp / (ptx - tx); if (ptx < paddle.getLeft() && tx > paddle.getLeft()){ System.out.println("left side bounce1"); System.out.println("yc: " + yc + "top: " + paddle.getTop() + " bottom: " + paddle.getBottom()); if (yc > paddle.getTop() && yc < paddle.getBottom()){ System.out.println("left side bounce2"); mBall.y = yc; mBall.x = paddle.getLeft() - mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } } return false; } I think I'm quite near to the solution but I'm having big troubles with the new "yc" formula. I tried so many versions of it but since I don't know the theory behind it I can't adjust for the Y axis. Since the Y axis is inverted I even tried this: yc = ty - (pty - ty) * dyp / (ptx - tx); I tried Googling it but I can't seem to find a solution for it. Also this method fails when ball touches the angle and I don't think is a nice way because it just test "one" point of the ball and probably there will be many cases in which the ball won't bounce.

    Read the article

  • What causes Box2D revolute joints to separate?

    - by nbolton
    I have created a rag doll using dynamic bodies (rectangles) and simple revolute joints (with lower and upper angles). When my rag doll hits the ground (which is a static body) the bodies seem to fidget and the joints separate. It looks like the bodies are sticking to the ground, and the momentum of the rag doll pulls the joint apart (see screenshot below). I'm not sure if it's related, but I'm using the Badlogic GDX Java wrapper for Box2D. Here's some snippets of what I think is the most relevant code: private RevoluteJoint joinBodyParts( Body a, Body b, Vector2 anchor, float lowerAngle, float upperAngle) { RevoluteJointDef jointDef = new RevoluteJointDef(); jointDef.initialize(a, b, a.getWorldPoint(anchor)); jointDef.enableLimit = true; jointDef.lowerAngle = lowerAngle; jointDef.upperAngle = upperAngle; return (RevoluteJoint)world.createJoint(jointDef); } private Body createRectangleBodyPart( float x, float y, float width, float height) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width, height); BodyDef bodyDef = new BodyDef(); bodyDef.type = BodyType.DynamicBody; bodyDef.position.y = y; bodyDef.position.x = x; Body body = world.createBody(bodyDef); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = shape; fixtureDef.density = 10; fixtureDef.filter.groupIndex = -1; fixtureDef.filter.categoryBits = FILTER_BOY; fixtureDef.filter.maskBits = FILTER_STUFF | FILTER_WALL; body.createFixture(fixtureDef); shape.dispose(); return body; } I've skipped the method for creating the head, as it's pretty much the same as the rectangle method (just using a cricle shape). Those methods are used like so: torso = createRectangleBodyPart(x, y + 5, 0.25f, 1.5f); Body head = createRoundBodyPart(x, y + 7.4f, 1); Body leftLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body rightLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body leftLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body rightLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body leftArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); Body rightArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); joinBodyParts(torso, head, new Vector2(0, 1.6f), headAngle); leftLegTopJoint = joinBodyParts(torso, leftLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); rightLegTopJoint = joinBodyParts(torso, rightLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); leftLegBottomJoint = joinBodyParts(leftLegTop, leftLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); rightLegBottomJoint = joinBodyParts(rightLegTop, rightLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); leftArmJoint = joinBodyParts(torso, leftArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle); rightArmJoint = joinBodyParts(torso, rightArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle);

    Read the article

  • How do GameEngines stop Pixel Seams appearing in adjacent mesh boundaries due to FP imprecision?

    - by ufomorace
    Graphics cards are mathematically imprecise. So when some meshes are joined by their borders, the graphics card often makes mistakes and decides that some pixels at the seam represent neither object, and unwanted pixels appear. It's a natural behaviour on all graphics cards. How are such worries avoided in Pro Games? Batching? Shaders? Different tangent vectors? Merging? Overlaping seams? Dark backgrounds? Extra vertices at borders? Z precision? Camera distance tweaks? Screencap of a fix that ended up not working:

    Read the article

  • Super-quick MIDI generator with nonrestrictive license?

    - by Ricket
    I'm working on my Ludum Dare entry and trying to figure out how in the world I'm ever going to get background music. I found WolframTones, but the license is too restrictive: Unless otherwise specified, this Site and content presented on this Site are for your personal and noncommercial use. You may not modify, copy, distribute, transmit, display, perform, reproduce, publish, license, create derivative works from, transfer, or sell any information or content obtained from this Site. For commercial and other uses, contact us. But I really like the interface! It's a lot like sfxr - click a genre and download a song. That's so cool. Is there another program that does this same sort of thing but without a restrictive license, so that I can generate a bgm and use it in my game?

    Read the article

  • OpenGL sprites and point size limitation

    - by Srdan
    I'm developing a simple particle system that should be able to perform on mobile devices (iOS, Andorid). My plan was to use GL_POINT_SPRITE/GL_PROGRAM_POINT_SIZE method because of it's efficiency (GL_POINTS are enough), but after some experimenting, I found myself in a trouble. Sprite size is limited (to usually 64 pixels). I'm calculating size using this formula gl_PointSize = in_point_size * some_factor / distance_to_camera to make particle sizes proportional to distance to camera. But at some point, when camera is close enough, problem with size limitation emerges and whole system starts looking unrealistic. Is there a way to avoid this problem? If no, what's alternative? I was thinking of manually generating billboard quad for each particle. Now, I have some questions about that approach. I guess minimum geometry data would be four vertices per particle and index array to make quads from these vertices (with GL_TRIANGLE_STRIP). Additionally, for each vertex I need a color and texture coordinate. I would put all that in an interleaved vertex array. But as you can see, there is much redundancy. All vertices of same particle share same color value, and four texture coordinates are same for all particles. Because of how glDrawArrays/Elements works, I see no way to optimise this. Do you know of a better approach on how to organise per-particle data? Should I use buffers or vertex arrays, or there is no difference because each time I have to update all particles' data. About particles simulation... Where to do it? On CPU or on a vertex processors? Something tells me that mobile's CPU would do it faster than it's vertex unit (at least today in 2012 :). So, any advice on how to make a simple and efficient particle system without particle size limitation, for mobile device, would be appreciated. (animation of camera passing through particles should be realistic)

    Read the article

  • What causes player box/world geometry glitches in old games?

    - by Alexander
    I'm looking to understand and find the terminology for what causes - or allows - players to interfere with geometry in old games. Famously, ID's Quake3 gave birth to a whole community of people breaking the physics by jumping, sliding, getting stuck and launching themselves off points in geometry. Some months ago (though I'd be darned if I can find it again!) I saw a conference held by Bungie's Vic DeLeon and a colleague in which Vic briefly discussed the issues he ran into while attempting to wrap 'collision' objects (please correct my terminology) around environment objects so that players could appear as though they were walking on organic surfaces, while not clipping through them or appear to be walking on air at certain points, due to complexities in the modeling. My aim is to compose a case study essay for University in which I can tackle this issue in games, drawing on early exploits and how techniques have changed to address such exploits and to aid in the gameplay itself. I have 3 current day example of where exploits still exist, however specifically targeting ID Software clearly shows they've massively improved their techniques between Q3 and Q4. So in summary, with your help please, I'd like to gain a slightly better understanding of this issue as a whole (its terminology mainly) so I can use terms and ask the right questions within the right contexts. In practical application, I know what it is, I know how to do it, but I don't have the benefit of level design knowledge yet and its technical widgety knick-knack terms =) Many thanks in advance AJ

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • Data structure for bubble shooter game

    - by SundayMonday
    I'm starting to make a bubble shooter game for a mobile OS. Assume this is just the basic "three or more same-color bubbles that touch pop" and all bubbles that are separated from their group fall/pop. What data structures are common for storing the bubbles? I've considered using an undirected, connected graph where each node is a bubble. This seems like it could help answer the question "which bubbles (if any) should fall now?" after some arbitrary bubbles are popped and corresponding nodes are removed from the graph. I think the answer is all bubbles that were just disconnected from the graph should fall. However the graph approach might be overkill so I'm not sure. Another consideration for the data structure is collision detection. Perhaps being able to grab a list of neighboring bubbles in constant time for a particular "bubble slot" is useful. So the collision detection would be something like "moving bubble is closest to slot ij, neighbors of slot ij are bubbles a,b,c, moving bubble is sufficiently close to bubble b hence moving bubble should come to rest in slot ij". A game like this could be probably be made with a relatively crude grid structure as the primary data structure. However it seems like answering "which bubbles (if any) should fall now?" would be trickier with this data structure.

    Read the article

  • Best way to prevent UIPanGestureRecognizer from firing when moving sprites in cocos2d

    - by cjroebuck
    Im using UIPanGestureRecognizer in my cocos2d game to do drag and drop of sprites. I have a row of sprites and when I drag a sprite on top of another one, the sprite underneath it and any other sprites between should shift left or right out of the way to allow space to drop the currently selected sprite. This is working ok, however, if I am too quick at dragging the sprite around the screen, this triggers another round of the UIPanGestureRecognizer's callback method, and screws up the logic, as the sprites are in-between shifting. I need a way to freeze the callback from firing, whilst the other sprites are shifting, then once they have finished moving, re-enable the callback to fire. Whats the best way to do this?

    Read the article

  • How to follow object on CatmullRomSplines at constant speed (e.g. train and train carriage)?

    - by Simon
    I have a CatmullRomSpline, and using the very good example at https://github.com/libgdx/libgdx/wiki/Path-interface-%26-Splines I have my object moving at an even pace over the spline. Using a simple train and carriage example, I now want to have the carriage follow the train at the same speed as the train (not jolting along as it does with my code below). This leads into my main questions: How can I make the carriage have the same constant speed as the train and make it non jerky (it has something to do with the derivative I think, I don't understand how that part works)? Why do I need to divide by the line length to convert to metres per second, and is that correct? It wasn't done in the linked examples? I have used the example I linked to above, and modified for my specific example: private void process(CatmullRomSpline catmullRomSpline) { // Render path with precision of 1000 points renderPath(catmullRomSpline, 1000); float length = catmullRomSpline.approxLength(catmullRomSpline.spanCount * 1000); // Render the "train" Vector2 trainDerivative = new Vector2(); Vector2 trainLocation = new Vector2(); catmullRomSpline.derivativeAt(trainDerivative, current); // For some reason need to divide by length to convert from pixel speed to metres per second but I do not // really understand why I need it, it wasn't done in the examples??????? current += (Gdx.graphics.getDeltaTime() * speed / length) / trainDerivative.len(); catmullRomSpline.valueAt(trainLocation, current); renderCircleAtLocation(trainLocation); if (current >= 1) { current -= 1; } // Render the "carriage" Vector2 carriageLocation = new Vector2(); float carriagePercentageCovered = (((current * length) - 1f) / length); // I would like it to follow at 1 metre behind carriagePercentageCovered = Math.max(carriagePercentageCovered, 0); catmullRomSpline.valueAt(carriageLocation, carriagePercentageCovered); renderCircleAtLocation(carriageLocation); } private void renderPath(CatmullRomSpline catmullRomSpline, int k) { // catMulPoints would normally be cached when initialising, but for sake of example... Vector2[] catMulPoints = new Vector2[k]; for (int i = 0; i < k; ++i) { catMulPoints[i] = new Vector2(); catmullRomSpline.valueAt(catMulPoints[i], ((float) i) / ((float) k - 1)); } SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Line); SHAPE_RENDERER.setColor(Color.NAVY); for (int i = 0; i < k - 1; ++i) { SHAPE_RENDERER.line((Vector2) catMulPoints[i], (Vector2) catMulPoints[i + 1]); } SHAPE_RENDERER.end(); } private void renderCircleAtLocation(Vector2 location) { SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Filled); SHAPE_RENDERER.setColor(Color.YELLOW); SHAPE_RENDERER.circle(location.x, location.y, .5f); SHAPE_RENDERER.end(); } To create a decent sized CatmullRomSpline for testing this out: Vector2[] controlPoints = makeControlPointsArray(); CatmullRomSpline myCatmull = new CatmullRomSpline(controlPoints, false); .... private Vector2[] makeControlPointsArray() { Vector2[] pointsArray = new Vector2[78]; pointsArray[0] = new Vector2(1.681817f, 10.379999f); pointsArray[1] = new Vector2(2.045455f, 10.379999f); pointsArray[2] = new Vector2(2.663636f, 10.479999f); pointsArray[3] = new Vector2(3.027272f, 10.700000f); pointsArray[4] = new Vector2(3.663636f, 10.939999f); pointsArray[5] = new Vector2(4.245455f, 10.899999f); pointsArray[6] = new Vector2(4.736363f, 10.720000f); pointsArray[7] = new Vector2(4.754545f, 10.339999f); pointsArray[8] = new Vector2(4.518181f, 9.860000f); pointsArray[9] = new Vector2(3.790908f, 9.340000f); pointsArray[10] = new Vector2(3.172727f, 8.739999f); pointsArray[11] = new Vector2(3.300000f, 8.340000f); pointsArray[12] = new Vector2(3.700000f, 8.159999f); pointsArray[13] = new Vector2(4.227272f, 8.520000f); pointsArray[14] = new Vector2(4.681818f, 8.819999f); pointsArray[15] = new Vector2(5.081817f, 9.200000f); pointsArray[16] = new Vector2(5.463636f, 9.460000f); pointsArray[17] = new Vector2(5.972727f, 9.300000f); pointsArray[18] = new Vector2(6.063636f, 8.780000f); pointsArray[19] = new Vector2(6.027272f, 8.259999f); pointsArray[20] = new Vector2(5.700000f, 7.739999f); pointsArray[21] = new Vector2(5.300000f, 7.440000f); pointsArray[22] = new Vector2(4.645454f, 7.179999f); pointsArray[23] = new Vector2(4.136363f, 6.940000f); pointsArray[24] = new Vector2(3.427272f, 6.720000f); pointsArray[25] = new Vector2(2.572727f, 6.559999f); pointsArray[26] = new Vector2(1.900000f, 7.100000f); pointsArray[27] = new Vector2(2.336362f, 7.440000f); pointsArray[28] = new Vector2(2.590908f, 7.940000f); pointsArray[29] = new Vector2(2.318181f, 8.500000f); pointsArray[30] = new Vector2(1.663636f, 8.599999f); pointsArray[31] = new Vector2(1.209090f, 8.299999f); pointsArray[32] = new Vector2(1.118181f, 7.700000f); pointsArray[33] = new Vector2(1.045455f, 6.880000f); pointsArray[34] = new Vector2(1.154545f, 6.100000f); pointsArray[35] = new Vector2(1.281817f, 5.580000f); pointsArray[36] = new Vector2(1.700000f, 5.320000f); pointsArray[37] = new Vector2(2.190908f, 5.199999f); pointsArray[38] = new Vector2(2.900000f, 5.100000f); pointsArray[39] = new Vector2(3.700000f, 5.100000f); pointsArray[40] = new Vector2(4.372727f, 5.220000f); pointsArray[41] = new Vector2(4.827272f, 5.220000f); pointsArray[42] = new Vector2(5.463636f, 5.160000f); pointsArray[43] = new Vector2(5.554545f, 4.700000f); pointsArray[44] = new Vector2(5.245453f, 4.340000f); pointsArray[45] = new Vector2(4.445455f, 4.280000f); pointsArray[46] = new Vector2(3.609091f, 4.260000f); pointsArray[47] = new Vector2(2.718181f, 4.160000f); pointsArray[48] = new Vector2(1.990908f, 4.140000f); pointsArray[49] = new Vector2(1.427272f, 3.980000f); pointsArray[50] = new Vector2(1.609090f, 3.580000f); pointsArray[51] = new Vector2(2.136363f, 3.440000f); pointsArray[52] = new Vector2(3.227272f, 3.280000f); pointsArray[53] = new Vector2(3.972727f, 3.340000f); pointsArray[54] = new Vector2(5.027272f, 3.360000f); pointsArray[55] = new Vector2(5.718181f, 3.460000f); pointsArray[56] = new Vector2(6.100000f, 4.240000f); pointsArray[57] = new Vector2(6.209091f, 4.500000f); pointsArray[58] = new Vector2(6.118181f, 5.320000f); pointsArray[59] = new Vector2(5.772727f, 5.920000f); pointsArray[60] = new Vector2(4.881817f, 6.140000f); pointsArray[61] = new Vector2(5.318181f, 6.580000f); pointsArray[62] = new Vector2(6.263636f, 7.020000f); pointsArray[63] = new Vector2(6.645453f, 7.420000f); pointsArray[64] = new Vector2(6.681817f, 8.179999f); pointsArray[65] = new Vector2(6.627272f, 9.080000f); pointsArray[66] = new Vector2(6.572727f, 9.699999f); pointsArray[67] = new Vector2(6.263636f, 10.820000f); pointsArray[68] = new Vector2(5.754546f, 11.479999f); pointsArray[69] = new Vector2(4.536363f, 11.599998f); pointsArray[70] = new Vector2(3.572727f, 11.700000f); pointsArray[71] = new Vector2(2.809090f, 11.660000f); pointsArray[72] = new Vector2(1.445455f, 11.559999f); pointsArray[73] = new Vector2(0.936363f, 11.280000f); pointsArray[74] = new Vector2(0.754545f, 10.879999f); pointsArray[75] = new Vector2(0.700000f, 9.939999f); pointsArray[76] = new Vector2(0.918181f, 9.620000f); pointsArray[77] = new Vector2(1.463636f, 9.600000f); return pointsArray; } Disclaimer: My math is very rusty, so please explain in lay mans terms....

    Read the article

  • Making a game with responsive resolution

    - by alexandervrs
    I am making a game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD sprites/backgrounds which are a power of 2, so they scale nicely. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

< Previous Page | 444 445 446 447 448 449 450 451 452 453 454 455  | Next Page >