Search Results

Search found 26124 results on 1045 pages for 'unreal development kit'.

Page 451/1045 | < Previous Page | 447 448 449 450 451 452 453 454 455 456 457 458  | Next Page >

  • Procedural terrains in 3D: what has been done ? Are there common algo and/or theories about it ?

    - by jokoon
    Besides programming, modeling an environment takes a great deal of time. I don't know about the work time involved, for example, in a WoW dungeon level, or other beautiful city-like, future environment, jungles, fantasy, etc, but this kind of work is made from scratch by artists. What are the techniques involved in the TorchLight level randomizer, and does other titles have similarities with this ? Is there a family name for such techniques ?

    Read the article

  • Having troubles with LibNoise.XNA and generating tileable maps

    - by Jon
    Following up on my previous post, I found a wonderful port of LibNoise for XNA. I've been working with it for about 8 hours straight and I'm tearing my hair out - I just can not get maps to tile, I can't figure out how to do this. Here's my attempt: Perlin perlin = new Perlin(1.2, 1.95, 0.56, 12, 2353, QualityMode.Medium); RiggedMultifractal rigged = new RiggedMultifractal(); Add add = new Add(perlin, rigged); // Initialize the noise map int mapSize = 64; this.m_noiseMap = new Noise2D(mapSize, perlin); //this.m_noiseMap.GeneratePlanar(0, 1, -1, 1); // Generate the textures this.m_noiseMap.GeneratePlanar(-1,1,-1,1); this.m_textures[0] = this.m_noiseMap.GetTexture(this.graphics.GraphicsDevice, Gradient.Grayscale); this.m_noiseMap.GeneratePlanar(mapSize, mapSize * 2, mapSize, mapSize * 2); this.m_textures[1] = this.m_noiseMap.GetTexture(this.graphics.GraphicsDevice, Gradient.Grayscale); this.m_noiseMap.GeneratePlanar(-1, 1, -1, 1); this.m_textures[2] = this.m_noiseMap.GetTexture(this.graphics.GraphicsDevice, Gradient.Grayscale); The first and third ones generate fine, they create a perlin noise map - however the middle one, which I wanted to be a continuation of the first (As per my original post), is just a bunch of static. How exactly do I get this to generate maps that connect to each other, by entering in the mapsize * tile, using the same seed, settings, etc.?

    Read the article

  • How to show other characters in online 2D rpg

    - by Loligans
    I have Player 1 and Player 2 I am using Json to send and retrieve player data between the client and the server, but when another player logs in, and is in the same map, how would I send that data to both players to update the graphics engine to show there are 2 Players on the map? About my game it is a 2D RPG tile based game it is 24x15 Tiles it is Real time Action it should interact anywhere between 10-150 ping players interact with each other when in the same map and can see each other moving around the game world is persistent, and is saved when the server shuts down Right now the server just sends the player Only their information which is inside a Json Object Here is an example of what I am talking about If you notice there are 2 separate characters in 2 separate clients, but they are running on the same server. I am trying to get them to show up on both clients, but I don't know how I should accomplish this. Should I send it as an added value in the Json object? Also what is the name of this process so I can look it up and find more info on it?

    Read the article

  • How to export 3D models that consist of several parts (eg. turret on a tank)?

    - by Will
    What are the standard alternatives for the mechanics of attaching turrets and such to 3D models for use in-game? I don't mean the logic, but rather the graphics aspects. My naive approach is to extend the MD2-like format that I'm using (blender-exported using a script) to include a new set of properties for a mesh that: is anchored in another 'parent' mesh. The anchor is a point and normal in the parent mesh and a point and normal in the child mesh; these will always be colinear, giving the child rotation but not translation relative to the parent point. has a normal that is aligned with a 'target'. Classically this target is the enemy that is being engaged, but it might be some other vector e.g. 'the wind' (for sails and flags (and smoke, which is a particle system but the same principle applies)) or 'upwards' (e.g. so bodies of riders bend properly when riding a horse up an incline etc). that the anchor and target alignments have maximum and minimum and a speed coeff. there is game logic for multiple turrets and on a model and deciding which engages which enemy. 'primary' and 'secondary' or 'target0' ... 'targetN' or some such annotation will be there. So to illustrate, a classic tank would be made from three meshes; a main body mesh, a turret mesh that is anchored to the top of the main body so it can spin only horizontally and a barrel mesh that is anchored to the front of the turret and can only move vertically within some bounds. And there might be a forth flag mesh on top of the turret that is aligned with 'wind' where wind is a function the engine solves that merges environment's wind angle with angle the vehicle is travelling in an velocity, or something fancy. This gives each mesh one degree of freedom relative to its parent. Things with multiple degrees of freedom can be modelled by zero-vertex connecting meshes perhaps? This is where I think the approach I outlined begins to feel inelegant, yet perhaps its still a workable system? This is why I want to know how it is done in professional games ;) Are there better approaches? Are there formats that already include this information? Is this routine?

    Read the article

  • Physics not synchronizing correctly over the network when using Bullet

    - by Lucas
    I'm trying to implement a client/server physics system using Bullet however I'm having problems getting things to sync up. I've implemented a custom motion state which reads and write the transform from my game objects and it works locally but I've tried two different approaches for networked games: Dynamic objects on the client that are also on the server (eg not random debris and other unimportant stuff) are made kinematic. This works correctly but the objects don't move very smoothly Objects are dynamic on both but after each message from the server that the object has moved I set the linear and angular velocity to the values from the server and call btRigidBody::proceedToTransform with the transform on the server. I also call btCollisionObject::activate(true); to force the object to update. My intent with method 2 was to basically do method 1 but hijacking Bullet to do a poor-man's prediction instead of doing my own to smooth out method 1, but this doesn't seem to work (for reasons that are not 100% clear to me even stepping through Bullet) and the objects sometimes end up in different places. Am I heading in the right direction? Bullet seems to have it's own interpolation code built-in. Can that help me make method 1 work better? Or is my method 2 code not working because I am accidentally stomping that?

    Read the article

  • In a browser, is it best to use one huge spritesheet or many (10000) different PNG's?

    - by Nick
    I'm creating a game in jQuery, where I use about 10000 32x32 tiles. Until now, I have been using them all separately (no sprite sheet). An average map uses about 2000 tiles (sometimes re-used PNG's but all separate divs) and the performance ranges from stable (Chrome) to a bit laggy (Firefox). Each of these divs are positioned absolutely using CSS. They do not need to be updated every tick, just when a new map is loaded. Would it be better for performance to use spritesheet methods for the divs using CSS background-positioning, like gameQuery does? Thank you in advance!

    Read the article

  • Changing balls direction in Pong

    - by hustlerinc
    I'm making a Pong game to get started with game-developement but I've run into a problem that i can't figure out. When trying to change the balls direction it doesn't change. This is the relevant code: function moveBall(){ this.speed = 2.5; this.direction = 2; if(this.direction == 1){ ball.X +=this.speed; } else if(this.direction == 2){ ball.X -=this.speed; } } function collision(){ if(ball.X == 500){ moveBall.direction = 2; } if(ball.X == 300){ moveBall.direction = 1; } } Why doesn't it work? I've tried many different ways, and none of them seem to work. The moveBall.direction changes though, since it alerts the new direction once it reaches the defined ball.X position. If someone could help me I would deeply appreciate it. I've included a JSFiddle link. http://jsfiddle.net/hustlerinc/y4wp3/

    Read the article

  • How can I use the dualforward parameter in my unity shader to use lightmaps and normal maps together?

    - by Raphaeltm
    I'm using the free version of unity and I would like to combine lightmaps with specularity and normal maps. After doing a -bunch- of research, I've figured out that there doesn't seem to be any easy way to do this in the free version of unity, which doesn't support deferred rendering/easy use of dual lightmaps. However, it looks like it's possible, by writing a custom shader, using the "dualforward" parameter in a shader, switching the lightmapping mode to "dual lightmaps" and turning on "Use in forward ren." (basically, writing a shader that specifies the use of dual lightmaps, which should allow for a combination of lightmaps and normal maps) So I downloaded the source code for the default shaders (because all I need is a normal specular bumped shader) and added "dualforward" to the parameters: Shader "Bumped Specular Dual Lightmaps" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1) _Shininess ("Shininess", Range (0.03, 1)) = 0.078125 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {} _BumpMap ("Normalmap", 2D) = "bump" {} } SubShader { Tags { "RenderType"="Opaque" } LOD 400 CGPROGRAM #pragma surface surf BlinnPhong dualforward sampler2D _MainTex; sampler2D _BumpMap; fixed4 _Color; half _Shininess; struct Input { float2 uv_MainTex; float2 uv_BumpMap; }; void surf (Input IN, inout SurfaceOutput o) { fixed4 tex = tex2D(_MainTex, IN.uv_MainTex); o.Albedo = tex.rgb * _Color.rgb; o.Gloss = tex.a; o.Alpha = tex.a * _Color.a; o.Specular = _Shininess; o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)); } ENDCG } FallBack "Specular" } This, however, doesn't seem to work. When I keep the "dualforward" param, every object that uses it seems to be lit by the one directional light in the scene. When I remove the "dualforward" param, it they look like normal lightmapped objects with no normal maps or specularity. I noticed that the support for "dualforward" seems to be new in v.3.4.2, so I made sure to download it (I was running 3.4.1), but it still doesn't work. Anybody have any advice for me?

    Read the article

  • Calculating an orbit and approach velocties

    - by Mob
    I have drones in my game that need to approach and orbit a node and shoot at it. Problem is I want to stay away from a real physics simulation, meaning I don't want to give the node and drone a mass and the drone's thrusters' a force. I just want to find the best way to approach and then enter orbit. There was a pretty good answer about using bezier curves and doing it that way, but that is essentially a tween between two fixed points. The nodes are also moving as the drones enter orbit.

    Read the article

  • Best practices of texture size

    - by psal
    I wanted to know how should I determine a good texture size ? Currently, I always create UV texture that are 1024x1024px but if I create for example, a big house with a 1024px texture size, it will looks pretty bad. So, should I create different texture size (512, 1024, ...) for different mesh size like this ? : or is it better to always do high-resolution texture and then reduce it in the software (ie : increase the LODBias settings in UDK reduce the size of the texture) ? Thanks for your answer. ps : sorry for my english !

    Read the article

  • Designing a flexible tile-based engine

    - by Vee
    I'm trying to create a flexible tile-based game engine to make all sorts of non-realtime puzzle games, just as Bejeweled, Civilization, Sokoban, and so on. The first approach I had was to have a 2D array of Tile objects, and then have classes inheriting from Tile that represented the game objects. Unfortunately that way I couldn't stack more game elements on the same Tile without having a 3D array. Then I did something different: I still had the 2D array of Tile objects, but every Tile object contained a List where I put and different entities. This worked fine until 20 minutes ago, when I realized that it's too expensive to do many things, look at this example: I have a Wall entity. Every update I have to check the 8 adjacent Tiles, then check all of the entities in the Tile's List, check if any of those entities is a Wall, then finally draw the correct sprite. (This is done to draw walls that are next to each other seamlessly) The only solution I see now is having a 3D array, with many layers, that could suit every situation. But that way I can't stack two entities that share the same layer on the same tile. Whenever I want to do that I have to create a new layer. Is there a better solution? What would you do?

    Read the article

  • Facebook Game database design

    - by facebook-100000781341887
    Hi, I'm currently develop a facebook mafia like PHP game(of course, a light weight version), here is a simplify database(MySQL) of the game id-a <int3> <for index> uid <chr15> <facebook uid> HP <int3> <health point> exp <int3> <experience> money <int3> <money> list_inventory <chr5> <the inventory user hold...some special here, talk next> ... and 20 other fields just like reputation, num of combat... *the number next to the type is the size(byte) of the type For the list_inventory, there have 40 inventorys in my game, (actually, I have 5 these kind of list in my database), and each user can only contain 1 qty of each inventory, therefore, I assign 5 char for this field and each bit of char as 1 item(5 char * 8 bit = 40 slot), and I will do some manipulation by PHP to extract the data from this 5 byte. OK, I was thinking on this, if this game contains 100,000 user, and only 10% are active, therefore, if use my method, for the space use, 5 byte * 100,000 = 500 KB if I use another method, create a table user_hold_inventory, if the user have the inventory, then insert a record into this table, so, for 10,000 active user, I assume they got all item, but for other, I assume they got no item, here is the fields of the new table id-b <int3> <for index> id-a <int3> <id of the user table> inv_no <int1> <inventory that user hold> for the space use, ([id] (3+3) byte + [inv_no] 1 byte ) * [active user] 10,000 * [all inventory] * 40 = 2.8 MB seems method 2 have use more space, but it consume less CPU power. Please comment these 2 method or please correct me if there have another better method rather than what I think. Another question is, my database contain 26 fields, but I counted 5 of them are not change frquently, should I need to separate it on the other table or not? So many words, thanks for reading :)

    Read the article

  • How to play the sound of an object sliding on another object for a variable duration

    - by Antoine
    I would like to add sound effects to a basic 2D game. For example, a stone sphere is rolling on wood surface. Let's say I have a 2 second audio recording of this. How could I use the sample to add sound for an arbitrary duration ? So far I have two solutions in mind: a/ record the sound for an amount of time that is greater than the maximum expected duration, and play only a part of it; b/ extract a small portion of the sample and play it in a loop for the duration of the move; however I'm not sure if it makes sense with an audio wave.

    Read the article

  • Annoying flickering of vertices and edges (possible z-fighting)

    - by Belgin
    I'm trying to make a software z-buffer implementation, however, after I generate the z-buffer and proceed with the vertex culling, I get pretty severe discrepancies between the vertex depth and the depth of the buffer at their projected coordinates on the screen (i.e. zbuffer[v.xp][v.yp] != v.z, where xp and yp are the projected x and y coordinates of the vertex v), sometimes by a small fraction of a unit and sometimes by 2 or 3 units. Here's what I think is happening: Each triangle's data structure holds the plane's (that is defined by the triangle) coefficients (a, b, c, d) computed from its three vertices from their normal: void computeNormal(Vertex *v1, Vertex *v2, Vertex *v3, double *a, double *b, double *c) { double a1 = v1 -> x - v2 -> x; double a2 = v1 -> y - v2 -> y; double a3 = v1 -> z - v2 -> z; double b1 = v3 -> x - v2 -> x; double b2 = v3 -> y - v2 -> y; double b3 = v3 -> z - v2 -> z; *a = a2*b3 - a3*b2; *b = -(a1*b3 - a3*b1); *c = a1*b2 - a2*b1; } void computePlane(Poly *p) { double x = p -> verts[0] -> x; double y = p -> verts[0] -> y; double z = p -> verts[0] -> z; computeNormal(p -> verts[0], p -> verts[1], p -> verts[2], &p -> a, &p -> b, &p -> c); p -> d = p -> a * x + p -> b * y + p -> c * z; } The z-buffer just holds the smallest depth at the respective xy coordinate by somewhat casting rays to the polygon (I haven't quite got interpolation right yet so I'm using this slower method until I do) and determining the z coordinate from the reversed perspective projection formulas (which I got from here: double z = -(b*Ez*y + a*Ez*x - d*Ez)/(b*y + a*x + c*Ez - b*Ey - a*Ex); Where x and y are the pixel's coordinates on the screen; a, b, c, and d are the planes coefficients; Ex, Ey, and Ez are the eye's (camera's) coordinates. This last formula does not accurately give the exact vertices' z coordinate at their projected x and y coordinates on the screen, probably because of some floating point inaccuracy (i.e. I've seen it return something like 3.001 when the vertex's z-coordinate was actually 2.998). Here is the portion of code that hides the vertices that shouldn't be visible: for(i = 0; i < shape.nverts; ++i) { double dist = shape.verts[i].z; if(z_buffer[shape.verts[i].yp][shape.verts[i].xp].z < dist) shape.verts[i].visible = 0; else shape.verts[i].visible = 1; } How do I solve this issue? EDIT I've implemented the near and far planes of the frustum, with 24 bit accuracy, and now I have some questions: Is this what I have to do this in order to resolve the flickering? When I compare the z value of the vertex with the z value in the buffer, do I have to convert the z value of the vertex to z' using the formula, or do I convert the value in the buffer back to the original z, and how do I do that? What are some decent values for near and far? Thanks in advance.

    Read the article

  • XNA, how to draw two cubes standing in line parallelly?

    - by user3535716
    I just got a problem with drawing two 3D cubes standing in line. In my code, I made a cube class, and in the game1 class, I built two cubes, A on the right side, B on the left side. I also setup an FPS camera in the 3D world. The problem is if I draw cube B first(Blue), and move the camera to the left side to cube B, A(Red) is still standing in front of B, which is apparently wrong. I guess some pics can make much sense. Then, I move the camera to the other side, the situation is like: This is wrong.... From this view, the red cube, A should be behind the blue one, B.... Could somebody give me help please? This is the draw in the Cube class Matrix center = Matrix.CreateTranslation( new Vector3(-0.5f, -0.5f, -0.5f)); Matrix scale = Matrix.CreateScale(0.5f); Matrix translate = Matrix.CreateTranslation(location); effect.World = center * scale * translate; effect.View = camera.View; effect.Projection = camera.Projection; foreach (EffectPass pass in effect.CurrentTechnique.Passes) { pass.Apply(); device.SetVertexBuffer(cubeBuffer); RasterizerState rs = new RasterizerState(); rs.CullMode = CullMode.None; rs.FillMode = FillMode.Solid; device.RasterizerState = rs; device.DrawPrimitives( PrimitiveType.TriangleList, 0, cubeBuffer.VertexCount / 3); } This is the Draw method in game1 A.Draw(camera, effect); B.Draw(camera, effect); **

    Read the article

  • How to perform efficient 2D picking in HTML5?

    - by jSepia
    I'm currently using an R-Tree for both picking and collision testing. Each entity on screen has a bounding box for collisions and a separate one for picking. Since entities may change position very frequently, both trees must be updated/reordered once per frame. While this is very efficient for collisions, because the tree is used in hundreds of collision queries every frame, I'm finding it too costly for picking, because it only gets queried when the user clicks, thus leading to a lot of wasted tree updates. What would be a more efficient way to implement picking without as much overhead?

    Read the article

  • Question about BoundingSpheres and Ray intersections

    - by NDraskovic
    I'm working on a XNA project (not really a game) and I'm having some trouble with picking algorithm. I have a few types of 3D models that I draw to the screen, and one of them is a switch. So I'm trying to make a picking algorithm that would enable the user to click on the switch and that would trigger some other function. The problem is that the BoundingSphere.Intersect() method always returns null as result. This is the code I'm using: In the declaration section: ` //Basic matrices private Matrix world = Matrix.CreateTranslation(new Vector3(0, 0, 0)); private Matrix view = Matrix.CreateLookAt(new Vector3(10, 10, 10), new Vector3(0, 0, 0), Vector3.UnitY); private Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45), 800f / 600f, 0.01f, 100f); //Collision detection variables Viewport mainViewport; List<BoundingSphere> spheres = new List<BoundingSphere>(); Ray ControlRay; Vector3 nearPoint, farPoint, nearPlane, farPlane, direction; ` And then in the Update method: ` nearPlane = new Vector3((float)Mouse.GetState().X, (float)Mouse.GetState().Y, 0.0f); farPlane = new Vector3((float)Mouse.GetState().X, (float)Mouse.GetState().Y, 10.0f); nearPoint = GraphicsDevice.Viewport.Unproject(nearPlane, projection, view, world); farPoint = GraphicsDevice.Viewport.Unproject(farPlane, projection, view, world); direction = farPoint - nearPoint; direction.Normalize(); ControlRay = new Ray(nearPoint, direction); if (spheres.Count != 0) { for (int i = 0; i < spheres.Count; i++) { if (spheres[i].Intersects(ControlRay) != null) { Window.Title = spheres[i].Center.ToString(); } else { Window.Title = "Empty"; } } ` The "spheres" list gets filled when the 3D object data gets loaded (I read it from a .txt file). For every object marked as switch (I use simple numbers to determine which object is to be drawn), a BoundingSphere is created (center is on the coordinates of the 3D object, and the diameter is always the same), and added to the list. The objects are drawn normally (and spheres.Count is not 0), I can see them on the screen, but the Window title always says "Empty" (of course this is just for testing purposes, I will add the real function when I get positive results) meaning that there is no intersection between the ControlRay and any of the bounding spheres. I think that my basic matrices (world, view and projection) are making some problems, but I cant figure out what. Please help.

    Read the article

  • Doing a passable 4X game AI

    - by Extrakun
    I am coding a rather "simple" 4X game (if a 4X game can be simple). It's indie in scope, and I am wondering if there's anyway to come up with a passable AI without having me spending months coding on it. The game has three major decision making portions; spending of production points, spending of movement points and spending of tech points (basically there are 3 different 'currency', currency unspent at end of turn is not saved) Spend Production Points Upgrade a planet (increase its tech and production) Build ships (3 types) Move ships from planets to planets (costing Movement Points) Move to attack Move to fortify Research Tech (can partially research a tech i.e, as in Master of Orion) The plan for me right now is a brute force approach. There are basically 4 broad options for the player - Upgrade planet(s) to its his production and tech output Conquer as many planets as possible Secure as many planets as possible Get to a certain tech as soon as possible For each decision, I will iterate through the possible options and come up with a score; and then the AI will choose the decision with the highest score. Right now I have no idea how to 'mix decisions'. That is, for example, the AI wishes to upgrade and conquer planets at the same time. I suppose I can have another logic which do a brute force optimization on a combination of those 4 decisions.... At least, that's my plan if I can't think of anything better. Is there any faster way to make a passable AI? I don't need a very good one, to rival Deep Blue or such, just something that has the illusion of intelligence. This is my first time doing an AI on this scale, so I dare not try something too grand too. So far I have experiences with FSM, DFS, BFS and A*

    Read the article

  • Error X3650 when compiling shader in XNA

    - by Saikai
    I'm attempting to convert the XBDEV.NET Mosaic Shader for use in my XNA project and having trouble. The compiler errors out because of the half globals. At first I tried replacing the globals and just writing the variables explicitly in the code, but that garbles the Output. Next I tried replacing all the half with float vars, but that still garbles the resulting Image. I call the effect file from SpriteBatch.Begin(). Is there a way to convert this shader to the new pixel shader conventions? Are there any good tutorials for this topic? Here is the shader file for reference: /*****************************************************************************/ /* File: tiles.fx Details: Modified version of the NVIDIA Composer FX Demo Program 2004 Produces a tiled mosaic effect on the output. Requires: Vertex Shader 1.1 Pixel Shader 2.0 Modified by: [email protected] (www.xbdev.net) */ /*****************************************************************************/ float4 ClearColor : DIFFUSE = { 0.0f, 0.0f, 0.0f, 1.0f}; float ClearDepth = 1.0f; /******************************** TWEAKABLES *********************************/ half NumTiles = 40.0; half Threshhold = 0.15; half3 EdgeColor = {0.7f, 0.7f, 0.7f}; /*****************************************************************************/ texture SceneMap : RENDERCOLORTARGET < float2 ViewportRatio = { 1.0f, 1.0f }; int MIPLEVELS = 1; string format = "X8R8G8B8"; string UIWidget = "None"; >; sampler SceneSampler = sampler_state { texture = <SceneMap>; AddressU = CLAMP; AddressV = CLAMP; MIPFILTER = NONE; MINFILTER = LINEAR; MAGFILTER = LINEAR; }; /***************************** DATA STRUCTS **********************************/ struct vertexInput { half3 Position : POSITION; half3 TexCoord : TEXCOORD0; }; /* data passed from vertex shader to pixel shader */ struct vertexOutput { half4 HPosition : POSITION; half2 UV : TEXCOORD0; }; /******************************* Vertex shader *******************************/ vertexOutput VS_Quad( vertexInput IN) { vertexOutput OUT = (vertexOutput)0; OUT.HPosition = half4(IN.Position, 1); OUT.UV = IN.TexCoord.xy; return OUT; } /********************************** pixel shader *****************************/ half4 tilesPS(vertexOutput IN) : COLOR { half size = 1.0/NumTiles; half2 Pbase = IN.UV - fmod(IN.UV,size.xx); half2 PCenter = Pbase + (size/2.0).xx; half2 st = (IN.UV - Pbase)/size; half4 c1 = (half4)0; half4 c2 = (half4)0; half4 invOff = half4((1-EdgeColor),1); if (st.x > st.y) { c1 = invOff; } half threshholdB = 1.0 - Threshhold; if (st.x > threshholdB) { c2 = c1; } if (st.y > threshholdB) { c2 = c1; } half4 cBottom = c2; c1 = (half4)0; c2 = (half4)0; if (st.x > st.y) { c1 = invOff; } if (st.x < Threshhold) { c2 = c1; } if (st.y < Threshhold) { c2 = c1; } half4 cTop = c2; half4 tileColor = tex2D(SceneSampler,PCenter); half4 result = tileColor + cTop - cBottom; return result; } /*****************************************************************************/ technique tiles { pass p0 { VertexShader = compile vs_1_1 VS_Quad(); ZEnable = false; ZWriteEnable = false; CullMode = None; PixelShader = compile ps_2_0 tilesPS(); } }

    Read the article

  • D3D9 Alpha Blending on the surfaces

    - by Indeera
    I have a surface (OffScreenPlain or RenderTarget with D3DFMT_A8R8G8B8) which I copy pixels (ARGB) to, from a third party function. Before pixel copying, Bits are accessed by LockRect. This surface is then StretchRect to the Backbuffer which is (D3DFMT_A8R8G8B8). Surface and Backbuffer are different dimensions. Filtering is set to D3DTEXF_NONE. Just after creating the d3d device I've set following RenderState settings D3DRS_ALPHABLENDENABLE -> TRUE D3DRS_BLENDOP -> D3DBLENDOP_ADD D3DRS_SRCBLEND -> D3DBLEND_SRCALPHA D3DRS_DESTBLEND -> D3DBLEND_INVSRCALPHA But I see no alpha blending happening. I've verified that alpha is specified in pixels. I've done a simple test by creating a vertex buffer and drawing a triangle (DrawPrimitive) which displays with alpha blending. In this test surface was StretchRect first and then DrawPrimitive, and the surface content displays without alpha blending and the triangle displays with alpha blending. What am I missing here? Thanks

    Read the article

  • Unable to use Maya animation with scripts when imported to Unity

    - by keshk
    I am testing to import Maya animation over to Unity. I set up a simple cylinder with 2 bones and an IK handle. Made a simple animation where the cylinder bends and goes back to straight position over 24 frames. Following that, I selected everything and baked, all bones,ik,(animation by selecting all at the graph editor) and even the cylinder. I saved the scene and then select all and export as FBX with animation and bake checked. In unity imported it and at the preview able to see the animation. When I load the model into scene and play (after assigning the controller), able to see animation too. But now when I try to script it and control the animation, nothing happens. Even to test, I tried the following under the Update method. if(animation.isPlaying) Debug.Log("Animation Works"); else Debug.Log("Animation not working"); The bool doesn't even return true nor false. My animation is called "bend", thus just for try I did the following and nothing happens. animation.Play("bend"); Can please advice based on my steps, am I missing something. Do I need to add the controller or is that an unnecessary step? Did I screw up on the Maya part or the Unity part. Thanks for help.

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • What tools should I consider if my strategy is to make a game available to as many platforms as possible?

    - by Kenji Kina
    We're planning on developing a 2D, grid-based puzzle game, and although it's still very early in the planning stages, we'd like to make our decisions well from the beginning. Our strategy will be to make the game available to as many platforms as possible, for example PCs (Windows, Mac and/or Linux), mobile phones (iPhone and/or Android based phones), game consoles (XBLA and/or PSN) PC will have an emphasis, but I believe that's the most flexible platform so that shouldn't be a problem. So, what programming language, game engine, frameworks and all around tools would be best suited for our goal? P.S.: I'm betting a set of tools won't cover ALL of them, and that there will still be some kind of "translating" effort for some platforms, but we'd like to know what the most far reaching are.

    Read the article

  • Designing spawning system

    - by Vlad
    I played this game recently http://www.kongregate.com/games/JuicyBeast/knightmare-tower and I am amazed by the way how different monsters are beign spawned. I personally developed my own shooter game and I added time based but also count based spawing system. By count based I mean when there are 5 enemies on stage stop spawning. But this is one example. My question is how are these spawning mechanism built, is there some pattern or some theory how they are built? Are there some online materials/pages where I can improve my knowledge? To sumarize, let just say we have 6 types of monsters. I start the game and kill of monsters of type 1,2 and 3 all the time. Once I pass the first ceiling, like in the game above, monster type 4 appear. ANd so on. As I progress trough the game, the same system of 6 types of monsters stay, but they become more and more resilient and dangerous. So I must also improve to be able to destroy the same monsters but now stronger. My question is simple, are there some theories built or written for developing this type of inteligent systems? Note: This is a general question, not tied up with some game or how exactly should the game work. I am capable to program my own mechanisms but I think I need some help. Thanks.

    Read the article

  • Assets.getBytes returns null in test environment

    - by ashes999
    I'm using the latest Haxe (2.10), NME (3.4.3), and MUnit. I've written some unit tests that need to fetch bitmap data from SWF symbols. The first step is to actually load the SWF data. To do this, I use NME's getByteArray along with the swf library, like so: var blah:SWF = new SWF(Assets.getBytes("assets/swf/test.swf")); The call to Assets.getBytes returns null when I'm running this under MUnit. When running my actual game code, I'm able to get the byte array (and consequentially, instantiate the SWF class). Am I doing something wrong? What am I missing? Edit: My directory structure is: . (root .\assets .\assets\*.png (other images) .\assets\swf\*.swf (SWFs) .\Source\*.hx (source code) .\Test\*.hx (tests)

    Read the article

< Previous Page | 447 448 449 450 451 452 453 454 455 456 457 458  | Next Page >