Search Results

Search found 5665 results on 227 pages for 'runtime workbench'.

Page 47/227 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • Unicorn 3.3.1 and Rack 1.1.0 issues?

    - by user41422
    I'm upgrading from the Ruby Enterprise Edition 1.8.6 to the latest 1.8.7 version with Unicorn to facilitate an upgrade to Rails 2.3.10, and am running into some issues. Should I uninstall the older versions of these gems? Here's the log messages: I'm upgrading from the Ruby Enterprise Edition 1.8.6 to the latest 1.8.7 version with Unicorn to facilitate an upgrade to Rails 2.3.10, and am running into some issues. Should I uninstall the older versions of these gems? I, [2011-02-02T22:06:16.328076 #30672] INFO -- : listening on addr=0.0.0.0:8080 fd=3 I, [2011-02-02T22:06:16.333137 #30672] INFO -- : Refreshing Gem list /srv/ree/bin/unicorn_rails must be run inside RAILS_ROOT: #<Gem::LoadError: can't activate rack (~> 1.1.0, runtime) for ["actionpack-2.3.10", "rails-2.3.10"], already activated rack-1.2.1 for ["unicorn-3.3.1"]> I, [2011-02-02T22:07:12.259436 #30701] INFO -- : listening on addr=0.0.0.0:8080 fd=3 I, [2011-02-02T22:07:12.259952 #30701] INFO -- : Refreshing Gem list /srv/ree/bin/unicorn_rails must be run inside RAILS_ROOT: #<Gem::LoadError: can't activate rack (~> 1.1.0, runtime) for ["actionpack-2.3.10", "rails-2.3.10"], already activated rack-1.2.1 for ["unicorn-3.3.1"]> I, [2011-02-02T22:09:27.787177 #30772] INFO -- : listening on addr=0.0.0.0:8080 fd=3 I, [2011-02-02T22:09:27.787691 #30772] INFO -- : Refreshing Gem list /srv/ree/bin/unicorn_rails must be run inside RAILS_ROOT: #<Gem::LoadError: can't activate rack (~> 1.1.0, runtime) for ["actionpack-2.3.10", "rails-2.3.10"], already activated rack-1.2.1 for ["unicorn-3.3.1"]> I, [2011-02-02T22:10:44.175407 #30846] INFO -- : listening on addr=0.0.0.0:8080 fd=3 I, [2011-02-02T22:10:44.175928 #30846] INFO -- : Refreshing Gem list /srv/ree/bin/unicorn_rails must be run inside RAILS_ROOT: #<Gem::LoadError: can't activate rack (~> 1.1.0, runtime) for ["actionpack-2.3.10", "rails-2.3.10"], already activated rack-1.2.1 for ["unicorn-3.3.1"]>

    Read the article

  • ASP.NET MVC 3: Layouts and Sections with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: Introducing Razor (July 2nd) New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (Dec 16th) Layouts and Sections with Razor (Today) In today’s post I’m going to go into more details about how Layout pages work with Razor.  In particular, I’m going to cover how you can have multiple, non-contiguous, replaceable “sections” within a layout file – and enable views based on layouts to optionally “fill in” these different sections at runtime.  The Razor syntax for doing this is clean and concise. I’ll also show how you can dynamically check at runtime whether a particular layout section has been defined, and how you can provide alternate content (or even an alternate layout) in the event that a section isn’t specified within a view template.  This provides a powerful and easy way to customize the UI of your site and make it clean and DRY from an implementation perspective. What are Layouts? You typically want to maintain a consistent look and feel across all of the pages within your web-site/application.  ASP.NET 2.0 introduced the concept of “master pages” which helps enable this when using .aspx based pages or templates.  Razor also supports this concept with a feature called “layouts” – which allow you to define a common site template, and then inherit its look and feel across all the views/pages on your site. I previously discussed the basics of how layout files work with Razor in my ASP.NET MVC 3: Layouts with Razor blog post.  Today’s post will go deeper and discuss how you can define multiple, non-contiguous, replaceable regions within a layout file that you can then optionally “fill in” at runtime. Site Layout Scenario Let’s look at how we can implement a common site layout scenario with ASP.NET MVC 3 and Razor.  Specifically, we’ll implement some site UI where we have a common header and footer on all of our pages.  We’ll also add a “sidebar” section to the right of our common site layout.  On some pages we’ll customize the SideBar to contain content specific to the page it is included on: And on other pages (that do not have custom sidebar content) we will fall back and provide some “default content” to the sidebar: We’ll use ASP.NET MVC 3 and Razor to enable this customization in a nice, clean way.  Below are some step-by-step tutorial instructions on how to build the above site with ASP.NET MVC 3 and Razor. Part 1: Create a New Project with a Layout for the “Body” section We’ll begin by using the “File->New Project” menu command within Visual Studio to create a new ASP.NET MVC 3 Project.  We’ll create the new project using the “Empty” template option: This will create a new project that has no default controllers in it: Creating a HomeController We will then right-click on the “Controllers” folder of our newly created project and choose the “Add->Controller” context menu command.  This will bring up the “Add Controller” dialog: We’ll name the new controller we create “HomeController”.  When we click the “Add” button Visual Studio will add a HomeController class to our project with a default “Index” action method that returns a view: We won’t need to write any Controller logic to implement this sample – so we’ll leave the default code as-is.  Creating a View Template Our next step will be to implement the view template associated with the HomeController’s Index action method.  To implement the view template, we will right-click within the “HomeController.Index()” method and select the “Add View” command to create a view template for our home page: This will bring up the “Add View” dialog within Visual Studio.  We do not need to change any of the default settings within the above dialog (the name of the template was auto-populated to Index because we invoked the “Add View” context menu command within the Index method).  When we click the “Add” Button within the dialog, a Razor-based “Index.cshtml” view template will be added to the \Views\Home\ folder within our project.  Let’s add some simple default static content to it: Notice above how we don’t have an <html> or <body> section defined within our view template.  This is because we are going to rely on a layout template to supply these elements and use it to define the common site layout and structure for our site (ensuring that it is consistent across all pages and URLs within the site).  Customizing our Layout File Let’s open and customize the default “_Layout.cshtml” file that was automatically added to the \Views\Shared folder when we created our new project: The default layout file (shown above) is pretty basic and simply outputs a title (if specified in either the Controller or the View template) and adds links to a stylesheet and jQuery.  The call to “RenderBody()” indicates where the main body content of our Index.cshtml file will merged into the output sent back to the browser. Let’s modify the Layout template to add a common header, footer and sidebar to the site: We’ll then edit the “Site.css” file within the \Content folder of our project and add 4 CSS rules to it: And now when we run the project and browse to the home “/” URL of our project we’ll see a page like below: Notice how the content of the HomeController’s Index view template and the site’s Shared Layout template have been merged together into a single HTML response.  Below is what the HTML sent back from the server looks like: Part 2: Adding a “SideBar” Section Our site so far has a layout template that has only one “section” in it – what we call the main “body” section of the response.  Razor also supports the ability to add additional "named sections” to layout templates as well.  These sections can be defined anywhere in the layout file (including within the <head> section of the HTML), and allow you to output dynamic content to multiple, non-contiguous, regions of the final response. Defining the “SideBar” section in our Layout Let’s update our Layout template to define an additional “SideBar” section of content that will be rendered within the <div id=”sidebar”> region of our HTML.  We can do this by calling the RenderSection(string sectionName, bool required) helper method within our Layout.cshtml file like below:   The first parameter to the “RenderSection()” helper method specifies the name of the section we want to render at that location in the layout template.  The second parameter is optional, and allows us to define whether the section we are rendering is required or not.  If a section is “required”, then Razor will throw an error at runtime if that section is not implemented within a view template that is based on the layout file (which can make it easier to track down content errors).  If a section is not required, then its presence within a view template is optional, and the above RenderSection() code will render nothing at runtime if it isn’t defined. Now that we’ve made the above change to our layout file, let’s hit refresh in our browser and see what our Home page now looks like: Notice how we currently have no content within our SideBar <div> – that is because the Index.cshtml view template doesn’t implement our new “SideBar” section yet. Implementing the “SideBar” Section in our View Template Let’s change our home-page so that it has a SideBar section that outputs some custom content.  We can do that by opening up the Index.cshtml view template, and by adding a new “SiderBar” section to it.  We’ll do this using Razor’s @section SectionName { } syntax: We could have put our SideBar @section declaration anywhere within the view template.  I think it looks cleaner when defined at the top or bottom of the file – but that is simply personal preference.  You can include any content or code you want within @section declarations.  Notice above how I have a C# code nugget that outputs the current time at the bottom of the SideBar section.  I could have also written code that used ASP.NET MVC’s HTML/AJAX helper methods and/or accessed any strongly-typed model objects passed to the Index.cshtml view template. Now that we’ve made the above template changes, when we hit refresh in our browser again we’ll see that our SideBar content – that is specific to the Home Page of our site – is now included in the page response sent back from the server: The SideBar section content has been merged into the proper location of the HTML response : Part 3: Conditionally Detecting if a Layout Section Has Been Implemented Razor provides the ability for you to conditionally check (from within a layout file) whether a section has been defined within a view template, and enables you to output an alternative response in the event that the section has not been defined.  This provides a convenient way to specify default UI for optional layout sections.  Let’s modify our Layout file to take advantage of this capability.  Below we are conditionally checking whether the “SideBar” section has been defined without the view template being rendered (using the IsSectionDefined() method), and if so we render the section.  If the section has not been defined, then we now instead render some default content for the SideBar:  Note: You want to make sure you prefix calls to the RenderSection() helper method with a @ character – which will tell Razor to execute the HelperResult it returns and merge in the section content in the appropriate place of the output.  Notice how we wrote @RenderSection(“SideBar”) above instead of just RenderSection(“SideBar”).  Otherwise you’ll get an error. Above we are simply rendering an inline static string (<p>Default SideBar Content</p>) if the section is not defined.  A real-world site would more likely refactor this default content to be stored within a separate partial template (which we’d render using the Html.RenderPartial() helper method within the else block) or alternatively use the Html.Action() helper method within the else block to encapsulate both the logic and rendering of the default sidebar. When we hit refresh on our home-page, we will still see the same custom SideBar content we had before.  This is because we implemented the SideBar section within our Index.cshtml view template (and so our Layout rendered it): Let’s now implement a “/Home/About” URL for our site by adding a new “About” action method to our HomeController: The About() action method above simply renders a view back to the client when invoked.  We can implement the corresponding view template for this action by right-clicking within the “About()” method and using the “Add View” menu command (like before) to create a new About.cshtml view template.  We’ll implement the About.cshtml view template like below. Notice that we are not defining a “SideBar” section within it: When we browse the /Home/About URL we’ll see the content we supplied above in the main body section of our response, and the default SideBar content will rendered: The layout file determined at runtime that a custom SideBar section wasn’t present in the About.cshtml view template, and instead rendered the default sidebar content. One Last Tweak… Let’s suppose that at a later point we decide that instead of rendering default side-bar content, we just want to hide the side-bar entirely from pages that don’t have any custom sidebar content defined.  We could implement this change simply by making a small modification to our layout so that the sidebar content (and its surrounding HTML chrome) is only rendered if the SideBar section is defined.  The code to do this is below: Razor is flexible enough so that we can make changes like this and not have to modify any of our view templates (nor make change any Controller logic changes) to accommodate this.  We can instead make just this one modification to our Layout file and the rest happens cleanly.  This type of flexibility makes Razor incredibly powerful and productive. Summary Razor’s layout capability enables you to define a common site template, and then inherit its look and feel across all the views/pages on your site. Razor enables you to define multiple, non-contiguous, “sections” within layout templates that can be “filled-in” by view templates.  The @section {} syntax for doing this is clean and concise.  Razor also supports the ability to dynamically check at runtime whether a particular section has been defined, and to provide alternate content (or even an alternate layout) in the event that it isn’t specified.  This provides a powerful and easy way to customize the UI of your site - and make it clean and DRY from an implementation perspective. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Overview of SOA Diagnostics in 11.1.1.6

    - by ShawnBailey
    What tools are available for diagnosing SOA Suite issues? There are a variety of tools available to help you and Support diagnose SOA Suite issues in 11g but it can be confusing as to which tool is appropriate for a particular situation and what their relationships are. This blog post will introduce the various tools and attempt to clarify what each is for and how they are related. Let's first list the tools we'll be addressing: RDA: Remote Diagnostic Agent DFW: Diagnostic Framework Selective Tracing DMS: Dynamic Monitoring Service ODL: Oracle Diagnostic Logging ADR: Automatic Diagnostics Repository ADRCI: Automatic Diagnostics Repository Command Interpreter WLDF: WebLogic Diagnostic Framework This overview is not mean to be a comprehensive guide on using all of these tools, however, extensive reference materials are included that will provide many more details on their execution. Another point to note is that all of these tools are applicable for Fusion Middleware as a whole but specific products may or may not have implemented features to leverage them. A couple of the tools have a WebLogic Scripting Tool or 'WLST' interface. WLST is a command interface for executing pre-built functions and custom scripts against a domain. A detailed WLST tutorial is beyond the scope of this post but you can find general information here. There are more specific resources in the below sections. In this post when we refer to 'Enterprise Manager' or 'EM' we are referring to Enterprise Manager Fusion Middleware Control. RDA (Remote Diagnostic Agent) RDA is a standalone tool that is used to collect both static configuration and dynamic runtime information from the SOA environment. RDA is generally run manually from the command line against a domain or single server. When opening a new Service Request, including an RDA collection can dramatically decrease the back and forth required to collect logs and configuration information for Support. After installing RDA you configure it to use the SOA Suite module as decribed in the referenced resources. The SOA module includes the Oracle WebLogic Server (WLS) module by default in order to include all of the relevant information for the environment. In addition to this basic configuration there is also an advanced mode where you can set the number of thread dumps for the collections, log files, Incidents, etc. When would you use it? When creating a Service Request or otherwise working with Oracle resources on an issue, capturing environment snapshots to baseline your configuration or to diagnose an issue on your own. How is it related to the other tools? RDA is related to DFW in that it collects the last 10 Incidents from the server by default. In a similar manner, RDA is related to ODL through its collection of the diagnostic logs and these may contain information from Selective Tracing sessions. Examples of what it currently collects: (for details please see the links in the Resources section) Diagnostic Logs (ODL) Diagnostic Framework Incidents (DFW) SOA MDS Deployment Descriptors SOA Repository Summary Statistics Thread Dumps Complete Domain Configuration RDA Resources: Webcast Recording: Using RDA with Oracle SOA Suite 11g Blog Post: Diagnose SOA Suite 11g Issues Using RDA Download RDA How to Collect Analysis Information Using RDA for Oracle SOA Suite 11g Products [ID 1350313.1] How to Collect Analysis Information Using RDA for Oracle SOA Suite and BPEL Process Manager 11g [ID 1352181.1] Getting Started With Remote Diagnostic Agent: Case Study - Oracle WebLogic Server (Video) [ID 1262157.1] top DFW (Diagnostic Framework) DFW provides the ability to collect specific information for a particular problem when that problem occurs. DFW is included with your SOA Suite installation and deployed to the domain. Let's define the components of DFW. Diagnostic Dumps: Specific diagnostic collections that are defined at either the 'system' or product level. Examples would be diagnostic logs or thread dumps. Incident: A collection of Diagnostic Dumps associated with a particular problem Log Conditions: An Oracle Diagnostic Logging event that DFW is configured to listen for. If the event is identified then an Incident will be created. WLDF Watch: The WebLogic Diagnostic Framework or 'WLDF' is not a component of DFW, however, it can be a source of DFW Incident creation through the use of a 'Watch'. WLDF Notification: A Notification is a component of WLDF and is the link between the Watch and DFW. You can configure multiple Notification types in WLDF and associate them with your Watches. 'FMWDFW-notification' is available to you out of the box to allow for DFW notification of Watch execution. Rule: Defines a WLDF Watch or Log Condition for which we want to associate a set of Diagnostic Dumps. When triggered the specified dumps will be collected and added to the Incident Rule Action: Defines the specific Diagnostic Dumps to collect for a particular rule ADR: Automatic Diagnostics Repository; Defined for every server in a domain. This is where Incidents are stored Now let's walk through a simple flow: Oracle Web Services error message OWS-04086 (SOAP Fault) is generated on managed server 1 DFW Log Condition for OWS-04086 evaluates to TRUE DFW creates a new Incident in the ADR for managed server 1 DFW executes the specified Diagnostic Dumps and adds the output to the Incident In this case we'll grab the diagnostic log and thread dump. We might also want to collect the WSDL binding information and SOA audit trail When would you use it? When you want to automatically collect Diagnostic Dumps at a particular time using a trigger or when you want to manually collect the information. In either case it can be readily uploaded to Oracle Support through the Service Request. How is it related to the other tools? DFW generates Incidents which are collections of Diagnostic Dumps. One of the system level Diagonstic Dumps collects the current server diagnostic log which is generated by ODL and can contain information from Selective Tracing sessions. Incidents are included in RDA collections by default and ADRCI is a tool that is used to package an Incident for upload to Oracle Support. In addition, both ODL and DMS can be used to trigger Incident creation through DFW. The conditions and rules for generating Incidents can become quite complicated and the below resources go into more detail. A simpler approach to leveraging at least the Diagnostic Dumps is through WLST (WebLogic Scripting Tool) where there are commands to do the following: Create an Incident Execute a single Diagnostic Dump Describe a Diagnostic Dump List the available Diagnostic Dumps The WLST option offers greater control in what is generated and when. It can be a great help when collecting information for Support. There are overlaps with RDA, however, DFW is geared towards collecting specific runtime information when an issue occurs while existing Incidents are collected by RDA. There are 3 WLDF Watches configured by default in a SOA Suite 11g domain: Stuck Threads, Unchecked Exception and Deadlock. These Watches are enabled by default and will generate Incidents in ADR. They are configured to reset automatically after 30 seconds so they have the potential to create multiple Incidents if these conditions are consistent. The Incidents generated by these Watches will only contain System level Diagnostic Dumps. These same System level Diagnostic Dumps will be included in any application scoped Incident as well. Starting in 11.1.1.6, SOA Suite is including its own set of application scoped Diagnostic Dumps that can be executed from WLST or through a WLDF Watch or Log Condition. These Diagnostic Dumps can be added to an Incident such as in the earlier example using the error code OWS-04086. soa.config: MDS configuration files and deployed-composites.xml soa.composite: All artifacts related to the deployed composite soa.wsdl: Summary of endpoints configured for the composite soa.edn: EDN configuration summary if applicable soa.db: Summary DB information for the SOA repository soa.env: Coherence cluster configuration summary soa.composite.trail: Partial audit trail information for the running composite The current release of RDA has the option to collect the soa.wsdl and soa.composite Diagnostic Dumps. More Diagnostic Dumps for SOA Suite products are planned for future releases along with enhancements to DFW itself. DFW Resources: Webcast Recording: SOA Diagnostics Sessions: Diagnostic Framework Diagnostic Framework Documentation DFW WLST Command Reference Documentation for SOA Diagnostic Dumps in 11.1.1.6 top Selective Tracing Selective Tracing is a facility available starting in version 11.1.1.4 that allows you to increase the logging level for specific loggers and for a specific context. What this means is that you have greater capability to collect needed diagnostic log information in a production environment with reduced overhead. For example, a Selective Tracing session can be executed that only increases the log level for one composite, only one logger, limited to one server in the cluster and for a preset period of time. In an environment where dozens of composites are deployed this can dramatically reduce the volume and overhead of the logging without sacrificing relevance. Selective Tracing can be administered either from Enterprise Manager or through WLST. WLST provides a bit more flexibility in terms of exactly where the tracing is run. When would you use it? When there is an issue in production or another environment that lends itself to filtering by an available context criteria and increasing the log level globally results in too much overhead or irrelevant information. The information is written to the server diagnostic log and is exportable from Enterprise Manager How is it related to the other tools? Selective Tracing output is written to the server diagnostic log. This log can be collected by a system level Diagnostic Dump using DFW or through a default RDA collection. Selective Tracing also heavily leverages ODL fields to determine what to trace and to tag information that is part of a particular tracing session. Available Context Criteria: Application Name Client Address Client Host Composite Name User Name Web Service Name Web Service Port Selective Tracing Resources: Webcast Recording: SOA Diagnostics Session: Using Selective Tracing to Diagnose SOA Suite Issues How to Use Selective Tracing for SOA [ID 1367174.1] Selective Tracing WLST Reference top DMS (Dynamic Monitoring Service) DMS exposes runtime information for monitoring. This information can be monitored in two ways: Through the DMS servlet As exposed MBeans The servlet is deployed by default and can be accessed through http://<host>:<port>/dms/Spy (use administrative credentials to access). The landing page of the servlet shows identical columns of what are known as Noun Types. If you select a Noun Type you will see a table in the right frame that shows the attributes (Sensors) for the Noun Type and the available instances. SOA Suite has several exposed Noun Types that are available for viewing through the Spy servlet. Screenshots of the Spy servlet are available in the Knowledge Base article How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS). Every Noun instance in the runtime is exposed as an MBean instance. As such they are generally available through an MBean browser and available for monitoring through WLDF. You can configure a WLDF Watch to monitor a particular attribute and fire a notification when the threshold is exceeded. A WLDF Watch can use the out of the box DFW notification type to notify DFW to create an Incident. When would you use it? When you want to monitor a metric or set of metrics either manually or through an automated system. When you want to trigger a WLDF Watch based on a metric exposed through DMS. How is it related to the other tools? DMS metrics can be monitored with WLDF Watches which can in turn notify DFW to create an Incident. DMS Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How to Reset a SOA 11g DMS Metric DMS Documentation top ODL (Oracle Diagnostic Logging) ODL is the primary facility for most Fusion Middleware applications to log what they are doing. Whenever you change a logging level through Enterprise Manager it is ultimately exposed through ODL and written to the server diagnostic log. A notable exception to this is WebLogic Server which uses its own log format / file. ODL logs entries in a consistent, structured way using predefined fields and name/value pairs. Here's an example of a SOA Suite entry: [2012-04-25T12:49:28.083-06:00] [AdminServer] [ERROR] [] [oracle.soa.bpel.engine] [tid: [ACTIVE].ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)'] [userId: ] [ecid: 0963fdde7e77631c:-31a6431d:136eaa46cda:-8000-00000000000000b4,0] [errid: 41] [WEBSERVICE_PORT.name: BPELProcess2_pt] [APP: soa-infra] [composite_name: TestProject2] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: bpelprocess1_client_ep] [J2EE_APP.name: soa-infra] Error occured while handling a post operation[[ When would you use it? You'll use ODL almost every time you want to identify and diagnose a problem in the environment. The entries are written to the server diagnostic log. How is it related to the other tools? The server diagnostic logs are collected by DFW and RDA. Selective Tracing writes its information to the diagnostic log as well. Additionally, DFW log conditions are triggered by ODL log events. ODL Resources: ODL Documentation top ADR (Automatic Diagnostics Repository) ADR is not a tool in and of itself but is where DFW stores the Incidents it creates. Every server in the domain has an ADR location which can be found under <SERVER_HOME>/adr. This is referred to the as the ADR 'Base' location. ADR also has what are known as 'Home' locations. Example: You have a domain called 'myDomain' and an associated managed server called 'myServer'. Your admin server is called 'AdminServer'. Your domain home directory is called 'myDomain' and it contains a 'servers' directory. The 'servers' directory contains a directory for the managed server called 'myServer' and here is where you'll find the 'adr' directory which is the ADR 'Base' location for myServer. To get to the ADR 'Home' locations we drill through a few levels: diag/ofm/myDomain/ In an 11.1.1.6 SOA Suite domain you will see 2 directories here, 'myServer' and 'soa-infra'. These are the ADR 'Home' locations. 'myServer' is the 'system' ADR home and contains system level Incidents. 'soa-infra' is the name that SOA Suite used to register with DFW and this ADR home contains SOA Suite related Incidents Each ADR home location contains a series of directories, one of which is called 'incident'. This is where your Incidents are stored. When would you use it? It's a good idea to check on these locations from time to time to see whether a lot of Incidents are being generated. They can be cleaned out by deleting the Incident directories or through the ADRCI tool. If you know that an Incident is of particular interest for an issue you're working with Oracle you can simply zip it up and provide it. How does it relate to the other tools? ADR is obviously very important for DFW since it's where the Incidents are stored. Incidents contain Diagnostic Dumps that may relate to diagnostic logs (ODL) and DMS metrics. The most recent 10 Incident directories are collected by RDA by default and ADRCI relies on the ADR locations to help manage the contents. top ADRCI (Automatic Diagnostics Repository Command Interpreter) ADRCI is a command line tool for packaging and managing Incidents. When would you use it? When purging Incidents from an ADR Home location or when you want to package an Incident along with an offline RDA collection for upload to Oracle Support. How does it relate to the other tools? ADRCI contains a tool called the Incident Packaging System or IPS. This is used to package an Incident for upload to Oracle Support through a Service Request. Starting in 11.1.1.6 IPS will attempt to collect an offline RDA collection and include it with the Incident package. This will only work if Perl is available on the path, otherwise it will give a warning and package only the Incident files. ADRCI Resources: How to Use the Incident Packaging System (IPS) in SOA 11g [ID 1381259.1] ADRCI Documentation top WLDF (WebLogic Diagnostic Framework) WLDF is functionality available in WebLogic Server since version 9. Starting with FMw 11g a link has been added between WLDF and the pre-existing DFW, the WLDF Watch Notification. Let's take a closer look at the flow: There is a need to monitor the performance of your SOA Suite message processing A WLDF Watch is created in the WLS console that will trigger if the average message processing time exceeds 2 seconds. This metric is monitored through a DMS MBean instance. The out of the box DFW Notification (the Notification is called FMWDFW-notification) is added to the Watch. Under the covers this notification is of type JMX. The Watch is triggered when the threshold is exceeded and fires the Notification. DFW has a listener that picks up the Notification and evaluates it according to its rules, etc When it comes to automatic Incident creation, WLDF is a key component with capabilities that will grow over time. When would you use it? When you want to monitor the WLS server log or an MBean metric for some condition and fire a notification when the Watch is triggered. How does it relate to the other tools? WLDF is used to automatically trigger Incident creation through DFW using the DFW Notification. WLDF Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How To Script the Creation of a SOA WLDF Watch in 11g [ID 1377986.1] WLDF Documentation top

    Read the article

  • forwarding port 3306 on macosx in order to connect to a remote mysql db

    - by Jonathan Mayhak
    I'm on macosx 10.6.2 trying to connect to ubuntu server 8.04.1 at linode. ssh -L 127.0.0.1:3306:[[remote ip]]:3306 user@server -N I want to set up ssh tunneling so that I can access a remote mysql server. First of all, I'm told bind: Address already in use. This is only after I've tried the command before. How do I manually close a port forwarding session? Second, when I change the command to be ssh -L 127.0.0.1:3310:[[remote ip]]:3306 user@server -N (I changed the local port to listen on). I'm told channel 1: open failed: connect failed: Connection refused when I try to connect to the mysql server via mysql workbench or sequel pro. To connect through mysql workbench I use the following settings: host: 127.0.0.1 port: 3310 (if 3306 is in use) username: mysql username password: mysql password database: I don't put anything in

    Read the article

  • Forwarding port 3306 on Mac OS X in order to connect to a remote MySQL Database

    - by Jonathan Mayhak
    I'm on Mac OS X 10.6.2 trying to connect to ubuntu server 8.04.1 at linode. ssh -L 127.0.0.1:3306:[[remote ip]]:3306 user@server -N I want to set up ssh tunneling so that I can access a remote mysql server. First of all, I'm told bind: Address already in use. This is only after I've tried the command before. How do I manually close a port forwarding session? Second, when I change the command to be ssh -L 127.0.0.1:3310:[[remote ip]]:3306 user@server -N (I changed the local port to listen on). I'm told channel 1: open failed: connect failed: Connection refused when I try to connect to the MySQL server via MySQL workbench or sequel pro. To connect through MySQL workbench I use the following settings: host: 127.0.0.1 port: 3310 (if 3306 is in use) username: mysql username password: mysql password database: I don't put anything in

    Read the article

  • Mysql refusing connection: a very special connection issue

    - by k to the z
    I have my programers remoting into a web server with windows rdp. This web server is the only machine that can access another mysql server in a secure zone. When I remote into the web server from my machine I am able to connect to the mysql server through the mysql workbench on the web server. However, when I try this same procedure from another person's computer I can get into the server via rdp. I just can't connect to mysql using the workbench. I have checked and re checked the credentials and connection information. They match. I've had other people check and re check the credentials. As far as mysql permissions are concerned this user is allowed to connect from any machine. Plus I'm remoting into the same web server. The only difference seems to be which computer is remoting into the webserver. wtf?

    Read the article

  • New Product: Oracle Java ME Embedded 3.2 – Small, Smart, Connected

    - by terrencebarr
    The Internet of Things (IoT) is coming. And, with todays launch of the Oracle Java ME Embedded 3.2 product, Java is going to play an even greater role in it. Java in the Internet of Things By all accounts, intelligent embedded devices are penetrating the world around us – driving industrial processes, monitoring environmental conditions, providing better health care, analyzing and processing data, and much more. And these devices are becoming increasingly connected, adding another dimension of utility. Welcome to the Internet of Things. As I blogged yesterday, this is a huge opportunity for the Java technology and ecosystem. To enable and utilize these billions of devices effectively you need a programming model, tools, and protocols which provide a feature-rich, consistent, scalable, manageable, and interoperable platform.  Java technology is ideally suited to address these technical and business problems, enabling you eliminate many of the typical challenges in designing embedded solutions. By using Java you can focus on building smarter, more valuable embedded solutions faster. To wit, Java technology is already powering around 10 billion devices worldwide. Delivering on this vision and accelerating the growth of embedded Java solutions, Oracle is today announcing a brand-new product: Oracle Java Micro Edition (ME) Embedded 3.2, accompanied by an update release of the Java ME Software Development Kit (SDK) to version 3.2. What is Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a complete Java runtime client, optimized for ARM architecture connected microcontrollers and other resource-constrained systems. The product provides dedicated embedded functionality and is targeted for low-power, limited memory devices requiring support for a range of network services and I/O interfaces.  What features and APIs are provided by Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a Java ME runtime based on CLDC 1.1 (JSR-139) and IMP-NG (JSR-228). The runtime and virtual machine (VM) are highly optimized for embedded use. Also included in the product are the following optional JSRs and Oracle APIs: File I/O API’s (JSR-75)  Wireless Messaging API’s (JSR-120) Web Services (JSR-172) Security and Trust Services subset (JSR-177) Location API’s (JSR-179) XML API’s (JSR-280)  Device Access API Application Management System (AMS) API AccessPoint API Logging API Additional embedded features are: Remote application management system Support for continuous 24×7 operation Application monitoring, auto-start, and system recovery Application access to peripheral interfaces such as GPIO, I2C, SPIO, memory mapped I/O Application level logging framework, including option for remote logging Headless on-device debugging – source level Java application debugging over IP Connection Remote configuration of the Java VM What type of platforms are targeted by Oracle Java ME 3.2 Embedded? The product is designed for embedded, always-on, resource-constrained, headless (no graphics/no UI), connected (wired or wireless) devices with a variety of peripheral I/O.  The high-level system requirements are as follows: System based on ARM architecture SOCs Memory footprint (approximate) from 130 KB RAM/350KB ROM (for a minimal, customized configuration) to 700 KB RAM/1500 KB ROM (for the full, standard configuration)  Very simple embedded kernel, or a more capable embedded OS/RTOS At least one type of network connection (wired or wireless) The initial release of the product is delivered as a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN).  What types of applications can I develop with Oracle Java ME Embedded 3.2? The Oracle Java ME Embedded 3.2 product is a full-featured embedded Java runtime supporting applications based on the IMP-NG application model, which is derived from the well-known MIDP 2 application model. The runtime supports execution of multiple concurrent applications, remote application management, versatile connectivity, and a rich set of APIs and features relevant for embedded use cases, including the ability to interact with peripheral I/O directly from Java applications. This rich feature set, coupled with familiar and best-in class software development tools, allows developers to quickly build and deploy sophisticated embedded solutions for a wide range of use cases. Target markets well supported by Oracle Java ME Embedded 3.2 include wireless modules for M2M, industrial and building control, smart grid infrastructure, home automation, and environmental sensors and tracking. What tools are available for embedded application development for Oracle Java ME Embedded 3.2? Along with the release of Oracle Java ME Embedded 3.2, Oracle is also making available an updated version of the Java ME Software Development Kit (SDK), together with plug-ins for the NetBeans and Eclipse IDEs, to deliver a complete development environment for embedded application development.  OK – sounds great! Where can I find out more? And how do I get started? There is a complete set of information, data sheet, API documentation, “Getting Started Guide”, FAQ, and download links available: For an overview of Oracle Embeddable Java, see here. For the Oracle Java ME Embedded 3.2 press release, see here. For the Oracle Java ME Embedded 3.2 data sheet, see here. For the Oracle Java ME Embedded 3.2 landing page, see here. For the Oracle Java ME Embedded 3.2 documentation page, including a “Getting Started Guide” and FAQ, see here. For the Oracle Java ME SDK 3.2 landing and download page, see here. Finally, to ask more questions, please see the OTN “Java ME Embedded” forum To get started, grab the “Getting Started Guide” and download the Java ME SDK 3.2, which includes the Oracle Java ME Embedded 3.2 device emulation.  Can I learn more about Oracle Java ME Embedded 3.2 at JavaOne and/or Java Embedded @ JavaOne? Glad you asked Both conferences, JavaOne and Java Embedded @ JavaOne, will feature a host of content and information around the new Oracle Java ME Embedded 3.2 product, from technical and business sessions, to hands-on tutorials, and demos. Stay tuned, I will post details shortly. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "Oracle Java ME Embedded", Connected, embedded, Embedded Java, Java Embedded @ JavaOne, JavaOne, Smart

    Read the article

  • Java ME SDK 3.2 is now live

    - by SungmoonCho
    Hi everyone, It has been a while since we released the last version. We have been very busy integrating new features and making lots of usability improvements into this new version. Datasheet is available here. Please visit Java ME SDK 3.2 download page to get the latest and best version yet! Some of the new features in this version are described below. Embedded Application SupportOracle Java ME SDK 3.2 now supports the new Oracle® Java ME Embedded. This includes support for JSR 228, the Information Module Profile-Next Generation API (IMP-NG). You can test and debug applications either on the built-in device emulators or on your device. Memory MonitorThe Memory Monitor shows memory use as an application runs. It displays a dynamic detailed listing of the memory usage per object in table form, and a graphical representation of the memory use over time. Eclipse IDE supportOracle Java ME SDK 3.2 now officially supports Eclipse IDE. Once you install the Java ME SDK plugins on Eclipse, you can start developing, debugging, and profiling your mobile or embedded application. Skin CreatorWith the Custom Device Skin Creator, you can create your own skins. The appearance of the custom skins is generic, but the functionality can be tailored to your own specifications.  Here are the release highlights. Implementation and support for the new Oracle® Java Wireless Client 3.2 runtime and the Oracle® Java ME Embedded runtime. The AMS in the CLDC emulators has a new look and new functionality (Install Application, Manage Certificate Authorities and Output Console). Support for JSR 228, the Information Module Profile-Next Generation API (IMP-NG). The IMP-NG platform is implemented as a subset of CLDC. Support includes: A new emulator for headless devices. Javadocs for the following Oracle APIs: Device Access API, Logging API, AMS API, and AccessPoint API. New demos for IMP-NG features can be run on the emulator or on a real device running the Oracle® Java ME Embedded runtime. New Custom Device Skin Creator. This tool provides a way to create and manage custom emulator skins. The skin appearance is generic, but the functionality, such as the JSRs supported or the device properties, are up to you. This utility only supported in NetBeans. Eclipse plugin for CLDC/MIDP. For the first time Oracle Java ME SDK is available as an Eclipse plugin. The Eclipse version does not support CDC, the Memory Monitor, and the Custom Device Skin Creator in this release. All Java ME tools are implemented as NetBeans plugins. As of the plugin integrates Java ME utilities into the standard NetBeans menus. Tools > Java ME menu is the place to launch Java ME utilities, including the new Skin Creator. Profile > Java ME is the place to work with the Network Monitor and the Memory Monitor. Use the standard NetBeans tools for debugging. Profiling, Network monitoring, and Memory monitoring are integrated with the NetBeans profiling tools. New network monitoring protocols are supported in this release: WMA, SIP, Bluetooth and OBEX, SATSA APDU and JCRMI, and server sockets. Java ME SDK Update Center. Oracle Java ME SDK can be updated or extended by new components. The Update Center can download, install, and uninstall plugins specific to the Java ME SDK. A plugin consists of runtime components and skins. Bug fixes and enhancements. This version comes with a few known problems. All of them have workarounds, so I hope you don't get stuck in these issues when you are using the product. It you cannot watch static variables during an Eclipse debugging session, and sometimes the Variable view cannot show data. In the source code, move the mouse over the required variable to inspect the variable value. A real device shown in the Device Selector is deleted from the Device Manager, yet it still appears. Kill the device manager in the system tray, and relaunch it. Then you will see the device removed from the list. On-device profiling does not work on a device. CPU profiling, networking monitoring, and memory monitoring do not work on the device, since the device runtime does not yet support it. Please do the profiling with your emulator first, and then test your application on the device. In the Device Selector, using Clean Database on real external device causes a null pointer exception. External devices do not have a database recognized by the SDK, so you can disregard this exception message. Suspending the Emulator during a Memory Monitor session hangs the emulator. Do not use the Suspend option (F5) while the Memory Monitor is running. If the emulator is hung, open the Windows task manager and stop the emulator process (javaw). To switch to another application while the Memory Monitor is running, choose Application > AMS Home (F4), and select a different application. Please let us know how we can improve it even better, by sending us your feedback. -Java ME SDK Team

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • WebLogic Server JMS WLST Script – Who is Connected To My Server

    - by james.bayer
    Ever want to know who was connected to your WebLogic Server instance for troubleshooting?  An email exchange about this topic and JMS came up this week, and I’ve heard it come up once or twice before too.  Sometimes it’s interesting or helpful to know the list of JMS clients (IP Addresses, JMS Destinations, message counts) that are connected to a particular JMS server.  This can be helpful for troubleshooting.  Tom Barnes from the WebLogic Server JMS team provided some helpful advice: The JMS connection runtime mbean has “getHostAddress”, which returns the host address of the connecting client JVM as a string.  A connection runtime can contain session runtimes, which in turn can contain consumer runtimes.  The consumer runtime, in turn has a “getDestinationName” and “getMemberDestinationName”.  I think that this means you could write a WLST script, for example, to dump all consumers, their destinations, plus their parent session’s parent connection’s host addresses.    Note that the client runtime mbeans (connection, session, and consumer) won’t necessarily be hosted on the same JVM as a destination that’s in the same cluster (client messages route from their connection host to their ultimate destination in the same cluster). Writing the Script So armed with this information, I decided to take the challenge and see if I could write a WLST script to do this.  It’s always helpful to have the WebLogic Server MBean Reference handy for activities like this.  This one is focused on JMS Consumers and I only took a subset of the information available, but it could be modified easily to do Producers.  I haven’t tried this on a more complex environment, but it works in my simple sandbox case, so it should give you the general idea. # Better to use Secure Config File approach for login as shown here http://buttso.blogspot.com/2011/02/using-secure-config-files-with-weblogic.html connect('weblogic','welcome1','t3://localhost:7001')   # Navigate to the Server Runtime and get the Server Name serverRuntime() serverName = cmo.getName()   # Multiple JMS Servers could be hosted by a single WLS server cd('JMSRuntime/' + serverName + '.jms' ) jmsServers=cmo.getJMSServers()   # Find the list of all JMSServers for this server namesOfJMSServers = '' for jmsServer in jmsServers: namesOfJMSServers = jmsServer.getName() + ' '   # Count the number of connections jmsConnections=cmo.getConnections() print str(len(jmsConnections)) + ' JMS Connections found for ' + serverName + ' with JMSServers ' + namesOfJMSServers   # Recurse the MBean tree for each connection and pull out some information about consumers for jmsConnection in jmsConnections: try: print 'JMS Connection:' print ' Host Address = ' + jmsConnection.getHostAddress() print ' ClientID = ' + str( jmsConnection.getClientID() ) print ' Sessions Current = ' + str( jmsConnection.getSessionsCurrentCount() ) jmsSessions = jmsConnection.getSessions() for jmsSession in jmsSessions: jmsConsumers = jmsSession.getConsumers() for jmsConsumer in jmsConsumers: print ' Consumer:' print ' Name = ' + jmsConsumer.getName() print ' Messages Received = ' + str(jmsConsumer.getMessagesReceivedCount()) print ' Member Destination Name = ' + jmsConsumer.getMemberDestinationName() except: print 'Error retrieving JMS Consumer Information' dumpStack() # Cleanup disconnect() exit() Example Output I expect the output to look something like this and loop through all the connections, this is just the first one: 1 JMS Connections found for AdminServer with JMSServers myJMSServer JMS Connection:   Host Address = 127.0.0.1   ClientID = None   Sessions Current = 16    Consumer:      Name = consumer40      Messages Received = 1      Member Destination Name = myJMSModule!myQueue Notice that it has the IP Address of the client.  There are 16 Sessions open because I’m using an MDB, which defaults to 16 connections, so this matches what I expect.  Let’s see what the full output actually looks like: D:\Oracle\fmw11gr1ps3\user_projects\domains\offline_domain>java weblogic.WLST d:\temp\jms.py   Initializing WebLogic Scripting Tool (WLST) ...   Welcome to WebLogic Server Administration Scripting Shell   Type help() for help on available commands   Connecting to t3://localhost:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'offline_domain'.   Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.   Location changed to serverRuntime tree. This is a read-only tree with ServerRuntimeMBean as the root. For more help, use help(serverRuntime)   1 JMS Connections found for AdminServer with JMSServers myJMSServer JMS Connection: Host Address = 127.0.0.1 ClientID = None Sessions Current = 16 Consumer: Name = consumer40 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer34 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer37 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer16 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer46 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer49 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer43 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer55 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer25 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer22 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer19 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer52 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer31 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer58 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer28 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer61 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Disconnected from weblogic server: AdminServer     Exiting WebLogic Scripting Tool. Thanks to Tom Barnes for the hints and the inspiration to write this up. Image of telephone switchboard courtesy of http://www.JoeTourist.net/ JoeTourist InfoSystems

    Read the article

  • ArchBeat Link-o-Rama for December 13, 2012

    - by Bob Rhubart
    Key Takeaway Points and Lessons Learned from QCon San Francisco 2012 | Abel Avram Abel Avram's InfoQ article "summarizes the key takeaways from QConSF 2012, including blog entries written by editors and practitioner attendees for all keynotes, tracks and sessions along with aggregated twitter feedback during the event." Pick Bex's Deep Dive Talk for Collaborate 2013 | Bex Huff Bezzotech, Oracle ACE Director Bex Huff's outfit, is presenting a two-hour deep-dive session on ECM at Collaborate 13 in Denver in April. You can help to determine the focus of that session by submitting your ideas directly to Bex. Get the details in his blog post. E2.0 Workbench Podcast 10 – EBS Order Entry with Webcenter via BPEL and SOA Gateway | John Brunswick John Brunswick's latest E2.0 Workbench video tutorial illustrates how to "create a custom service, create a BPEL process that interacts with it and brokers authentication to the SOA Gateway, and finally consume the BPEL service in WebCenter to allow end users to place simple orders via an extranet. Oracle Fusion Middleware Security: Password Policy in OAM 11g R2 | Rob Otto Rob Otto continues the Oracle Fusion Middleware A-Team "Oracle Access Manager Academy" series with a detailed look at OAM's ability to support "a subset of password management processes without the need to use Oracle Identity Manager and LDAP Sync." Thought for the Day "Smart data structures and dumb code works a lot better than the other way around." — Eric Raymond Source: SoftwareQuotes.com

    Read the article

  • TellagoStudio's presenting SOA Governance on the Microsoft platform using SO-Aware at Microsoft TechReady.

    - by Vishal
    Hi there, Microsoft is hosting the first edition of their annual TechReddy conference. TechReady is an internal Microsoft conference but Microsoft invited Tellago Studios to present a session about how to enable Agile SOA Governance on the Microsoft platform using our recently release product: SO-Aware. As part of our session, we will take a look at the current challenges that organizations face when enabling SOA governance capabilities on the Microsoft platform and how organizations can benefit from  more agile, lightweight and modern SOA governance models. The session will provide a practical view to the role of Tellago Studios' SO-Aware as an essential technology to enable native SOA governance on the Microsoft platform. We will explore in detail important capabilities of SO-Aware such as Centralized service repository Centralized configuration management Service testing Monitoring Transparent integration with technologies such as Visual Studio, BizTalk Server, Windows Server & Azure AppFabric among many others But the fun doesn't stop there..... As part of this session, we will showcase for the first time our upcoming SO-Aware Test Workbench product which enables load and functional web service testing capabilities on the Microsoft technology stack. SO-Aware Test Workbench provides developers with a visually rich environment to model and control the execution of load and functional tests in a SOA infrastructure. This tool includes the first native WCF load testing engine allowing developers to transparently load test applications built on Microsoft's service oriented technologies such as WCF, BizTalk Server or the Windows Server or Azure AppFabric.

    Read the article

  • Google App Engine - Spring Security Issue (java.security.AccessControlException)

    - by Taylor L
    I'm currently getting the AccessControlException below when I deploy to app engine (I don't see it when I run in my local environment). I'm using GAE 1.3.1, Spring 3.0.1, and Spring Security 3.0.2. Any ideas how to get around this issue? It appears to be an issue with Spring Security trying to get the system class loader, but I'm not sure how to work around this. Nested in org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.springframework.security.filterChainProxy': Initialization of bean failed; nested exception is java.security.AccessControlException: access denied (java.lang.RuntimePermission getClassLoader): java.security.AccessControlException: access denied (java.lang.RuntimePermission getClassLoader) at java.security.AccessControlContext.checkPermission(AccessControlContext.java:355) at java.security.AccessController.checkPermission(AccessController.java:567) at java.lang.SecurityManager.checkPermission(Unknown Source) at com.google.apphosting.runtime.security.CustomSecurityManager.checkPermission(CustomSecurityManager.java:45) at java.lang.ClassLoader.getSystemClassLoader(Unknown Source) at org.springframework.beans.BeanUtils.findEditorByConvention(BeanUtils.java:392) at org.springframework.beans.TypeConverterDelegate.findDefaultEditor(TypeConverterDelegate.java:360) at org.springframework.beans.TypeConverterDelegate.convertIfNecessary(TypeConverterDelegate.java:213) at org.springframework.beans.TypeConverterDelegate.convertIfNecessary(TypeConverterDelegate.java:104) at org.springframework.beans.BeanWrapperImpl.convertIfNecessary(BeanWrapperImpl.java:419) at org.springframework.beans.factory.support.ConstructorResolver.createArgumentArray(ConstructorResolver.java:657) at org.springframework.beans.factory.support.ConstructorResolver.autowireConstructor(ConstructorResolver.java:191) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.autowireConstructor(AbstractAutowireCapableBeanFactory.java:984) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBeanInstance(AbstractAutowireCapableBeanFactory.java:888) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:479) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:450) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveInnerBean(BeanDefinitionValueResolver.java:270) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveValueIfNecessary(BeanDefinitionValueResolver.java:125) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveManagedMap(BeanDefinitionValueResolver.java:382) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveValueIfNecessary(BeanDefinitionValueResolver.java:161) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyPropertyValues(AbstractAutowireCapableBeanFactory.java:1308) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1067) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:511) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:450) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:290) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:287) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:189) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:562) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:871) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:423) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:272) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:196) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:47) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler.java:530) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1218) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:500) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at com.google.apphosting.runtime.jetty.AppVersionHandlerMap.createHandler(AppVersionHandlerMap.java:191) at com.google.apphosting.runtime.jetty.AppVersionHandlerMap.getHandler(AppVersionHandlerMap.java:168) at com.google.apphosting.runtime.jetty.JettyServletEngineAdapter.serviceRequest(JettyServletEngineAdapter.java:123) at com.google.apphosting.runtime.JavaRuntime.handleRequest(JavaRuntime.java:235) at com.google.apphosting.base.RuntimePb$EvaluationRuntime$6.handleBlockingRequest(RuntimePb.java:5485) at com.google.apphosting.base.RuntimePb$EvaluationRuntime$6.handleBlockingRequest(RuntimePb.java:5483) at com.google.net.rpc.impl.BlockingApplicationHandler.handleRequest(BlockingApplicationHandler.java:24) at com.google.net.rpc.impl.RpcUtil.runRpcInApplication(RpcUtil.java:363) at com.google.net.rpc.impl.Server$2.run(Server.java:837) at com.google.tracing.LocalTraceSpanRunnable.run(LocalTraceSpanRunnable.java:56) at com.google.tracing.LocalTraceSpanBuilder.internalContinueSpan(LocalTraceSpanBuilder.java:536) at com.google.net.rpc.impl.Server.startRpc(Server.java:792) at com.google.net.rpc.impl.Server.processRequest(Server.java:367) at com.google.net.rpc.impl.ServerConnection.messageReceived(ServerConnection.java:448) at com.google.net.rpc.impl.RpcConnection.parseMessages(RpcConnection.java:319) at com.google.net.rpc.impl.RpcConnection.dataReceived(RpcConnection.java:290) at com.google.net.async.Connection.handleReadEvent(Connection.java:474) at com.google.net.async.EventDispatcher.processNetworkEvents(EventDispatcher.java:774) at com.google.net.async.EventDispatcher.internalLoop(EventDispatcher.java:205) at com.google.net.async.EventDispatcher.loop(EventDispatcher.java:101) at com.google.net.rpc.RpcService.runUntilServerShutdown(RpcService.java:251) at com.google.apphosting.runtime.JavaRuntime$RpcRunnable.run(JavaRuntime.java:394) at java.lang.Thread.run(Unknown Source)

    Read the article

  • Error in Windows 7 after watching a MOV file

    - by JosephStyons
    Ever since watching a .MOV file with Windows Media Player on my pc, I am sporadically getting the below error. Does anyone know the cause of this, or a good way to fix it? This link has a hotfix, but it only applies to Windows XP. --------------------------- Microsoft Visual C++ Runtime Library --------------------------- Runtime Error! Program: C:\Windows\system32\DllHost.exe This application has requested the Runtime to terminate it in an unusual way. Please contact the application's support team for more information. --------------------------- OK --------------------------- I am running Windows 7 with all updates installed.

    Read the article

  • WCF timedout waiting for System.Diagnostics.Process to finish

    - by Bartek
    Dear All, We have a WCF Service deployed on Windows Server 2003 that handles file transfers. When file is in Unix format, I am converting it to Dos format in the initialization stage using System.Diagnostics.Process (.WaitForExit()). Client calls the service: obj_DataSenderService = New DataSendClient() obj_DataSenderService.InnerChannel.OperationTimeout = New TimeSpan(0, System.Configuration.ConfigurationManager.AppSettings("DatasenderServiceOperationTimeout"), 0) str_DataSenderGUID = obj_DataSenderService.Initialize(xe_InitDetails.GetXMLNode) This works fine, however for large files the conversion takes more than 10 minutes and I am getting exception: A first chance exception of type 'System.ServiceModel.CommunicationException' occurred in mscorlib.dll Additional information: The socket connection was aborted. This could be caused by an error processing your message or a receive timeout being exceeded by the remote host, or an underlying network resource issue. Local socket timeout was '00:59:59.8749992'. I tried configuring both client: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" /> <message clientCredentialType="Windows" /> </security> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:4000/DataSenderEndPoint" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataSend" contract="IDataSend" name="NetTcpBinding_IDataSend"> <identity> <servicePrincipalName value="host/localhost" /> <!--<servicePrincipalName value="host/axopwrapp01.Corp.Acxiom.net" />--> </identity> </endpoint> </client> </system.serviceModel> And service: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> </binding> </netTcpBinding> </bindings> </system.serviceModel> but without luck. In the Service trace viewer I can see: Close process timed out waiting for service dispatch to complete. with stack trace: System.ServiceModel.ServiceChannelManager.CloseInput(TimeSpan timeout) System.ServiceModel.Dispatcher.InstanceContextManager.CloseInput(TimeSpan timeout) System.ServiceModel.ServiceHostBase.OnClose(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close() DataSenderService.DataSender.OnStop() System.ServiceProcess.ServiceBase.DeferredStop() System.Runtime.Remoting.Messaging.StackBuilderSink._PrivateProcessMessage(IntPtr md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.PrivateProcessMessage(RuntimeMethodHandle md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.AsyncProcessMessage(IMessage msg, IMessageSink replySink) System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.DoAsyncCall() System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.ThreadPoolCallBack(Object o) System.Threading._ThreadPoolWaitCallback.WaitCallback_Context(Object state) System.Threading.ExecutionContext.runTryCode(Object userData) System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading._ThreadPoolWaitCallback.PerformWaitCallbackInternal(_ThreadPoolWaitCallback tpWaitCallBack) System.Threading._ThreadPoolWaitCallback.PerformWaitCallback(Object state) Many thanks Bartek

    Read the article

  • Reusing OAuth request token when user refresh page - Twitter4j on GAE

    - by Tahir Akram
    Hi I am using Twitter4J API on GAE/J. I want to use the request token when user came to my page. (called back URL). And press refresh button. I write following code for that. But When user press refresh button. I got Authentication credentials error. Please see the stacktrance. It works fine when user first time used that token. HomeServlet.java code: HttpSession session = request.getSession(); twitter.setOAuthConsumer(FFConstants.CONSUMER_KEY, FFConstants.CONSUMER_SECRET); String token = (String) session.getAttribute("token"); String authorizedToken = (String)session.getAttribute("authorizedToken"); User user = null; if (!token.equals(authorizedToken)){ AccessToken accessToken = twitter.getOAuthAccessToken( token, (String) session .getAttribute("tokenSecret")); twitter.setOAuthAccessToken(accessToken); user = twitter.verifyCredentials(); session.setAttribute("authorizedToken", token); session.setAttribute("user", user); }else{ user = (User)session.getAttribute("user"); } TwitterUser twitterUser = new TwitterUser(); twitterUser.setFollowersCount(user.getFollowersCount()); twitterUser.setFriendsCount(user.getFriendsCount()); twitterUser.setFullName(user.getName()); twitterUser.setScreenName(user.getScreenName()); twitterUser.setLocation(user.getLocation()); Please suggest how I can do that. I have seen on many website. They retain the user with the same token. Even if user press browser refresh buttion again and again. Please help. Exception stacktrace: Reason: twitter4j.TwitterException: 401:Authentication credentials were missing or incorrect. /friends/ids.xml This method requires authentication. at twitter4j.http.HttpClient.httpRequest(HttpClient.java:469) at twitter4j.http.HttpClient.get(HttpClient.java:412) at twitter4j.Twitter.get(Twitter.java:276) at twitter4j.Twitter.get(Twitter.java:228) at twitter4j.Twitter.getFriendsIDs(Twitter.java:1819) at com.tff.servlet.HomeServlet.doGet(HomeServlet.java:86) at javax.servlet.http.HttpServlet.service(HttpServlet.java:693) at javax.servlet.http.HttpServlet.service(HttpServlet.java:806) at org.mortbay.jetty.servlet.ServletHolder.handle(ServletHolder.java:487) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1093) at com.google.apphosting.utils.servlet.ParseBlobUploadFilter.doFilter(ParseBlobUploadFilter.java:97) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1084) at com.google.apphosting.runtime.jetty.SaveSessionFilter.doFilter(SaveSessionFilter.java:35) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1084) at com.google.apphosting.utils.servlet.TransactionCleanupFilter.doFilter(TransactionCleanupFilter.java:43) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1084) at org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:360) at org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) at org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:181) at org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:712) at org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:405) at com.google.apphosting.runtime.jetty.AppVersionHandlerMap.handle(AppVersionHandlerMap.java:238) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:139) at org.mortbay.jetty.Server.handle(Server.java:313) at org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:506) at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(HttpConnection.java:830) at com.google.apphosting.runtime.jetty.RpcRequestParser.parseAvailable(RpcRequestParser.java:76) at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:381) at com.google.apphosting.runtime.jetty.JettyServletEngineAdapter.serviceRequest(JettyServletEngineAdapter.java:135) at com.google.apphosting.runtime.JavaRuntime.handleRequest(JavaRuntime.java:235) at com.google.apphosting.base.RuntimePb$EvaluationRuntime$6.handleBlockingRequest(RuntimePb.java:5235) at com.google.apphosting.base.RuntimePb$EvaluationRuntime$6.handleBlockingRequest(RuntimePb.java:5233) at com.google.net.rpc.impl.BlockingApplicationHandler.handleRequest(BlockingApplicationHandler.java:24) at com.google.net.rpc.impl.RpcUtil.runRpcInApplication(RpcUtil.java:363) at com.google.net.rpc.impl.Server$2.run(Server.java:838) at com.google.tracing.LocalTraceSpanRunnable.run(LocalTraceSpanRunnable.java:56) at com.google.tracing.LocalTraceSpanBuilder.internalContinueSpan(LocalTraceSpanBuilder.java:536) at com.google.net.rpc.impl.Server.startRpc(Server.java:793) at com.google.net.rpc.impl.Server.processRequest(Server.java:368) at com.google.net.rpc.impl.ServerConnection.messageReceived(ServerConnection.java:448) at com.google.net.rpc.impl.RpcConnection.parseMessages(RpcConnection.java:319) at com.google.net.rpc.impl.RpcConnection.dataReceived(RpcConnection.java:290) at com.google.net.async.Connection.handleReadEvent(Connection.java:466) at com.google.net.async.EventDispatcher.processNetworkEvents(EventDispatcher.java:759) at com.google.net.async.EventDispatcher.internalLoop(EventDispatcher.java:205) at com.google.net.async.EventDispatcher.loop(EventDispatcher.java:101) at com.google.net.rpc.RpcService.runUntilServerShutdown(RpcService.java:251) at com.google.apphosting.runtime.JavaRuntime$RpcRunnable.run(JavaRuntime.java:394) at java.lang.Thread.run(Unknown Source)

    Read the article

  • Ruby Gem LoadError mysql2/mysql2 required

    - by Kalli Dalli
    Im trying to setup my rails server on OSX 10.8 but I can't get my rails server to run. - Currently Im using a Zend Server with mysql 5.1. - I also have istalled brew and brew mysql. - And I used: gem install mysql2 -- --srcdir=/usr/local/mysql/include --with-opt-include=/usr/local/mysql/include the server worked already but now, I always get this loadError below. This is what my Gemfile says: ralphs-macbook-pro:admin-mockup zero$ bundle install Using rake (10.0.2) Using i18n (0.6.1) Using multi_json (1.3.7) Using activesupport (3.2.7) Using builder (3.0.4) Using activemodel (3.2.7) Using erubis (2.7.0) Using journey (1.0.4) Using rack (1.4.1) Using rack-cache (1.2) Using rack-test (0.6.2) Using hike (1.2.1) Using tilt (1.3.3) Using sprockets (2.1.3) Using actionpack (3.2.7) Using mime-types (1.19) Using polyglot (0.3.3) Using treetop (1.4.12) Using mail (2.4.4) Using actionmailer (3.2.7) Using arel (3.0.2) Using tzinfo (0.3.35) Using activerecord (3.2.7) Using activeresource (3.2.7) Using annotate (2.5.0) Using coffee-script-source (1.4.0) Using execjs (1.4.0) Using coffee-script (2.2.0) Using rack-ssl (1.3.2) Using json (1.7.5) Using rdoc (3.12) Using thor (0.16.0) Using railties (3.2.7) Using coffee-rails (3.2.2) Using columnize (0.3.6) Using debugger-ruby_core_source (1.1.5) Using debugger-linecache (1.1.2) Using debugger (1.2.2) Using formtastic (2.2.1) Using haml (3.1.7) Using haml-rails (0.3.5) Using hirb (0.7.0) Using hpricot (0.8.6) Using jquery-rails (2.1.4) Using kgio (2.7.4) Using mysql2 (0.3.11) Using php_serialize (1.2) Using polyamorous (0.5.0) Using rabl (0.7.8) Using railroady (1.1.0) Using bundler (1.2.3) Using rails (3.2.7) Using raindrops (0.10.0) Using randumb (0.3.0) Using sass (3.2.3) Using sass-rails (3.2.5) Using squeel (1.0.13) Using uglifier (1.3.0) Using unicorn (4.4.0) Your bundle is complete! Use `bundle show [gemname]` to see where a bundled gem is installed. And after starting rails s /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/mysql2-0.3.11/lib/mysql2.rb:9:in `require': cannot load such file -- mysql2/mysql2 (LoadError) from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/mysql2-0.3.11/lib/mysql2.rb:9:in `<top (required)>' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:68:in `require' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:68:in `block (2 levels) in require' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:66:in `each' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:66:in `block in require' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:55:in `each' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler/runtime.rb:55:in `require' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/bundler-1.2.3/lib/bundler.rb:128:in `require' from /Users/zero/GitHub/admin-mockup/config/application.rb:7:in `<top (required)>' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/railties-3.2.7/lib/rails/commands.rb:53:in `require' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/railties-3.2.7/lib/rails/commands.rb:53:in `block in <top (required)>' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/railties-3.2.7/lib/rails/commands.rb:50:in `tap' from /Users/zero/.rvm/gems/ruby-1.9.3-p327/gems/railties-3.2.7/lib/rails/commands.rb:50:in `<top (required)>' from script/rails:6:in `require' from script/rails:6:in `<main>' Thx for any help!

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • on Google App Engine 500 Error, it should be 200 instead of 500

    - by Faisal Amjad
    requestToken = function() { var getTokenURI = '/gettoken?userid=' + userid; var httpRequest = makeRequest(getTokenURI, true); httpRequest.onreadystatechange = function() { if (httpRequest.readyState == 4) { if (httpRequest.status == 200) { openChannel(httpRequest.responseText); } else { alert('ERROR: AJAX request status = ' + httpRequest.status); } } } }; function makeRequest(url, async) { var httpRequest; if (window.XMLHttpRequest) { httpRequest = new XMLHttpRequest(); } else if (window.ActiveXObject) { // IE try { httpRequest = new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) { try { httpRequest = new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) { } } } if (!httpRequest) { return false; } httpRequest.open('POST', url, async); httpRequest.send(); return httpRequest; } it is running excellent on localhost...but on google app engine it httpRequest.status equals 500 and goes in else statement. WHY? LOG on google app engine: /getFriendList?userid=d 500 253ms 0kb Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.97 Safari/537.11 175.110.179.86 - - [17/Dec/2012:08:35:33 -0800] "POST /getFriendList?userid=d HTTP/1.1" 500 0 "http://faisalimmsngr.appspot.com/" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.97 Safari/537.11" "faisalimmsngr.appspot.com" ms=254 cpu_ms=110 instance=00c61b117caf2d11ca57d2a2296ccd0b902b038a W 2012-12-17 08:35:33.272 Failed startup of context com.google.apphosting.utils.jetty.RuntimeAppEngineWebAppContext@10ff62a{/,/base/data/home/apps/s~faisalimmsngr/1.363934467542140431} org.mortbay.util.MultiException[java.lang.UnsupportedClassVersionError: adv/web/mid/exam/FriendServlet : Unsupported major.minor version 51.0, java.lang.UnsupportedClassVersionError: adv/web/mid/exam/MessageServlet : Unsupported major.minor version 51.0, java.lang.UnsupportedClassVersionError: adv/web/mid/exam/TokenServlet : Unsupported major.minor version 51.0] at org.mortbay.jetty.servlet.ServletHandler.initialize(ServletHandler.java:656) at org.mortbay.jetty.servlet.Context.startContext(Context.java:140) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1250) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:517) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:467) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at com.google.apphosting.runtime.jetty.AppVersionHandlerMap.createHandler(AppVersionHandlerMap.java:219) at com.google.apphosting.runtime.jetty.AppVersionHandlerMap.getHandler(AppVersionHandlerMap.java:194) at com.google.apphosting.runtime.jetty.JettyServletEngineAdapter.serviceRequest(JettyServletEngineAdapter.java:134) at com.google.apphosting.runtime.JavaRuntime$RequestRunnable.run(JavaRuntime.java:447) at com.google.tracing.TraceContext$TraceContextRunnable.runInContext(TraceContext.java:454) at com.google.tracing.TraceContext$TraceContextRunnable$1.run(TraceContext.java:461) at com.google.tracing.TraceContext.runInContext(TraceContext.java:703) at com.google.tracing.TraceContext$AbstractTraceContextCallback.runInInheritedContextNoUnref(TraceContext.java:338) at com.google.tracing.TraceContext$AbstractTraceContextCallback.runInInheritedContext(TraceContext.java:330) at com.google.tracing.TraceContext$TraceContextRunnable.run(TraceContext.java:458) at com.google.apphosting.runtime.ThreadGroupPool$PoolEntry.run(ThreadGroupPool.java:251) at java.lang.Thread.run(Thread.java:679) java.lang.UnsupportedClassVersionError: adv/web/mid/exam/FriendServlet : Unsupported major.minor version 51.0 at com.google.appengine.runtime.Request.process-c04431eac3a1f275(Request.java) at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClass(ClassLoader.java:634) at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142) at java.net.URLClassLoader.defineClass(URLClassLoader.java:277) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at java.lang.ClassLoader.loadClass(ClassLoader.java:266) at org.mortbay.util.Loader.loadClass(Loader.java:91) at org.mortbay.util.Loader.loadClass(Loader.java:71) at org.mortbay.jetty.servlet.Holder.doStart(Holder.java:73) at org.mortbay.jetty.servlet.ServletHolder.doStart(ServletHolder.java:242) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.servlet.ServletHandler.initialize(ServletHandler.java:685) at org.mortbay.jetty.servlet.Context.startContext(Context.java:140) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1250) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:517) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:467) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at com.google.tracing.TraceContext$TraceContextRunnable.runInContext(TraceContext.java:454) at com.google.tracing.TraceContext$TraceContextRunnable$1.run(TraceContext.java:461) at com.google.tracing.TraceContext.runInContext(TraceContext.java:703) at com.google.tracing.TraceContext$AbstractTraceContextCallback.runInInheritedContextNoUnref(TraceContext.java:338) at com.google.tracing.TraceContext$AbstractTraceContextCallback.runInInheritedContext(TraceContext.java:330) at com.google.tracing.TraceContext$TraceContextRunnable.run(TraceContext.java:458) at java.lang.Thread.run(Thread.java:679)

    Read the article

  • Make my radio buttons become selected in Android

    - by NickTFried
    When I run this could and click on the dialog box my radiobuttons do not become selected like intended package edu.elon.cs.mobile; import edu.elon.cs.mobile.R; import edu.elon.cs.mobile.R.id; import edu.elon.cs.mobile.R.layout; import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; import android.os.Bundle; import android.text.Editable; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; import android.widget.RadioButton; import android.widget.TextView; import android.widget.Toast; public class PTCalculator extends Activity{ private RadioButton maleRadioButton; private RadioButton femaleRadioButton; private EditText ageEdit; private EditText pushUpsEdit; private EditText sitUpsEdit; private EditText mileMinEdit; private EditText mileSecEdit; private Button calculate; private TextView score; protected AlertDialog genderAlert; private int currScore; private int age; private int sitUps; private int runTime; private int pushUps; public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.pt); maleRadioButton = (RadioButton) findViewById(R.id.male); femaleRadioButton = (RadioButton) findViewById(R.id.female); ageEdit = (EditText) findViewById(R.id.ageEdit); pushUpsEdit = (EditText) findViewById(R.id.pushupEdit); sitUpsEdit = (EditText) findViewById(R.id.situpEdit); mileMinEdit = (EditText) findViewById(R.id.minEdit); mileSecEdit = (EditText) findViewById(R.id.secEdit); calculate = (Button) findViewById(R.id.calculateButton); calculate.setOnClickListener(calculateButtonListener); score = (TextView) findViewById(R.id.scoreView); genderAlert = makeGenderDialog().create(); } private OnClickListener calculateButtonListener = new OnClickListener() { @Override public void onClick(View arg0) { age = (Integer.parseInt(ageEdit.getText().toString())); pushUps = (Integer.parseInt(pushUpsEdit.getText().toString())); sitUps = (Integer.parseInt(sitUpsEdit.getText().toString())); int min = (Integer.parseInt(mileMinEdit.getText().toString())*60); int sec = (Integer.parseInt(mileSecEdit.getText().toString())); runTime = min + sec; if(maleRadioButton.isChecked()){ MalePTTest mPTTest = new MalePTTest(age, pushUps, sitUps, runTime); currScore = mPTTest.malePTScore(); score.setText((Integer.toString(currScore))); }else if(femaleRadioButton.isChecked()){ FemalePTTest fPTTest = new FemalePTTest(age, pushUps, sitUps, runTime); currScore = fPTTest.femalePTScore(); score.setText((Integer.toString(currScore))); }else genderAlert.show(); } }; public AlertDialog.Builder makeGenderDialog(){ AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage("Select a Gender") .setCancelable(false) .setPositiveButton("Female", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { femaleRadioButton.setSelected(true); FemalePTTest fPTTest = new FemalePTTest(age, pushUps, sitUps, runTime); currScore = fPTTest.femalePTScore(); score.setText((Integer.toString(currScore))); } }) .setNegativeButton("Male", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { maleRadioButton.setSelected(true); MalePTTest mPTTest = new MalePTTest(age, pushUps, sitUps, runTime); currScore = mPTTest.malePTScore(); score.setText((Integer.toString(currScore))); } }); return builder; } } Any suggestions?

    Read the article

  • Modifying the initrd.img to run additional binaries in a PXE booted RHEL 6

    - by Charles Long
    I am trying to add additional automation to our existing RHEL 6 (or Oralce's implementation thereof) PXE install process by running a script in the %pre section of my kickstart config that call hpacucli, HP's raid device configuration binary. My approach has been to modify the PXE served initrd.img. I've unpacked the initrd.img and copied in the required libraries, binaries, and scripts but when the system boots using the modified initrd.img, the modified /lib (and /lib_64) are moved aside to /lib_old and /lib is linked to the /mnt/runtime/lib. How can I change this configuration so that the /lib is not moved (unlikely) or required libraries are available in the runtime /mnt/runtime/lib? To test and confirm this I've been able to get the install process to move to the 6th virtual console, which allows me to see errors, and then open a shell (a useful debugging mechanism). %pre exec /dev/tty6 2 /dev/tty6 chvt 6 /bin/sh

    Read the article

  • Cannot install VS Team System 2008 on Windows 7 Ultimate (64bit)

    - by systemX
    Hello, i am trying to install VS TS 2008 on W7 Ultimate (64bit), but i have run into errors during the setup. Please take note that i have tried to mount the iso to a virtual drive, and also extracted the iso contents to a local folder. Both methods have failed and produce the same error log below. [10/26/09,03:02:40] Runtime Pre-requisites: [2] Error: Installation failed for component Runtime Pre-requisites. MSI returned error code 1603 [10/26/09,03:02:42] VS70pgui: [2] DepCheck indicates Runtime Pre-requisites is not installed. [10/26/09,03:02:42] VS70pgui: [2] DepCheck indicates Microsoft Visual Studio 2008 64bit Prerequisites (x64) was not attempted to be installed. And the list goes on and on.. This is a fresh install of W7, and i have not installed MS Office 2007 at all yet, not sure if it would be causing my errors right now.. I appreciate any help i can get thank you.

    Read the article

  • Cannot install VS Team System 2008 on Windows 7 Ultimate (64bit)

    - by systemX
    I am trying to install VS TS 2008 on W7 Ultimate (64bit), but I have run into errors during the setup. Please take note that I have tried to mount the iso to a virtual drive, and also extracted the iso contents to a local folder. Both methods have failed and produce the same error log below. [10/26/09,03:02:40] Runtime Pre-requisites: [2] Error: Installation failed for component Runtime Pre-requisites. MSI returned error code 1603 [10/26/09,03:02:42] VS70pgui: [2] DepCheck indicates Runtime Pre-requisites is not installed. [10/26/09,03:02:42] VS70pgui: [2] DepCheck indicates Microsoft Visual Studio 2008 64bit Prerequisites (x64) was not attempted to be installed. And the list goes on and on.. This is a fresh install of W7, and I have not installed Microsoft Office 2007 at all yet, not sure if it would be causing my errors right now.. I appreciate any help I can get thank you.

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >