Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 477/1332 | < Previous Page | 473 474 475 476 477 478 479 480 481 482 483 484  | Next Page >

  • Trouble with touch events on iPhone

    - by MrDatabase
    I'm making a simple 2D game for iPhone. Think of the game as a ball on the screen that goes up while the user is touching the screen and falls down when the user stops touching the screen. The ball starts moving up in touchesBegan:withEvent and starts moving down in touchesEnded:withEvent. This works fine almost all the time. However on occasion the ball will keep moving up after the user stops touching... or the ball will keep moving down while the user is touching. Why is this happening? Just fyi the ball is drawn on a UIWindow. The taps are handled by a UIImageview subclass that's clearColor and takes up the entire screen. This "touchLayer" is also moved to the front of the window in the game loop. Any idea why this control scheme occasionally fails? Perhaps the touch events just aren't firing? Or they're fired out of order? Cheers!

    Read the article

  • Space-efficient data structures for broad-phase collision detection

    - by Marian Ivanov
    As far as I know, these are three types of data structures that can be used for collision detection broadphase: Unsorted arrays: Check every object againist every object - O(n^2) time; O(log n) space. It's so slow, it's useless if n isn't really small. for (i=1;i<objects;i++){ for(j=0;j<i;j++) narrowPhase(i,j); }; Sorted arrays: Sort the objects, so that you get O(n^(2-1/k)) for k dimensions O(n^1.5) for 2d and O(n^1.67) for 3d and O(n) space. Assuming the space is 2D and sortedArray is sorted so that if the object begins in sortedArray[i] and another object ends at sortedArray[i-1]; they don't collide Heaps of stacks: Divide the objects between a heap of stacks, so that you only have to check the bucket, its children and its parents - O(n log n) time, but O(n^2) space. This is probably the most frequently used approach. Is there a way of having O(n log n) time with less space? When is it more efficient to use sorted arrays over heaps and vice versa?

    Read the article

  • Prevent oversteering catastrophe in racing games

    - by jdm
    When playing GTA III on Android I noticed something that has been annoying me in almost every racing game I've played (maybe except Mario Kart): Driving straight ahead is easy, but curves are really hard. When I switch lanes or pass somebody, the car starts swiveling back and forth, and any attempt to correct it makes it only worse. The only thing I can do is to hit the brakes. I think this is some kind of oversteering. What makes it so irritating is that it never happens to me in real life (thank god :-)), so 90% of the games with vehicles inside feel unreal to me (despite probably having really good physics engines). I've talked to a couple of people about this, and it seems either you 'get' racing games, or you don't. With a lot of practice, I did manage to get semi-good at some games (e.g. from the Need for Speed series), by driving very cautiously, braking a lot (and usually getting a cramp in my fingers). What can you do as a game developer to prevent the oversteering resonance catastrophe, and make driving feel right? (For a casual racing game, that doesn't strive for 100% realistic physics) I also wonder what games like Super Mario Kart exactly do differently so that they don't have so much oversteering? I guess one problem is that if you play with a keyboard or a touchscreen (but not wheels and pedals), you only have digital input: gas pressed or not, steering left/right or not, and it's much harder to steer appropriately for a given speed. The other thing is that you probably don't have a good sense of speed, and drive much faster than you would (safely) in reality. From the top of my head, one solution might be to vary the steering response with speed.

    Read the article

  • Understanding how OpenGL blending works

    - by yuumei
    I am attempting to understand how OpenGL (ES) blending works. I am finding it difficult to understand the documentation and how the results of glBlendFunc and glBlendEquation effect the final pixel that is written. Do the source and destination out of glBlendFunc get added together with GL_FUNC_ADD by default? This seems wrong because "basic" blending of GL_ONE, GL_ONE would output 2,2,2,2 then (Source giving 1,1,1,1 and dest giving 1,1,1,1). I have written the following pseudo-code, what have I got wrong? struct colour { float r, g, b, a; }; colour blend_factor( GLenum factor, colour source, colour destination, colour blend_colour ) { colour colour_factor; float i = min( source.a, 1 - destination.a ); // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml switch( factor ) { case GL_ZERO: colour_factor = { 0, 0, 0, 0 }; break; case GL_ONE: colour_factor = { 1, 1, 1, 1 }; break; case GL_SRC_COLOR: colour_factor = source; break; case GL_ONE_MINUS_SRC_COLOR: colour_factor = { 1 - source.r, 1 - source.g, 1 - source.b, 1 - source.a }; break; // ... } return colour_factor; } colour blend( colour & source, colour destination, GLenum source_factor, // from glBlendFunc GLenum destination_factor, // from glBlendFunc colour blend_colour, // from glBlendColor GLenum blend_equation // from glBlendEquation ) { colour source_colour = blend_factor( source_factor, source, destination, blend_colour ); colour destination_colour = blend_factor( destination_factor, source, destination, blend_colour ); colour output; // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquation.xml switch( blend_equation ) { case GL_FUNC_ADD: output = add( source_colour, destination_colour ); case GL_FUNC_SUBTRACT: output = sub( source_colour, destination_colour ); case GL_FUNC_REVERSE_SUBTRACT: output = sub( destination_colour, source_colour ); } return output; } void do_pixel() { colour final_colour; // Blending if( enable_blending ) { final_colour = blend( current_colour_output, framebuffer[ pixel ], ... ); } else { final_colour = current_colour_output; } } Thanks!

    Read the article

  • Is there any simple game that involves psychological factors?

    - by Roman
    I need to find a simple game in which several people need to interact with each other. The game should be simple for an analysis (it should be simple to describe what happens in the game, what players did). Because of the last reason, the video games are not appropriate for my purposes. I am thinking of a simple, schematic, strategic game where people can make a limited set of simple moves. Moreover, the moves of the game should be conditioned not only by a pure logic (like in chess or go). The behavior in the game should depend on psychological factors, on relations between people. In more details, I think it should be a cooperation game where people make their decisions based on mutual trust. It would be nice if players can express punishment and forgiveness in the game. Does anybody knows a game that is close to what I have described above? ADDED I need to add that I need a game where actions of players are simple and easy to formalize. Because of that I cannot use verbal games (where communication between players is important). By simple actions I understand, for example, moves on the board from one position to another one, or passing chips from one player to another one and so on.

    Read the article

  • Level of detail algorithm not functioning correctly

    - by Darestium
    I have been working on this problem for months; I have been creating Planet Generator of sorts, after more than 6 months of work I am no closer to finishing it then I was 4 months ago. My problem; The terrain does not subdivide in the correct locations properly, it almost seems as if there is a ghost camera next to me, and the quads subdivide based on the position of this "ghost camera". Here is a video of the broken program: http://www.youtube.com/watch?v=NF_pHeMOju8 The best example of the problem occurs around 0:36. For detail limiting, I am going for a chunked LOD approach, which subdivides the terrain based on how far you are away from it. I use a "depth table" to determine how many subdivisions should take place. void PQuad::construct_depth_table(float distance) { tree[0] = -1; for (int i = 1; i < MAX_DEPTH; i++) { tree[i] = distance; distance /= 2.0f; } } The chuncked LOD relies on the child/parent structure of quads, the depth is determined by a constant e.g: if the constant is 6, there are six levels of detail. The quads which should be drawn go through a distance test from the player to the centre of the quad. void PQuad::get_recursive(glm::vec3 player_pos, std::vector<PQuad*>& out_children) { for (size_t i = 0; i < children.size(); i++) { children[i].get_recursive(player_pos, out_children); } if (this->should_draw(player_pos) || this->depth == 0) { out_children.emplace_back(this); } } bool PQuad::should_draw(glm::vec3 player_position) { float distance = distance3(player_position, centre); if (distance < tree[depth]) { return true; } return false; } The root quad has four children which could be visualized like the following: [] [] [] [] Where each [] is a child. Each child has the same amount of children up until the detail limit, the quads which have are 6 iterations deep are leaf nodes, these nodes have no children. Each node has a corresponding Mesh, each Mesh structure has 16x16 Quad-shapes, each Mesh's Quad-shapes halves in size each detail level deeper - creating more detail. void PQuad::construct_children() { // Calculate the position of the Quad based on the parent's location calculate_position(); if (depth < (int)MAX_DEPTH) { children.reserve((int)NUM_OF_CHILDREN); for (int i = 0; i < (int)NUM_OF_CHILDREN; i++) { children.emplace_back(PQuad(this->face_direction, this->radius)); PQuad *child = &children.back(); child->set_depth(depth + 1); child->set_child_index(i); child->set_parent(this); child->construct_children(); } } else { leaf = true; } } The following function creates the vertices for each quad, I feel that it may play a role in the problem - I just can't determine what is causing the problem. void PQuad::construct_vertices(std::vector<glm::vec3> *vertices, std::vector<Color3> *colors) { vertices->reserve(quad_width * quad_height); for (int y = 0; y < quad_height; y++) { for (int x = 0; x < quad_width; x++) { switch (face_direction) { case YIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, quad_height - 1.0f, -(position.y + y * element_width))); break; case YDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, 0.0f, -(position.y + y * element_width))); break; case XIncreasing: vertices->emplace_back(glm::vec3(quad_width - 1.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case XDecreasing: vertices->emplace_back(glm::vec3(0.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case ZIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, 0.0f)); break; case ZDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, -(quad_width - 1.0f))); break; } // Position the bottom, right, front vertex of the cube from being (0,0,0) to (-16, -16, 16) (*vertices)[vertices->size() - 1] -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); colors->emplace_back(Color3(255.0f, 255.0f, 255.0f, false)); } } switch (face_direction) { case YIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, quad_height - 1.0f, -(position.y + quad_height / 2.0f)); break; case YDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, 0.0f, -(position.y + quad_height / 2.0f)); break; case XIncreasing: this->centre = glm::vec3(quad_width - 1.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case XDecreasing: this->centre = glm::vec3(0.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case ZIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, 0.0f); break; case ZDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, -(quad_height - 1.0f)); break; } this->centre -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); } Any help in discovering what is causing this "subdivding in the wrong place" would be greatly appreciated.

    Read the article

  • Dynamic audio score/music

    - by Joel Martinez
    I'm interested in developing a game who's background music changes with the mood and scenario of the game's action. Of course many existing games do this (halo for example), but I was interested in any resources/papers/articles talking about the techniques to develop a system like this. I have some ideas, and I understand that this will be equally challenging to implement at the code level as it will be to come up or acquire music that fits this model. Any links or, answers with ideas in them would he appreciated. Edit: this is the kind of info I'm looking for :) http://halo.bungie.org/misc/gdc.2002.music/

    Read the article

  • 3D Vector "End Point" Calculation for procedural Vector Graphics

    - by FrostFlame64
    Alright, So I need some help with some Vector Math. I've developing some game Engines that have Procedural Fractal Generation for Some Graphics, such as using Lindenmayer Systems for generating Trees and Plants. L-Systems, are drawn by using Turtle Graphics, which is a form of Vector graphics. I first created a system to draw in 2D Graphics, which works perfectly fine. But now I want to make a 3D equivalent, and I’ve run into an issue. For my 2D Version, I created a Method for quickly determining the “End Point” of a Vector-like movement. Given a starting point (X, Y), a direction (between 0 and 360 degrees), and a distance, the end point is calculated by these formulas: newX = startX + distance * Sin((PI * direction) / 180) newY = startY + distance * Cos((PI * direction) / 180) Now I need something Similarly Equivalent for performing this Calculation in 3D, But I haven’t been able to Google anything that could show me how to do this. I'm flexible enough to get whatever required information is needed for this method calculation, in any reasonable form (Vector3, Quaternion, ect). To summarize: Given a starting point/vector position in 3D space (X, Y, Z), a Direction in 3D space (Vector3, Quaternion, ect), and a Distance, I need to find the “End Point” in 3D Space. Thank you for your time and help.

    Read the article

  • How to control a spaceship near a planet in Unity3D?

    - by tyjkenn
    Right now I have spaceship orbiting a small planet. I'm trying to make an effective control system for that spaceship, but it always end up spinning out of control. After spinning the ship to change direction, the thrusters thrust the wrong way. Normal airplane controls don't work, since the ship is able to leave the atmosphere and go to other planets, in the journey going "upside-down". Could someone please enlighten me on how to get thrusters to work the way they are supposed to?

    Read the article

  • Automatically zoom out the camera to show all players

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a perspective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • Drag Gestures - fractional delta values

    - by Den
    I have an issue with objects moving roughly twice as far as expected when dragging them. I am comparing my application to the standard TouchGestureSample sample from MSDN. For some reason in my application gesture samples have fractional positions and deltas. Both are using same Microsoft.Xna.Framework.Input.Touch.dll, v4.0.30319. I am running both apps using standard Windows Phone Emulator. I am setting my break point immediately after this line of code in a simple Update method: GestureSample gesture = TouchPanel.ReadGesture(); Typical values in my app: Delta = {X:-13.56522 Y:4.166667} Position = {X:184.6956 Y:417.7083} Typical values in sample app: Delta = {X:7 Y:16} Position = {X:497 Y:244} Have anyone seen this issue? Does anyone have any suggestions? Thank you.

    Read the article

  • Slick2d Spritesheet showing whole image

    - by BotskoNet
    I'm trying to show a single subimage from a sprite sheet. Using slick2d SpriteSheet class, all it's doing is showing me the entire image, but scaled down to fit the cell dimensions. The image is 96x192 and should have cells of 32x32. The code: SpriteSheet spriteSheet = new SpriteSheet("images/"+file, 32, 32 ); System.out.println("Horiz Count: " + spriteSheet.getHorizontalCount()); System.out.println("Vert Count: " + spriteSheet.getVerticalCount()); System.out.println("Height: " + spriteSheet.getHeight()); System.out.println("Width: " + spriteSheet.getWidth()); System.out.println("Texture Width: " + spriteSheet.getTextureWidth()); System.out.println("Texture Height: " + spriteSheet.getTextureHeight()); Prints: Horiz Count: 3 Vert Count: 6 Height: 192 Width: 96 Texture Width: 0.75 Texture Height: 0.75 Not sure what the texture dimensions refer to, but the rest is entirely accurate. However, when I draw the icon, the entire sprite image shows scaled down to 32x32: Image image = spriteSheet.getSprite(1, 0); // a test image.bind(); GL11.glEnable(GL11.GL_BLEND); GL11.glBlendFunc(GL11.GL_SRC_ALPHA, GL11.GL_ONE_MINUS_SRC_ALPHA); GL11.glBegin(GL11.GL_QUADS); GL11.glTexCoord2f(0,0); GL11.glVertex2f(x,y); GL11.glTexCoord2f(1,0); GL11.glVertex2f(x+image.getWidth(),y); GL11.glTexCoord2f(1,1); GL11.glVertex2f(x+image.getWidth(),y+image.getHeight()); GL11.glTexCoord2f(0,1); GL11.glVertex2f(x,y+image.getHeight()); GL11.glEnd(); GL11.glDisable(GL11.GL_BLEND);

    Read the article

  • Using MVC with a retained mode renderer

    - by David Gouveia
    I am using a retained mode renderer similar to the display lists in Flash. In other words, I have a scene graph data structure called the Stage to which I add the graphical primitives I would like to see rendered, such as images, animations, text. For simplicity I'll refer to them as Sprites. Now I'm implementing an architecture which is becoming very similar to MVC, but I feel that that instead of having to create View classes, that the sprites already behave pretty much like Views (except for not being explicitly connected to the Model). And since the Model is only changed through the Controller, I could simply update the view together with the Model in the controller, as in the example below: Example 1 class Controller { Model model; Sprite view; void TeleportTo(Vector2 position) { model.Position = view.Position = position; } } The alternative, I think, would be to create View classes that wrap the sprites, make the model observable, and make the view react to changes on the model. This seems like a lot of extra work and boilerplate code, and I'm not seeing the benefits if I'm just going to have one view per controller. Example 2 class Controller { Model model; View view; void TeleportTo(Vector2 position) { model.Position = position; } } class View { Model model; Sprite sprite; View() { model.PropertyChanged += UpdateView; } void UpdateView() { sprite.Position = model.Position; } } So, how is MVC or more specifically, the View, usually implemented when using a retained-mode renderer? And is there any reason why I shouldn't stick with example 1?

    Read the article

  • How to give a ball a following texture trailing effect

    - by Evan Kohilas
    How do I draw copies of the leading texture so that there is a line of the leading ball following behind it? (that don't collide) So far I have tried to create the effect by placing another graphic 2 pixels off the graphic, but I don't see the second ball being drawn. spriteBatch.Draw(ballTexture, ballPos, null, Color.White, 0.0f, new Vector2(Ballpos.X +2, ballPos.Y +2), ballSize, SpriteEffects.None, 0); Thanks.

    Read the article

  • 2D tile-based terrain generation

    - by a240
    As a summer project I decided it would be fun to make a Flash game. Right now I'm going for something like the look of Terraria. It's been a lot of fun, but today I've hit a snag. I need a way to generate my worlds. I've read up Perlin noise as a possibility, but I my attempts have given me sporadic looking results. What are some techniques used to generate these 2D tile-based worlds? Ideally I would like to be able to generate mountains, plains, and caves.

    Read the article

  • Radiosity using a hemisphere

    - by P. Avery
    I'm working on a radiosity processor. I'm projecting scene geometry onto a hemisphere at a high order of tessellation during a visibility pass onto a 1024x1024 render target. The problem is that the edges of certain triangles are not being rendered to the item buffer( render target )...so when I test certain edges( or pixels during pixel shader ) for visibility during a reconstruction pass, visible edges are not identified and as a result the pixel for that edge is discarded. One solution was to increase the resolution of the item buffer( up to 4096x4096 )...this helped and more edges were visible, however, this was not fullproof. How do I increase visibility? Here is a screenshot of a scene after radiosity is applied: the seams are edges along a triangle face that were not visible due to the resolution of the item buffer... fixed the problem by sampling the item buffer w/8 points:

    Read the article

  • Spherical harmonics lighting - what does it accomplish?

    - by TravisG
    From my understanding, spherical harmonics are sometimes used to approximate certain aspects of lighting (depending on the application). For example, it seems like you can approximate the diffuse lighting cause by a directional light source on a surface point, or parts of it, by calculating the SH coefficients for all bands you're using (for whatever accuracy you desire) in the direction of the surface normal and scaling it with whatever you need to scale it with (e.g. light colored intensity, dot(n,l),etc.). What I don't understand yet is what this is supposed to accomplish. What are the actual advantages of doing it this way as opposed to evaluating the diffuse BRDF the normal way. Do you save calculations somewhere? Is there some additional information contained in the SH representation that you can't get out of the scalar results of the normal evaluation?

    Read the article

  • Having to check collisions twice per game tic

    - by user22241
    I have vertically moving elevators (3 solid tiles wide) and static solid tiles. Each are separate entities and therefore have their own respective collision routines (to check for, and resolve, collisions with the main character) I check my vertical collisions after characters vertical movements and then horizontal collisions after horizontal movements. The problem is that I want my platform to kill the player if it squashes him from the top, and also if he's on a moving platform (that is moving up) that squashes him into a solid block. Correct behaviour, player on solid blocks being squashed from above by decending elevator Here is what happens. Gravity pushes character into solid block, solid block collision routine corrects characters position and sits him on the solid block which pushes him into the moving elevator, elevator routine then checks for collision and kills player. This assumes I am checking solid blocks first, then elevator collisions. However, if it's the other way around, this happens.... Incorrect behaviour, player on accending elevator gets pushed into solid blocks above Player is on an elevator moving up, gravity pushes him into the elevator, solid block CD routine detects no collision, no action taken. Elevator CD routine detects character has been pushed into elevator by gravity, corrects this by moving character up and sitting him on the elevator and pushes him into the solid blocks above, however the solid block vertical routine has now already run for this tic, so the game continues and the next solid block collision that is encountered is the horizontal routine. This detects a collision and moves the character out of the collision to the left or right of the block which looks odd to say the least (character should get killed here). The only way I've managed to get this working correctly is by running the solid block CD, then the elevator CD, then the solid block CD again straight after. This is clearly wasteful but I can't figure out how else to do this. Any help would be appreciated.

    Read the article

  • Procedural world generation oriented on gameplay features

    - by Richard Fabian
    In large procedural landscape games, the land seems dull, but that's probably because the real world is largely dull, with only limited places where the scenery is dramatic or tactical. Looking at world generation from this point of view, a landscape generator for a game (that is, not for the sake of scenery, but for the sake of gameplay) needs to not follow the rules of landscaping, but instead some rules married to the expectations of the gamer. For example, there could be a choke point / route generator that creates hills ravines, rivers and mountains between cities, rather than the natural way cities arise, scattered on the land based on resources or conditions generated by the mountains and rainfall patterns. Is there any existing work being done like this? Start with cities or population centres and then add in terrain afterwards? The reason I'm asking is that I'd previously pondered taking existing maps from fantasy fiction (my own and others), putting the information into the system as a base point, and then generating a good world to play in from it. This seems covered by existing technology, that is, where the designer puts in all the necessary information such as the city populations, resources, biomes, road networks and rivers, then allows the PCG fill in the gaps. But now I'm wondering if it may be possible to have a content generator generate also the overall design. Generate the cities and population centres, balancing them so that there is a natural seeming need of commerce, then generate the positions and connectivity, then from the type of city produce the list of necessary resources that must be nearby, and only then, maybe given some rules on how to make the journey between cities both believable and interesting, generate the final content including the roads, the choke points, the bridges and tunnels, ferries and the terrain including the biomes and coastline necessary. If this has been done before, I'd like to know, and would like to know what went wrong, and what went right.

    Read the article

  • Improving Click and Drag with C++

    - by Josh
    I'm currently using SFML 2.0 to develop a game in C++. I have a game sprite class that has a click and drag method. The method works, but there is a slight problem. If the mouse moves too fast, the object the user selected can't keep up and is left behind in the spot where the mouse left its bounds. I will share the class definition and the given function implementation. Definition: class codePeg { protected: FloatRect bounds; CircleShape circle; int xPos, yPos, xDiff, yDiff, once; int xBase, yBase; Vector2i mousePos; Vector2f circlePos; public: void init(RenderWindow& Window); void draw(RenderWindow& Window); void drag(RenderWindow& Window); void setPegPosition(int x, int y); void setPegColor(Color pegColor); void mouseOver(RenderWindow& Window); friend int isPegSelected(void); }; Implementation of the "drag" function: void codePeg::drag(RenderWindow& Window) { mousePos = Mouse::getPosition(Window); circlePos = circle.getPosition(); if(Mouse::isButtonPressed(Mouse::Left)) { if(mousePos.x > xPos && mousePos.y > yPos && mousePos.x - bounds.width < xPos && mousePos.y - bounds.height < yPos) { if(once) { xDiff = mousePos.x - circlePos.x; yDiff = mousePos.y - circlePos.y; once = 0; } xPos = mousePos.x - xDiff; yPos = mousePos.y - yDiff; circle.setPosition(xPos, yPos); } } else { once = 1; xPos = xBase; yPos = yBase; xDiff = 0; yDiff = 0; circle.setPosition(xBase, yBase); } Window.draw(circle); } Like I said, the function works, but to me, the code is very ugly and I think it could be improved and could be more efficient. The only thing I can think of as to why the object cannot keep up with the mouse is that there are too many function calls and/or checks. The user does not really have to mouse the mouse "fast" for it to happen, I would say at an average pace the object is left behind. How can I improve the code so that the object remains with the mouse when it is selected? Any help improving this code or giving advice is greatly appreciated.

    Read the article

  • Remove box2d bodies after collision deduction android?

    - by jubin
    Can any one explain me how to destroy box2d body when collide i have tried but my application crashed.First i have checked al collisions then add all the bodies in array who i want to destroy.I am trying to learning this tutorial My all the bodies are falling i want these bodies should destroy when these bodies will collide my actor monkey but when it collide it destroy but my aplication crashed.I have googled and from google i got the application crash reasons we should not destroy body in step funtion but i am removing body in the last of tick method. could any one help me or provide me code aur check my code why i am getting this prblem or how can i destroy box2d bodies. This is my code what i am doing. Please could any one check my code and tell me what is i am doing wrong for removing bodies. The code is for multiple box2d objects falling on my actor monkey it should be destroy when it will fall on the monkey.It is destroing but my application crahes. static class Box2DLayer extends CCLayer { protected static final float PTM_RATIO = 32.0f; protected static final float WALK_FACTOR = 3.0f; protected static final float MAX_WALK_IMPULSE = 0.2f; protected static final float ANIM_SPEED = 0.3f; int isLeft=0; String dir=""; int x =0; float direction; CCColorLayer objectHint; // protected static final float PTM_RATIO = 32.0f; protected World _world; protected static Body spriteBody; CGSize winSize = CCDirector.sharedDirector().winSize(); private static int count = 200; protected static Body monkey_body; private static Body bodies; CCSprite monkey; float animDelay; int animPhase; CCSpriteSheet danceSheet = CCSpriteSheet.spriteSheet("phases.png"); CCSprite _block; List<Body> toDestroy = new ArrayList<Body>(); //CCSpriteSheet _spriteSheet; private static MyContactListener _contactListener = new MyContactListener(); public Box2DLayer() { this.setIsAccelerometerEnabled(true); CCSprite bg = CCSprite.sprite("jungle.png"); addChild(bg,0); bg.setAnchorPoint(0,0); bg.setPosition(0,0); CGSize s = CCDirector.sharedDirector().winSize(); // Use scaled width and height so that our boundaries always match the current screen float scaledWidth = s.width/PTM_RATIO; float scaledHeight = s.height/PTM_RATIO; Vector2 gravity = new Vector2(0.0f, -30.0f); boolean doSleep = false; _world = new World(gravity, doSleep); // Create edges around the entire screen // Define the ground body. BodyDef bxGroundBodyDef = new BodyDef(); bxGroundBodyDef.position.set(0.0f, 0.0f); // The body is also added to the world. Body groundBody = _world.createBody(bxGroundBodyDef); // Register our contact listener // Define the ground box shape. PolygonShape groundBox = new PolygonShape(); Vector2 bottomLeft = new Vector2(0f,0f); Vector2 topLeft = new Vector2(0f,scaledHeight); Vector2 topRight = new Vector2(scaledWidth,scaledHeight); Vector2 bottomRight = new Vector2(scaledWidth,0f); // bottom groundBox.setAsEdge(bottomLeft, bottomRight); groundBody.createFixture(groundBox,0); // top groundBox.setAsEdge(topLeft, topRight); groundBody.createFixture(groundBox,0); // left groundBox.setAsEdge(topLeft, bottomLeft); groundBody.createFixture(groundBox,0); // right groundBox.setAsEdge(topRight, bottomRight); groundBody.createFixture(groundBox,0); CCSprite floorbg = CCSprite.sprite("grassbehind.png"); addChild(floorbg,1); floorbg.setAnchorPoint(0,0); floorbg.setPosition(0,0); CCSprite floorfront = CCSprite.sprite("grassfront.png"); floorfront.setTag(2); this.addBoxBodyForSprite(floorfront); addChild(floorfront,3); floorfront.setAnchorPoint(0,0); floorfront.setPosition(0,0); addChild(danceSheet); //CCSprite monkey = CCSprite.sprite(danceSheet, CGRect.make(0, 0, 48, 73)); //addChild(danceSprite); monkey = CCSprite.sprite("arms_up.png"); monkey.setTag(2); monkey.setPosition(200,100); BodyDef spriteBodyDef = new BodyDef(); spriteBodyDef.type = BodyType.DynamicBody; spriteBodyDef.bullet=true; spriteBodyDef.position.set(200 / PTM_RATIO, 300 / PTM_RATIO); monkey_body = _world.createBody(spriteBodyDef); monkey_body.setUserData(monkey); PolygonShape spriteShape = new PolygonShape(); spriteShape.setAsBox(monkey.getContentSize().width/PTM_RATIO/2, monkey.getContentSize().height/PTM_RATIO/2); FixtureDef spriteShapeDef = new FixtureDef(); spriteShapeDef.shape = spriteShape; spriteShapeDef.density = 2.0f; spriteShapeDef.friction = 0.70f; spriteShapeDef.restitution = 0.0f; monkey_body.createFixture(spriteShapeDef); //Vector2 force = new Vector2(10, 10); //monkey_body.applyLinearImpulse(force, spriteBodyDef.position); addChild(monkey,10000); this.schedule(tickCallback); this.schedule(createobjects, 2.0f); objectHint = CCColorLayer.node(ccColor4B.ccc4(255,0,0,128), 200f, 100f); addChild(objectHint, 15000); objectHint.setVisible(false); _world.setContactListener(_contactListener); } private UpdateCallback tickCallback = new UpdateCallback() { public void update(float d) { tick(d); } }; private UpdateCallback createobjects = new UpdateCallback() { public void update(float d) { secondUpdate(d); } }; private void secondUpdate(float dt) { this.addNewSprite(); } public void addBoxBodyForSprite(CCSprite sprite) { BodyDef spriteBodyDef = new BodyDef(); spriteBodyDef.type = BodyType.StaticBody; //spriteBodyDef.bullet=true; spriteBodyDef.position.set(sprite.getPosition().x / PTM_RATIO, sprite.getPosition().y / PTM_RATIO); spriteBody = _world.createBody(spriteBodyDef); spriteBody.setUserData(sprite); Vector2 verts[] = { new Vector2(-11.8f / PTM_RATIO, -24.5f / PTM_RATIO), new Vector2(11.7f / PTM_RATIO, -24.0f / PTM_RATIO), new Vector2(29.2f / PTM_RATIO, -14.0f / PTM_RATIO), new Vector2(28.7f / PTM_RATIO, -0.7f / PTM_RATIO), new Vector2(8.0f / PTM_RATIO, 18.2f / PTM_RATIO), new Vector2(-29.0f / PTM_RATIO, 18.7f / PTM_RATIO), new Vector2(-26.3f / PTM_RATIO, -12.2f / PTM_RATIO) }; PolygonShape spriteShape = new PolygonShape(); spriteShape.set(verts); //spriteShape.setAsBox(sprite.getContentSize().width/PTM_RATIO/2, //sprite.getContentSize().height/PTM_RATIO/2); FixtureDef spriteShapeDef = new FixtureDef(); spriteShapeDef.shape = spriteShape; spriteShapeDef.density = 2.0f; spriteShapeDef.friction = 0.70f; spriteShapeDef.restitution = 0.0f; spriteShapeDef.isSensor=true; spriteBody.createFixture(spriteShapeDef); } public void addNewSprite() { count=0; Random rand = new Random(); int Number = rand.nextInt(10); switch(Number) { case 0: _block = CCSprite.sprite("banana.png"); break; case 1: _block = CCSprite.sprite("backpack.png");break; case 2: _block = CCSprite.sprite("statue.png");break; case 3: _block = CCSprite.sprite("pineapple.png");break; case 4: _block = CCSprite.sprite("bananabunch.png");break; case 5: _block = CCSprite.sprite("hat.png");break; case 6: _block = CCSprite.sprite("canteen.png");break; case 7: _block = CCSprite.sprite("banana.png");break; case 8: _block = CCSprite.sprite("statue.png");break; case 9: _block = CCSprite.sprite("hat.png");break; } int padding=20; //_block.setPosition(CGPoint.make(100, 100)); // Determine where to spawn the target along the Y axis CGSize winSize = CCDirector.sharedDirector().displaySize(); int minY = (int)(_block.getContentSize().width / 2.0f); int maxY = (int)(winSize.width - _block.getContentSize().width / 2.0f); int rangeY = maxY - minY; int actualY = rand.nextInt(rangeY) + minY; // Create block and add it to the layer float xOffset = padding+_block.getContentSize().width/2+((_block.getContentSize().width+padding)*count); _block.setPosition(CGPoint.make(actualY, 750)); _block.setTag(1); float w = _block.getContentSize().width; objectHint.setVisible(true); objectHint.changeWidth(w); objectHint.setPosition(actualY-w/2, 460); this.addChild(_block,10000); // Create ball body and shape BodyDef ballBodyDef1 = new BodyDef(); ballBodyDef1.type = BodyType.DynamicBody; ballBodyDef1.position.set(actualY/PTM_RATIO, 480/PTM_RATIO); bodies = _world.createBody(ballBodyDef1); bodies.setUserData(_block); PolygonShape circle1 = new PolygonShape(); Vector2 verts[] = { new Vector2(-11.8f / PTM_RATIO, -24.5f / PTM_RATIO), new Vector2(11.7f / PTM_RATIO, -24.0f / PTM_RATIO), new Vector2(29.2f / PTM_RATIO, -14.0f / PTM_RATIO), new Vector2(28.7f / PTM_RATIO, -0.7f / PTM_RATIO), new Vector2(8.0f / PTM_RATIO, 18.2f / PTM_RATIO), new Vector2(-29.0f / PTM_RATIO, 18.7f / PTM_RATIO), new Vector2(-26.3f / PTM_RATIO, -12.2f / PTM_RATIO) }; circle1.set(verts); FixtureDef ballShapeDef1 = new FixtureDef(); ballShapeDef1.shape = circle1; ballShapeDef1.density = 10.0f; ballShapeDef1.friction = 0.0f; ballShapeDef1.restitution = 0.1f; bodies.createFixture(ballShapeDef1); count++; //Remove(); } @Override public void ccAccelerometerChanged(float accelX, float accelY, float accelZ) { //Apply the directional impulse /*float impulse = monkey_body.getMass()*accelY*WALK_FACTOR; Vector2 force = new Vector2(impulse, 0); monkey_body.applyLinearImpulse(force, monkey_body.getWorldCenter());*/ walk(accelY); //Remove(); } private void walk(float accelY) { // TODO Auto-generated method stub direction = accelY; } private void Remove() { for (Iterator<MyContact> it1 = _contactListener.mContacts.iterator(); it1.hasNext();) { MyContact contact = it1.next(); Body bodyA = contact.fixtureA.getBody(); Body bodyB = contact.fixtureB.getBody(); // See if there's any user data attached to the Box2D body // There should be, since we set it in addBoxBodyForSprite if (bodyA.getUserData() != null && bodyB.getUserData() != null) { CCSprite spriteA = (CCSprite) bodyA.getUserData(); CCSprite spriteB = (CCSprite) bodyB.getUserData(); // Is sprite A a cat and sprite B a car? If so, push the cat // on a list to be destroyed... if (spriteA.getTag() == 1 && spriteB.getTag() == 2) { //Log.v("dsfds", "dsfsd"+bodyA); //_world.destroyBody(bodyA); // removeChild(spriteA, true); toDestroy.add(bodyA); } // Is sprite A a car and sprite B a cat? If so, push the cat // on a list to be destroyed... else if (spriteA.getTag() == 2 && spriteB.getTag() == 1) { //Log.v("dsfds", "dsfsd"+bodyB); toDestroy.add(bodyB); } } } // Loop through all of the box2d bodies we want to destroy... for (Iterator<Body> it1 = toDestroy.iterator(); it1.hasNext();) { Body body = it1.next(); // See if there's any user data attached to the Box2D body // There should be, since we set it in addBoxBodyForSprite if (body.getUserData() != null) { // We know that the user data is a sprite since we set // it that way, so cast it... CCSprite sprite = (CCSprite) body.getUserData(); // Remove the sprite from the scene _world.destroyBody(body); removeChild(sprite, true); } // Destroy the Box2D body as well // _contactListener.mContacts.remove(0); } } public synchronized void tick(float delta) { synchronized (_world) { _world.step(delta, 8, 3); //_world.clearForces(); //addNewSprite(); } CCAnimation danceAnimation = CCAnimation.animation("dance", 1.0f); // Iterate over the bodies in the physics world Iterator<Body> it = _world.getBodies(); while(it.hasNext()) { Body b = it.next(); Object userData = b.getUserData(); if (userData != null && userData instanceof CCSprite) { //Synchronize the Sprites position and rotation with the corresponding body CCSprite sprite = (CCSprite)userData; if(sprite.getTag()==1) { //b.applyLinearImpulse(force, pos); sprite.setPosition(b.getPosition().x * PTM_RATIO, b.getPosition().y * PTM_RATIO); sprite.setRotation(-1.0f * ccMacros.CC_RADIANS_TO_DEGREES(b.getAngle())); } else { //Apply the directional impulse float impulse = monkey_body.getMass()*direction*WALK_FACTOR; Vector2 force = new Vector2(impulse, 0); b.applyLinearImpulse(force, b.getWorldCenter()); sprite.setPosition(b.getPosition().x * PTM_RATIO, b.getPosition().y * PTM_RATIO); animDelay -= 1.0f/60.0f; if(animDelay <= 0) { animDelay = ANIM_SPEED; animPhase++; if(animPhase > 2) { animPhase = 1; } } if(direction < 0 ) { isLeft=1; } else { isLeft=0; } if(isLeft==1) { dir = "left"; } else { dir = "right"; } float standingLimit = (float) 0.1f; float vX = monkey_body.getLinearVelocity().x; if((vX > -standingLimit)&& (vX < standingLimit)) { // Log.v("sasd", "standing"); } else { } } } } Remove(); } } Sorry for my english. Thanks in advance.

    Read the article

  • Not getting desired results with SSAO implementation

    - by user1294203
    After having implemented deferred rendering, I tried my luck with a SSAO implementation using this Tutorial. Unfortunately, I'm not getting anything that looks like SSAO, you can see my result below. You can see there is some weird pattern forming and there is no occlusion shading where there needs to be (i.e. in between the objects and on the ground). The shaders I implemented follow: #VS #version 330 core uniform mat4 invProjMatrix; layout(location = 0) in vec3 in_Position; layout(location = 2) in vec2 in_TexCoord; noperspective out vec2 pass_TexCoord; smooth out vec3 viewRay; void main(void){ pass_TexCoord = in_TexCoord; viewRay = (invProjMatrix * vec4(in_Position, 1.0)).xyz; gl_Position = vec4(in_Position, 1.0); } #FS #version 330 core uniform sampler2D DepthMap; uniform sampler2D NormalMap; uniform sampler2D noise; uniform vec2 projAB; uniform ivec3 noiseScale_kernelSize; uniform vec3 kernel[16]; uniform float RADIUS; uniform mat4 projectionMatrix; noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } mat3 CalcRMatrix(vec3 normal, vec2 texcoord){ ivec2 noiseScale = noiseScale_kernelSize.xy; vec3 rvec = texture(noise, texcoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); return mat3(tangent, bitangent, normal); } void main(void){ vec2 TexCoord = pass_TexCoord; vec3 Position = CalcPosition(); vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); mat3 RotationMatrix = CalcRMatrix(Normal, TexCoord); int kernelSize = noiseScale_kernelSize.z; float occlusion = 0.0; for(int i = 0; i < kernelSize; i++){ // Get sample position vec3 sample = RotationMatrix * kernel[i]; sample = sample * RADIUS + Position; // Project and bias sample position to get its texture coordinates vec4 offset = projectionMatrix * vec4(sample, 1.0); offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; // Get sample depth float sample_depth = texture(DepthMap, offset.xy).r; float linearDepth = projAB.y / (sample_depth - projAB.x); if(abs(Position.z - linearDepth ) < RADIUS){ occlusion += (linearDepth <= sample.z) ? 1.0 : 0.0; } } out_AO = 1.0 - (occlusion / kernelSize); } I draw a full screen quad and pass Depth and Normal textures. Normals are in RGBA16F with the alpha channel reserved for the AO factor in the blur pass. I store depth in a non linear Depth buffer (32F) and recover the linear depth using: float linearDepth = projAB.y / (depth - projAB.x); where projAB.y is calculated as: and projAB.x as: These are derived from the glm::perspective(gluperspective) matrix. z_n and z_f are the near and far clip distance. As described in the link I posted on the top, the method creates samples in a hemisphere with higher distribution close to the center. It then uses random vectors from a texture to rotate the hemisphere randomly around the Z direction and finally orients it along the normal at the given pixel. Since the result is noisy, a blur pass follows the SSAO pass. Anyway, my position reconstruction doesn't seem to be wrong since I also tried doing the same but with the position passed from a texture instead of being reconstructed. I also tried playing with the Radius, noise texture size and number of samples and with different kinds of texture formats, with no luck. For some reason when changing the Radius, nothing changes. Does anyone have any suggestions? What could be going wrong?

    Read the article

  • 360 snake movement

    - by Darius Janavicius
    I'm trying to do 360 degree snake game in actionscript 3. Here is my movement code: //head movement head.x += snake_speed*Math.cos((head.rotation) * (Math.PI /180)); head.y += snake_speed*Math.sin((head.rotation) * (Math.PI /180)); if (dir == "left") head.rotation -= snake_speed*2; if (dir == "right") head.rotation +=snake_speed*2; //Body part movement for(var i:int = body_parts.length-1; i>0; i--) { var angle = (body_parts[i-1].rotation)*(Math.PI/180); body_parts[i].y = body_parts[i-1].y - (25 * Math.sin(angle)); body_parts[i].x = body_parts[i-1].x - (25 * Math.cos(angle)); body_parts[i].rotation = body_parts[i-1].rotation; } With this code head moves just like I want it to move, but body parts have the same angle as head and it looks wrong. What I want to achieve is to make body parts to move like in game "Ultimate snake". Here is a link to that game: http://armorgames.com/play/387/ultimate-snake P.S. I saw similar question here "How to approach 360 degree snake" but didnt understand the answer :/

    Read the article

  • Obstacle Avoidance steering behavior: how can an entity avoid an obstacle while other forces are acting on the entity?

    - by Prog
    I'm trying to implement the Obstacle Avoidance steering behavior in my 2D game. Currently my approach is to apply a force on the entity, in the direction of the normal of the heading, scaled by a number that gets bigger the closer we are to the obstacle. This is supposed to push the entity to the side and avoid the obstacle that blocks it's way. However, in the same time that my entity tries to avoid an obstacle, it Seeks to a point more or less behind the obstacle (which is the reason it needs to avoid the obstacle in the first place). The Seek algorithm constantly applies a force on the entity that pushes it (more or less) in the direction of the obstacle, while the Obstacle Avoidance algorithm constantly applies a force that pushes the entity away (more accurately, to the side) of the obstacle. The result is that sometimes the entity succesfully avoids the obstacle, and sometimes it collides with it, depending on the strength of the avoidance force I'm applying. How can I make sure that a force will succeed in steering the entity in some direction, while other forces are currently acting on the entity? (And while still looking natural). I can't allow entities to collide with obstacles when realistically they should be able to easily avoid them, doesn't matter what they're currently doing. Also, the Obstacle Avoidance algorithm is made exactly for the case where another force is acting on the entity. Otherwise it wouldn't be moving and there would be no need to avoid anything. So maybe I'm missing something. Thanks

    Read the article

  • Keeping player aligned to grid in Pacman

    - by user17577
    I am making a Pacman game using XNA. The game is tile based, with each tile being 32 pixels. As the player moves, I need to know whenever it is perfectly on a tile (ie position of 32, 64, etc...) so that I can check to see if the next tile is free. I am using the following logic to test this. if (position.X % 32 == 0 && position.Y %32 == 0) { onTile = true; } I figure that I need to make the player's speed evenly divide 32. Everything works fine if I make the player's speed an integer such as 4 or 8. But if I make the speed something like 6.4, I end up with positions such as 64.00001, and my if statement no longer works correctly. How can I keep the player aligned with the grid, while allowing a wider range of player speeds than 1, 2, 4, 8, 16, and 32? Or is there some better way to go about this? Thanks

    Read the article

< Previous Page | 473 474 475 476 477 478 479 480 481 482 483 484  | Next Page >