Search Results

Search found 25952 results on 1039 pages for 'development lifecycle'.

Page 477/1039 | < Previous Page | 473 474 475 476 477 478 479 480 481 482 483 484  | Next Page >

  • Adjust sprite bounds of the visible part of texture

    - by Crazy D0G
    Is there any way to adjust the boundaries of the visible part of the sprite? To make it easier to understand: I have a texture, such as shown at figure 1. Then I break it into pieces and fill the resulting fragments using PRKit (wood texture on figure 2 and 3). But the resulting fragments have the transparent (green color on figure 2 and 3) and when creating a sprite from the fragments they have the size of the initial texture. Is there a way to get rid of this transparency and to adjust the size of the visible part (wood texture), openGL or cocos2d-x means? Maybe it help - draw() method from PRKit: void PRFilledPolygon::draw() { //CCNode::draw(); glDisableClientState(GL_COLOR_ARRAY); // we have a pointer to vertex points so enable client state glBindTexture(GL_TEXTURE_2D, texture->getName()); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_ONE_MINUS_SRC_ALPHA); glVertexPointer(2, GL_FLOAT, 0, areaTrianglePoints); glTexCoordPointer(2, GL_FLOAT, 0, textureCoordinates); glDrawArrays(GL_TRIANGLES, 0, areaTrianglePointCount); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); //Restore texture matrix and switch back to modelview matrix glEnableClientState(GL_COLOR_ARRAY);}

    Read the article

  • Intersection points of plane set forming convex hull

    - by Toji
    Mostly looking for a nudge in the right direction here. Given a set of planes (defined as a normal and distance from origin) that form a convex hull, I would like to find the intersection points that form the corners of that hull. More directly, I'm looking for a way to generate a point cloud appropriate to provide to Bullet. Bonus points if someone knows of a way I could give bullet the plane list directly, since I somewhat suspect that's what it's building on the backend anyway.

    Read the article

  • Triangle Picking Picking Back faces

    - by Tangeleno
    I'm having a bit of trouble with 3D picking, at first I thought my ray was inaccurate but it turns out that the picking is happening on faces facing the camera and faces facing away from the camera which I'm currently culling. Here's my ray creation code, I'm pretty sure the problem isn't here but I've been wrong before. private uint Pick() { Ray cursorRay = CalculateCursorRay(); Vector3? point = Control.Mesh.RayCast(cursorRay); if (point != null) { Tile hitTile = Control.TileMesh.GetTileAtPoint(point); return hitTile == null ? uint.MaxValue : (uint)(hitTile.X + hitTile.Y * Control.Generator.TilesWide); } return uint.MaxValue; } private Ray CalculateCursorRay() { Vector3 nearPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 0f)); Vector3 farPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 1f)); Vector3 direction = farPoint - nearPoint; direction.Normalize(); return new Ray(nearPoint, direction); } public Vector3 Camera.Unproject(Vector3 source) { Vector4 result; result.X = (source.X - _control.ClientRectangle.X) * 2 / _control.ClientRectangle.Width - 1; result.Y = (source.Y - _control.ClientRectangle.Y) * 2 / _control.ClientRectangle.Height - 1; result.Z = source.Z - 1; if (_farPlane - 1 == 0) result.Z = 0; else result.Z = result.Z / (_farPlane - 1); result.W = 1f; result = Vector4.Transform(result, Matrix4.Invert(ProjectionMatrix)); result = Vector4.Transform(result, Matrix4.Invert(ViewMatrix)); result = Vector4.Transform(result, Matrix4.Invert(_world)); result = Vector4.Divide(result, result.W); return new Vector3(result.X, result.Y, result.Z); } And my triangle intersection code. Ripped mainly from the XNA picking sample. public float? Intersects(Ray ray) { float? closestHit = Bounds.Intersects(ray); if (closestHit != null && Vertices.Length == 3) { Vector3 e1, e2; Vector3.Subtract(ref Vertices[1].Position, ref Vertices[0].Position, out e1); Vector3.Subtract(ref Vertices[2].Position, ref Vertices[0].Position, out e2); Vector3 directionCrossEdge2; Vector3.Cross(ref ray.Direction, ref e2, out directionCrossEdge2); float determinant; Vector3.Dot(ref e1, ref directionCrossEdge2, out determinant); if (determinant > -float.Epsilon && determinant < float.Epsilon) return null; float inverseDeterminant = 1.0f/determinant; Vector3 distanceVector; Vector3.Subtract(ref ray.Position, ref Vertices[0].Position, out distanceVector); float triangleU; Vector3.Dot(ref distanceVector, ref directionCrossEdge2, out triangleU); triangleU *= inverseDeterminant; if (triangleU < 0 || triangleU > 1) return null; Vector3 distanceCrossEdge1; Vector3.Cross(ref distanceVector, ref e1, out distanceCrossEdge1); float triangleV; Vector3.Dot(ref ray.Direction, ref distanceCrossEdge1, out triangleV); triangleV *= inverseDeterminant; if (triangleV < 0 || triangleU + triangleV > 1) return null; float rayDistance; Vector3.Dot(ref e2, ref distanceCrossEdge1, out rayDistance); rayDistance *= inverseDeterminant; if (rayDistance < 0) return null; return rayDistance; } return closestHit; } I'll admit I don't fully understand all of the math behind the intersection and that is something I'm working on, but my understanding was that if rayDistance was less than 0 the face was facing away from the camera, and shouldn't be counted as a hit. So my question is, is there an issue with my intersection or ray creation code, or is there another check I need to perform to tell if the face is facing away from the camera, and if so any hints on what that check might contain would be appreciated.

    Read the article

  • 2D Particle Explosion

    - by TheBroodian
    I'm developing a 2D action game, and in said game I've given my primary character an ability he can use to throw a fireball. I'm trying to design an effect so that when said fireball collides (be it with terrain or with an enemy) that the fireball will explode. For the explosion effect I've created a particle that once placed into game space will follow random, yet autonomic behavior based on random variables. Here is my question: When I generate my explosion (essentially 90 of these particles) I get one of two behaviors, 1) They are all generated with the same random variables, and don't resemble an explosion at all, more like a large mass of clumped sprites that all follow the same randomly generated path. 2) If I assign each particle a unique seed to its random number generator, they are a little bit -more- spread out, yet clumping is still visible (they seem to fork out into 3 different directions) Does anybody have any tips for producing particle-based 2D explosions? I'll include the code for my particle and the event I'm generating them in. Fire particle class: public FireParticle(xTile.Dimensions.Location StartLocation, ContentManager content) { worldLocation = StartLocation; fireParticleAnimation = new FireParticleAnimation(content); random = new Random(); int rightorleft = random.Next(0, 3); int upordown = random.Next(1, 3); int xVelocity = random.Next(0, 101); int yVelocity = random.Next(0, 101); Vector2 tempVector2 = new Vector2(0,0); if (rightorleft == 1) { tempVector2 = new Vector2(xVelocity, tempVector2.Y); } else if (rightorleft == 2) { tempVector2 = new Vector2(-xVelocity, tempVector2.Y); } if (upordown == 1) { tempVector2 = new Vector2(tempVector2.X, -yVelocity); } else if (upordown == 2) { tempVector2 = new Vector2(tempVector2.X, yVelocity); } velocity = tempVector2; scale = random.Next(1, 11); upwardForce = -10; dead = false; } public FireParticle(xTile.Dimensions.Location StartLocation, ContentManager content, int seed) { worldLocation = StartLocation; fireParticleAnimation = new FireParticleAnimation(content); random = new Random(seed); int rightorleft = random.Next(0, 3); int upordown = random.Next(1, 3); int xVelocity = random.Next(0, 101); int yVelocity = random.Next(0, 101); Vector2 tempVector2 = new Vector2(0, 0); if (rightorleft == 1) { tempVector2 = new Vector2(xVelocity, tempVector2.Y); } else if (rightorleft == 2) { tempVector2 = new Vector2(-xVelocity, tempVector2.Y); } if (upordown == 1) { tempVector2 = new Vector2(tempVector2.X, -yVelocity); } else if (upordown == 2) { tempVector2 = new Vector2(tempVector2.X, yVelocity); } velocity = tempVector2; scale = random.Next(1, 11); upwardForce = -10; dead = false; } #endregion #region Update and Draw public void Update(GameTime gameTime) { elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; fireParticleAnimation.Update(gameTime); Vector2 moveAmount = velocity * elapsed; xTile.Dimensions.Location newPosition = new xTile.Dimensions.Location(worldLocation.X + (int)moveAmount.X, worldLocation.Y + (int)moveAmount.Y); worldLocation = newPosition; velocity.Y += upwardForce; if (fireParticleAnimation.finishedPlaying) { dead = true; } } public void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw( fireParticleAnimation.image.Image, new Rectangle((int)drawLocation.X, (int)drawLocation.Y, scale, scale), fireParticleAnimation.image.SizeAndsource, Color.White * fireParticleAnimation.image.Alpha); } Fireball explosion event: public override void Update(GameTime gameTime) { if (enabled) { float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; foreach (Heart_of_Fire.World_Objects.Particles.FireParticle particle in explosionParticles.ToList()) { particle.Update(gameTime); if (particle.Dead) { explosionParticles.Remove(particle); } } collisionRectangle = new Microsoft.Xna.Framework.Rectangle((int)wrldPstn.X, (int)wrldPstn.Y, 5, 5); explosionCheck = exploded; if (!exploded) { coreGraphic.Update(gameTime); tailGraphic.Update(gameTime); Vector2 moveAmount = velocity * elapsed; moveAmount = horizontalCollision(moveAmount, layer); moveAmount = verticalCollision(moveAmount, layer); Vector2 newPosition = new Vector2(wrldPstn.X + moveAmount.X, wrldPstn.Y + moveAmount.Y); if (hasCollidedHorizontally || hasCollidedVertically) { exploded = true; } wrldPstn = newPosition; worldLocation = new xTile.Dimensions.Location((int)wrldPstn.X, (int)wrldPstn.Y); } if (explosionCheck != exploded) { for (int i = 0; i < 90; i++) { explosionParticles.Add(new World_Objects.Particles.FireParticle( new Location( collisionRectangle.X + random.Next(0, 6), collisionRectangle.Y + random.Next(0, 6)), contentMgr)); } } if (exploded && explosionParticles.Count() == 0) { //enabled = false; } } }

    Read the article

  • Build a view frustum from angles

    - by MulletDevil
    I have 4 angles, left, right, top & bottom. These angles are in degrees. They define the angle between the forward vector and the corresponding side. I am trying to use these to calculate the required values for Perseective Off Centre function found here http://docs.unity3d.com/Documentation/ScriptReference/Camera-projectionMatrix.html I tried doing (near plane-far plane) * Tan(angle) But that didn't give the correct results.

    Read the article

  • GLSL Normals not transforming propertly

    - by instancedName
    I've been stuck on this problem for two days. I've read many articles about transforming normals, but I'm just totaly stuck. I understand choping off W component for "turning off" translation, and doing inverse/traspose transformation for non-uniform scaling problem, but my bug seems to be from a different source. So, I've imported a simple ball into OpenGL. Only transformation that I'm applying is rotation over time. But when my ball rotates, the illuminated part of the ball moves around just as it would if direction light direction was changing. I just can't figure out what is the problem. Can anyone help me with this? Here's the GLSL code: Vertex Shader: #version 440 core uniform mat4 World, View, Projection; layout(location = 0) in vec3 VertexPosition; layout(location = 1) in vec3 VertexColor; layout(location = 2) in vec3 VertexNormal; out vec4 Color; out vec3 Normal; void main() { Color = vec4(VertexColor, 1.0); vec4 n = World * vec4(VertexNormal, 0.0f); Normal = n.xyz; gl_Position = Projection * View * World * vec4(VertexPosition, 1.0); } Fragment Shader: #version 440 core uniform vec3 LightDirection = vec3(0.0, 0.0, -1.0); uniform vec3 LightColor = vec3(1f); in vec4 Color; in vec3 Normal; out vec4 FragColor; void main() { diffuse = max(0.0, dot(normalize(-LightDirection), normalize(Normal))); vec4 scatteredLight = vec4(LightColor * diffuse, 1.0f); FragColor = min(Color * scatteredLight, vec4(1.0)); }

    Read the article

  • Collision planes confusion

    - by Jeffrey
    I'm following this tutorial by thecplusplusguy and in the linked video he explain that for example for the world basement and walls we need to create the actual rendered (shown to the player) walls and then duplicate them, place them in the same coordinates as the rendered walls and call them collision (by defining their material to collision). Then it defines in the Object loader function that those objects with material == collision are collision planes and should not be rendered but just used to check collision. Now I'm pretty confused. Why would we add this kind of complexity to a problem that can easily be solved by a simple loadObject(string plane_object, bool check_collision);: Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true In this case we have lowered the complexity of his method and make it more flexible and faster to develop (faster because we don't always have to make a copy for each plane and flexible because we don't hardcode the Object loader). The only case in which this method could not work is when we need hidden collision planes, and for that we could modify the loadObject() function like this: loadObject(string plane_object, bool check_collision = true, bool hide_object = false); Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true And add the ability to actually show the object or hide it based on hide_object. The final question is: am I right? What would the possible problem encountered with my solution versus his?

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Resolution Independent 2D Rendering in XNA

    - by AttackingHobo
    I am trying to figure out the best way to render a 2d game at any resolution. I am currently rendering the game at 1920x1200. I am trying scale the game to any user selected resolution without changing the way I am rendering, or game logic. What is the best way to scale a game to any arbitrary resolution? Edit: I am trying to achieve this: http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/ but I think the code he has is for a different version of XNA because I cannot find that method overload he uses.

    Read the article

  • Best strategy (tried and tested) for using Box2D in a real-time multiplayer game?

    - by Simon Grey
    I am currently tackling real-time multiplayer physics updates for a game engine I am writing. My question is how best to use Box2D for networked physics. If I run the simulation on the server, should I send position, velocity etc to every client on every tick? Should I send it every few ticks? Maybe there is another way that I am missing? How has this problem been solved using Box2D before? Anyone with some ideas would be greatly appreciated!

    Read the article

  • Can I use remade sprites in my game?

    - by John Skridles
    Can I use remade sprites in my game? I am making a game and I used some sprites, but I didn't copy them. I remade them completely the character looks nothing like the original. I only did this to get the movement of the character right (moving, running, jumping, punching). I've been working on the game for a long time, so I really need to know is it safe and legal to do this. I do intend making a small profit.

    Read the article

  • XNA: SpriteFont question

    - by Zukki
    Hi everyone, I need some help with the SpriteFont. I want a different font for my game, other than Kootenay. So, I edit the SpriteFont xml, i.e: <FontName>Kootenay</FontName> or <FontName>Arial</FontName> No problem with Windows fonts, or other XNA redistributable fonts pack. However, I want to use other fonts, that I downloaded and installed already, they are TTF or OTF, both supported by XNA. My problem is, I cant use them, I got this error: The font family "all the fonts i tried" could not be found. Please ensure the requested font is installed, and is a TrueType or OpenType font. So, checking at the windows fonts folder, I check the properties and details of the fonts, I try all the names they have, and but never works. Maybe I need some kind of importing or installing in order to use them, I dont know, and I hope you guys can help me, thanks!

    Read the article

  • Java keyboard input [on hold]

    - by dØd
    I'm trying to implement a input system that can detect whether a certain key was held or was only pressed briefly. So far I have this: KEY_INTERACTION_TRESHOLD = 400ms //inside a constructor shouldMeasure = true; @Override public void keyPressed(KeyEvent e) { if (shouldMeasure) { startTime = System.currentTimeMillis(); shouldMeasure = false; return; } System.out.println("Button is held down"); e.consume(); } @Override public void keyReleased(KeyEvent e) { if (System.currentTimeMillis() - startTime < KEY_INTERACTION_TRESHOLD) { System.out.println("Button was only pressed briefly"); } startTime = 0; shouldMeasure = true; e.consume(); } Now this works, but the problem is that there is this delay between when I press a key to hold and when the message 'Button is held down' gets displayed. I understand why this delay occurs (for example when you press and hold a letter there will be a similar delay between the first and the second letter printed out), but I would like to somehow avoid it. I'm using only the Java API.

    Read the article

  • Per-pixel collision detection - why does XNA transform matrix return NaN when adding scaling?

    - by JasperS
    I looked at the TransformCollision sample on MSDN and added the Matrix.CreateTranslation part to a property in my collision detection code but I wanted to add scaling. The code works fine when I leave scaling commented out but when I add it and then do a Matrix.Invert() on the created translation matrix the result is NaN ({NaN,NaN,NaN},{NaN,NaN,NaN},...) Can anyone tell me why this is happening please? Here's the code from the sample: // Build the block's transform Matrix blockTransform = Matrix.CreateTranslation(new Vector3(-blockOrigin, 0.0f)) * // Matrix.CreateScale(block.Scale) * would go here Matrix.CreateRotationZ(blocks[i].Rotation) * Matrix.CreateTranslation(new Vector3(blocks[i].Position, 0.0f)); public static bool IntersectPixels( Matrix transformA, int widthA, int heightA, Color[] dataA, Matrix transformB, int widthB, int heightB, Color[] dataB) { // Calculate a matrix which transforms from A's local space into // world space and then into B's local space Matrix transformAToB = transformA * Matrix.Invert(transformB); // When a point moves in A's local space, it moves in B's local space with a // fixed direction and distance proportional to the movement in A. // This algorithm steps through A one pixel at a time along A's X and Y axes // Calculate the analogous steps in B: Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, transformAToB); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, transformAToB); // Calculate the top left corner of A in B's local space // This variable will be reused to keep track of the start of each row Vector2 yPosInB = Vector2.Transform(Vector2.Zero, transformAToB); // For each row of pixels in A for (int yA = 0; yA < heightA; yA++) { // Start at the beginning of the row Vector2 posInB = yPosInB; // For each pixel in this row for (int xA = 0; xA < widthA; xA++) { // Round to the nearest pixel int xB = (int)Math.Round(posInB.X); int yB = (int)Math.Round(posInB.Y); // If the pixel lies within the bounds of B if (0 <= xB && xB < widthB && 0 <= yB && yB < heightB) { // Get the colors of the overlapping pixels Color colorA = dataA[xA + yA * widthA]; Color colorB = dataB[xB + yB * widthB]; // If both pixels are not completely transparent, if (colorA.A != 0 && colorB.A != 0) { // then an intersection has been found return true; } } // Move to the next pixel in the row posInB += stepX; } // Move to the next row yPosInB += stepY; } // No intersection found return false; }

    Read the article

  • Resolving collisions between dynamic game objects

    - by TheBroodian
    I've been building a 2D platformer for some time now, I'm getting to the point where I am adding dynamic objects to the stage for testing. This has prompted me to consider how I would like my character and other objects to behave when they collide. A typical staple in many 2D platformer type games is that the player takes damage upon touching an enemy, and then essentially becomes able to pass through enemies during a period of invulnerability, and at the same time, enemies are able to pass through eachother freely. I personally don't want to take this approach, it feels strange to me that the player should receive arbitrary damage for harmless contact to an enemy, despite whether the enemy is attacking or not, and I would like my enemies' interactions between each other (and my player) to be a little more organic, so to speak. In my head I sort of have this idea where a game object (player, or non player) would be able to push other game objects around by manner of 'pushing' each other out of one anothers' bounding boxes if there is an intersection, and maybe correlate the repelling force to how much their bounding boxes are intersecting. The problem I'm experiencing is I have no idea what the math might look like for something like this? I'll show what work I've done so far, it sort of works, but it's jittery, and generally not quite what I would pass in a functional game: //Clears the anti-duplicate buffer collisionRecord.Clear(); //pick a thing foreach (GameObject entity in entities) { //pick another thing foreach (GameObject subject in entities) { //check to make sure both things aren't the same thing if (!ReferenceEquals(entity, subject)) { //check to see if thing2 is in semi-near proximity to thing1 if (entity.WideProximityArea.Intersects(subject.CollisionRectangle) || entity.WideProximityArea.Contains(subject.CollisionRectangle)) { //check to see if thing2 and thing1 are colliding. if (entity.CollisionRectangle.Intersects(subject.CollisionRectangle) || entity.CollisionRectangle.Contains(subject.CollisionRectangle) || subject.CollisionRectangle.Contains(entity.CollisionRectangle)) { //check if we've already resolved their collision or not. if (!collisionRecord.ContainsKey(entity.GetHashCode())) { //more duplicate resolution checking. if (!collisionRecord.ContainsKey(subject.GetHashCode())) { //if thing1 is traveling right... if (entity.Velocity.X > 0) { //if it isn't too far to the right... if (subject.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height)) || subject.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = entity.CollisionRectangle.Right - subject.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the left, and thing2 to the right. entity.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //if thing1 is traveling left... if (entity.Velocity.X < 0) { //if thing1 isn't too far left... if (entity.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height)) || entity.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = subject.CollisionRectangle.Right - entity.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the right, and thing2 to the left. entity.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //Make record that thing1 and thing2 have interacted and the collision has been solved, so that if thing2 is picked next in the foreach loop, it isn't checked against thing1 a second time before the next update. collisionRecord.Add(entity.GetHashCode(), subject.GetHashCode()); } } } } } } } } One of the biggest issues with my code aside from the jitteriness is that if one character were to land on top of another character, it very suddenly and abruptly resolves the collision, whereas I would like a more subtle and gradual resolution. Any thoughts or ideas are incredibly welcome and helpful.

    Read the article

  • Game Patching Mac/PC

    - by Centurion Games
    Just wondering what types of solutions are available to handle patching of PC/Mac games that don't have any sort of auto updater built into them. In windows do you just spin off some sort of new install shield for the game that includes the updated files, hope you can read a valid registry key to point to the right directory, and overwrite files? If so how does that translate over to Mac where the game is normally just distributed as straight up .app file? Is there a better approach than the above for an already released product? (Assuming direct sells, and not through a marketplace that features auto-updating like Steam.) Are there any off the shelf auto-updater type libraries that could also be easily integrated with a C/C++ code base even after a game has been shipped to make this a lot simpler, and that are cross platform? Also how do auto-updaters work with new OS's that want applications and files digitally signed?

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • How can I fix latency problems for car game?

    - by Freddy
    Basically I'm trying to make a online car racing game for IOS using Game Center real time multiplayer. I have setup a timer that sends data every 0.02 seconds to the other player with the current position and current angle. However sometimes, it will take LONGER then these 0.02 seconds for the package to be sent and then received. In this case i have implemented a method that "calculate" what the next position should be if no position is received based on the last position and angle. However, when the data then receives for let say 0.04 seconds after, it will change back to the last position, which will result in the car "jumping" back and lag. And If i just keep ignoring the data it will never take any input from the other user. Is their any way to prevent this? I suppose this needs to be fixed with some client-sided algorithm.

    Read the article

  • Best way to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • OpenGL ES 2 jittery camera movement

    - by user16547
    First of all, I am aware that there's no camera in OpenGL (ES 2), but from my understanding proper manipulation of the projection matrix can simulate the concept of a camera. What I'm trying to do is make my camera follow my character. My game is 2D, btw. I think the principle is the following (take Super Mario Bros or Doodle Jump as reference - actually I'm trying to replicate the mechanics of the latter): when the caracter goes beyond the center of the screen (in the positive axis/direction), update the camera to be centred on the character. Else keep the camera still. I did accomplish that, however the camera movement is noticeably jittery and I ran out of ideas how to make it smoother. First of all, my game loop (following this article): private int TICKS_PER_SECOND = 30; private int SKIP_TICKS = 1000 / TICKS_PER_SECOND; private int MAX_FRAMESKIP = 5; @Override public void run() { loops = 0; if(firstLoop) { nextGameTick = SystemClock.elapsedRealtime(); firstLoop = false; } while(SystemClock.elapsedRealtime() > nextGameTick && loops < MAX_FRAMESKIP) { step(); nextGameTick += SKIP_TICKS; loops++; } interpolation = ( SystemClock.elapsedRealtime() + SKIP_TICKS - nextGameTick ) / (float)SKIP_TICKS; draw(); } And the following code deals with moving the camera. I was unsure whether to place it in step() or draw(), but it doesn't make a difference to my problem at the moment, as I tried both and neither seemed to fix it. center just represents the y coordinate of the centre of the screen at any time. Initially it is 0. The camera object is my own custom "camera" which basically is a class that just manipulates the view and projection matrices. if(character.getVerticalSpeed() >= 0) { //only update camera if going up float[] projectionMatrix = camera.getProjectionMatrix(); if( character.getY() > center) { center += character.getVerticalSpeed(); cameraBottom = center + camera.getBottom(); cameraTop = center + camera.getTop(); Matrix.orthoM(projectionMatrix, 0, camera.getLeft(), camera.getRight(), center + camera.getBottom(), center + camera.getTop(), camera.getNear(), camera.getFar()); } } Any thought about what I should try or what I am doing wrong? Update 1: I think I updated every value you can see on screen to check whether the jittery movement is affected by that, but nothing changed, so something must be fundamentally flawed with my approach/calculations.

    Read the article

  • Changing DisplayMode seems not to update Input&Graphic Dimension

    - by coding.mof
    I'm writing a small game using Slick and Nifty-GUI. At the program startup I set the DisplayMode using the following lines: AppGameContainer app = new ... app.setDisplayMode( 800, 600, false ); app.start(); I wrote a Nifty-ScreenController for my settings dialog in which the user can select the desired DisplayMode. When I try to set the new DisplayMode within this controller class the game window gets resized correctly but the Graphics and Input objects aren't updated accordingly. Therefore my rendering code just uses a part of the new window. I tried to set different DisplayModes in the main method to test if it's generally possible to invoke this method multiple times. It seems that changing the DisplayMode only works before I call app.start(). Furthermore I tried to update the Graphics & Input object manually but the init and setDimensions methods are package private. :( Does someone know what I'm doing wrong and how to change the DisplayMode correctly?

    Read the article

  • Render 3d object to 2d surface (embedded system)

    - by Martin Berger
    i am working on an embedded system of a sort, and in some free time i would like to test its drawing capabilities. System in question is ARM Cortex M3 microcontroller attached to EasyMX Stellaris board. And i have a small 320x240 TFT screen :) Now, i have some free time each day and i want to create rotating cube. Micro C PRO for ARM doesnt have 3d drawing capabilities, which means it must be done in software. From the book Introduction to 3D Game Programming with DirectX 10 i know matrix algebra for transformations but that is cool when you have DirectX to set camera right. I gues i could make 2d object to rotate, but how would i go with 3d one? Any ideas and examples are welcome. Although i would prefer advices. I'd like to understand this.

    Read the article

  • Make Interactive Story more Variable [on hold]

    - by Guest0343
    I'm creating an interactive story that allows users to make choices based on a story. However, it doesn't give users room to do much creatively on their own. They are bound by the script at the moment. I'm wondering if anyone can suggest any element I can add that might give users some personalization. I was thinking about maybe character editing, but that doesn't add too much. I also thought about a stats system where they can have certain attributes and stats they might earn, but I'm not sure how they might use those stats. Anything is helpful!

    Read the article

  • Lightning whip particle effects

    - by Fibericon
    I'm currently using Mercury Particle Engine for the particle effects in my game, and I'm trying to create a sort of lightning whip - basically a lightning effect bound to a line that curves when the player moves. I know how to use the editor, and I have particle effects working in game. However, I'm completely lost as to where I should start for this specific particle effect. Perhaps if I could find the code for it in a different particle engine, I could convert it, but I can't seem to find that either. What I did find was a lot of tutorials for creating the lines associated with lightning programmatically, which doesn't help in this case because I don't want it to be rigid. Perhaps it would be more like some sort of laser beam with crackling effects around it? I'm running into a wall as far as even beginning to implement this goes.

    Read the article

< Previous Page | 473 474 475 476 477 478 479 480 481 482 483 484  | Next Page >