Search Results

Search found 4509 results on 181 pages for 'logical domains'.

Page 48/181 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • Add Free Windows Live Apps to Your Website or Blog

    - by Matthew Guay
    Would you like to use Hotmail, Office Web Apps, Messenger, and more on your website domain?  Here’s how you can add Windows Live to your website for free. Microsoft offers a popular suite of online communications products including Hotmail and Messenger.  Although Hotmail hasn’t been as popular in recent years as Gmail, it is getting a refresh this summer that might make it an even better email solution.  Additionally, the new Office Web Apps offer great compatibility with Office documents. While Skydrive offers 25Gb of free online file storage for all users, so Windows Live can make a great communications solution for your domain. Note: To signup for Windows Live for your domain, you will need to be able to add info to your WordPress.com blog or change Domain settings manually. Getting Started Open the Windows Live Custom Domains page (Link below) to get started adding Windows Live to your domain.  Your free Windows Live account will let you create up to 500 accounts, so it’s great for teams and groups that want to have customized email addresses in addition to those who just want an email account for their website. Enter your domain or subdomain you want to add to Windows Live in the box, and then select whether you want to setup Hotmail with this or now.  We want to add email to our domain, so select Set up Windows Live Hotmail for my domain and click Continue. You’ll need to sign in with a Windows Live ID to create the account, or choose to create a new Windows Live account associated with your domain.   Sign in with your Windows Live ID…this can be a Hotmail, Live Messenger, XBOX Live, Zune ID, or Microsoft.com account. Or, enter your information to create a new Windows Live ID if you selected the second option. Now, review your settings and make sure everything looks correct.  Click the I Accept button to setup your account.   Your account is now fully setup, but you’ll need to add or edit DNS information on your site.  The steps are slightly different depending if your site is hosted on WordPress.com, on your own server, or hosting service. We’ll show you how to do it on either one. First, though, note the information below this box.  You’ll see settings for your Mail setup…   Security settings…   And Messenger integration.  Make note of the settings, especially the circled ones, as we’ll need them in the next step. Integrate Windows Live with Your WordPress Blog If the domain you added to Windows Live is for your WordPress blog, login to your WordPress dashboard in a separate browser window or tab.  Click the arrow beside Upgrades, and select Domains from the menu. Click the Edit DNS link beside the domain name you’re adding to Windows Live. In the text box on this page, enter the following, replacing Your_info with your code from the Mail Setup box in your Windows Live Dashboard.  Note that this is the blurred section in our screenshots.  It should be a numerical code like 1234567890.pamx1.hotmail.com. MX 10 Your_info.pamx1.hotmail.com. TXT v=spf1 include:hotmail.com ~all CNAME Your_info domains.live.com. Click Save DNS records, and your settings are saved to WordPress.  Note that this will only integrate email with your WordPress account; you cannot integrate Messenger with a domain hosted on WordPress.com. Finally, return to your Windows Live Settings page and click Refresh.  If your settings are correct, you’ll now be ready to use Windows Live on your WordPress.com domain. Integrate Windows Live with Your Own Server If your website is hosted on your own server or hosting account, you’ll need to take a few more steps to add Windows Live to your domain.  This is fairly easy, but the steps may be different depending on your hosting company or registrar.  With some hosts, you may have to contact support to have them add the MX records for you.  Our site’s host uses the popular cPanel for website administration, so here’s how we added the MX Entries through cPanel. Login to your website’s cPanel, and select MX Entry under the Mail section. In the text box on this page, enter the following, replacing Your_info with your code from the Mail Setup box in your Windows Live Dashboard.  Note that this is the blurred section in our screenshots.  It should be a numerical code like 1234567890.pamx1.hotmail.com. MX 10 Your_info.pamx1.hotmail.com. Now, go back to your cPanel home, and select Advanced DNS Zone Editor under Domains. Here, add a TXT record with the following info: Name: yoursite.com. TTL: 3600 TXT Data: v=spf1 include:hotmail.com ~all Click Add Record and your Mail integration data is all configured. To integrate Messenger with your own domain, you’ll have to add an SRV entry to your DNS settings.  cPanel doesn’t have an option for this, so we had to contact our site’s hosting company and they added the entry for us.  Copy all of the information in the Messenger box and send it to your domain support, and they should be able to add this for you.  Alternately, if you don’t want or need Messenger, then you can simply skip this step. Once all of your settings are in place, return to your Windows Live Settings page and click Refresh.  If your settings are correct, you’ll now be ready to use Windows Live on your WordPress.com domain. Create a New Email Account On Your Domain Welcome to your new Windows Live admin page!  Now you can add email accounts so you and anyone else you want can access Hotmail and the other Windows Live apps with your domain.  Click Add to add an account. Enter an account name, which will be the email address of the account, e.g. [email protected].  Then enter the user’s name and a password for the account.  By default this will be a temporary password, and the user will have to change it on first log-in, but if you’re setting up this account for yourself, you can uncheck the box and keep this as your standard password. Now, go to www.mail.live.com, and sign in with your new email address and password.  Remember, your email address is your username previously entered followed by @yourdomain.com. To finish setting up the email account, enter your password, secret question and answer, alternate email, and location information.  Click I accept to finish setting up your new email account. Enter the characters in the Captcha to confirm you’re a human, and click Continue. Your new Hotmail inbox will now load, and you’ll have a welcome email in your inbox.  This works the same as normal Hotmail, except this time, your email address is with your own domain. You can now access any of the Windows Live services from the top-level menu. Here’s an Excel Spreadsheet open in the new Office Web Apps via SkyDrive on our new Windows Live account. If you setup Messenger access previously, you can now sign in to Windows Live Messenger using your new @yourdomain.com account as well. Important Links Accessing your Windows Live accounts is easy.  Simply go to any Windows Live site, such as www.hotmail.com or www.skydrive.com, and sign in with your new Windows Live ID from your domain as normal.  You don’t need a special address to access your account; it works just like the standard public Hotmail accounts. To administer your Windows Live for your domain, go to https://domains.live.com/ and sign in with the Windows Live ID you used to create the account.  Here you can add more users, change settings, and view usage details for the Windows Live accounts on your domain. Conclusion Windows Live is easy to add to your domain, and lets you create up to 500 email address for it.  With the upcoming updates to Hotmail and Office Web Apps coming this summer, this can be a nice way to make your domain even more useful.  And with 500 email accounts, you can easily let your team take advantage of your unique address as well. If you’d rather use Google’s online applications with your domain, check out our article on how to add free Google apps to your website or blog. Link Signup for Windows Live for Your Domain Similar Articles Productive Geek Tips Tools to Help Post Content On Your WordPress BlogBackup Your Windows Live Writer SettingsInstall Windows Live Essentials In Windows 7Add Your Gmail To Windows Live MailMysticgeek Blog: A Look at Internet Explorer 8 Beta 1 on Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Backup Drivers With Driver Magician TubeSort: YouTube Playlist Organizer XPS file format & XPS Viewer Explained Microsoft Office Web Apps Guide Know if Someone Accessed Your Facebook Account Shop for Music with Windows Media Player 12

    Read the article

  • Making Sense of ASP.NET Paths

    - by Renso
    Making Sense of ASP.NET Paths ASP.Net includes quite a plethora of properties to retrieve path information about the current request, control and application. There's a ton of information available about paths on the Request object, some of it appearing to overlap and some of it buried several levels down, and it can be confusing to find just the right path that you are looking for. To keep things straight I thought it a good idea to summarize the path options along with descriptions and example paths. I wrote a post about this a long time ago in 2004 and I find myself frequently going back to that page to quickly figure out which path I’m looking for in processing the current URL. Apparently a lot of people must be doing the same, because the original post is the second most visited even to this date on this blog to the tune of nearly 500 hits per day. So, I decided to update and expand a bit on the original post with a little more information and clarification based on the original comments. Request Object Paths Available Here's a list of the Path related properties on the Request object (and the Page object). Assume a path like http://www.west-wind.com/webstore/admin/paths.aspx for the paths below where webstore is the name of the virtual. Request Property Description and Value ApplicationPath Returns the web root-relative logical path to the virtual root of this app. /webstore/ PhysicalApplicationPath Returns local file system path of the virtual root for this app. c:\inetpub\wwwroot\webstore PhysicalPath Returns the local file system path to the current script or path. c:\inetpub\wwwroot\webstore\admin\paths.aspx Path FilePath CurrentExecutionFilePath All of these return the full root relative logical path to the script page including path and scriptname. CurrentExcecutionFilePath will return the ‘current’ request path after a Transfer/Execute call while FilePath will always return the original request’s path. /webstore/admin/paths.aspx AppRelativeCurrentExecutionFilePath Returns an ASP.NET root relative virtual path to the script or path for the current request. If in  a Transfer/Execute call the transferred Path is returned. ~/admin/paths.aspx PathInfo Returns any extra path following the script name. If no extra path is provided returns the root-relative path (returns text in red below). string.Empty if no PathInfo is available. /webstore/admin/paths.aspx/ExtraPathInfo RawUrl Returns the full root relative URL including querystring and extra path as a string. /webstore/admin/paths.aspx?sku=wwhelp40 Url Returns a fully qualified URL including querystring and extra path. Note this is a Uri instance rather than string. http://www.west-wind.com/webstore/admin/paths.aspx?sku=wwhelp40 UrlReferrer The fully qualified URL of the page that sent the request. This is also a Uri instance and this value is null if the page was directly accessed by typing into the address bar or using an HttpClient based Referrer client Http header. http://www.west-wind.com/webstore/default.aspx?Info Control.TemplateSourceDirectory Returns the logical path to the folder of the page, master or user control on which it is called. This is useful if you need to know the path only to a Page or control from within the control. For non-file controls this returns the Page path. /webstore/admin/ As you can see there’s a ton of information available there for each of the three common path formats: Physical Path is an OS type path that points to a path or file on disk. Logical Path is a Web path that is relative to the Web server’s root. It includes the virtual plus the application relative path. ~/ (Root-relative) Path is an ASP.NET specific path that includes ~/ to indicate the virtual root Web path. ASP.NET can convert virtual paths into either logical paths using Control.ResolveUrl(), or physical paths using Server.MapPath(). Root relative paths are useful for specifying portable URLs that don’t rely on relative directory structures and very useful from within control or component code. You should be able to get any necessary format from ASP.NET from just about any path or script using these mechanisms. ~/ Root Relative Paths and ResolveUrl() and ResolveClientUrl() ASP.NET supports root-relative virtual path syntax in most of its URL properties in Web Forms. So you can easily specify a root relative path in a control rather than a location relative path: <asp:Image runat="server" ID="imgHelp" ImageUrl="~/images/help.gif" /> ASP.NET internally resolves this URL by using ResolveUrl("~/images/help.gif") to arrive at the root-relative URL of /webstore/images/help.gif which uses the Request.ApplicationPath as the basepath to replace the ~. By convention any custom Web controls also should use ResolveUrl() on URL properties to provide the same functionality. In your own code you can use Page.ResolveUrl() or Control.ResolveUrl() to accomplish the same thing: string imgPath = this.ResolveUrl("~/images/help.gif"); imgHelp.ImageUrl = imgPath; Unfortunately ResolveUrl() is limited to WebForm pages, so if you’re in an HttpHandler or Module it’s not available. ASP.NET Mvc also has it’s own more generic version of ResolveUrl in Url.Decode: <script src="<%= Url.Content("~/scripts/new.js") %>" type="text/javascript"></script> which is part of the UrlHelper class. In ASP.NET MVC the above sort of syntax is actually even more crucial than in WebForms due to the fact that views are not referencing specific pages but rather are often path based which can lead to various variations on how a particular view is referenced. In a Module or Handler code Control.ResolveUrl() unfortunately is not available which in retrospect seems like an odd design choice – URL resolution really should happen on a Request basis not as part of the Page framework. Luckily you can also rely on the static VirtualPathUtility class: string path = VirtualPathUtility.ToAbsolute("~/admin/paths.aspx"); VirtualPathUtility also many other quite useful methods for dealing with paths and converting between the various kinds of paths supported. One thing to watch out for is that ToAbsolute() will throw an exception if a query string is provided and doesn’t work on fully qualified URLs. I wrote about this topic with a custom solution that works fully qualified URLs and query strings here (check comments for some interesting discussions too). Similar to ResolveUrl() is ResolveClientUrl() which creates a fully qualified HTTP path that includes the protocol and domain name. It’s rare that this full resolution is needed but can be useful in some scenarios. Mapping Virtual Paths to Physical Paths with Server.MapPath() If you need to map root relative or current folder relative URLs to physical URLs or you can use HttpContext.Current.Server.MapPath(). Inside of a Page you can do the following: string physicalPath = Server.MapPath("~/scripts/ww.jquery.js")); MapPath is pretty flexible and it understands both ASP.NET style virtual paths as well as plain relative paths, so the following also works. string physicalPath = Server.MapPath("scripts/silverlight.js"); as well as dot relative syntax: string physicalPath = Server.MapPath("../scripts/jquery.js"); Once you have the physical path you can perform standard System.IO Path and File operations on the file. Remember with physical paths and IO or copy operations you need to make sure you have permissions to access files and folders based on the Web server user account that is active (NETWORK SERVICE, ASPNET typically). Note the Server.MapPath will not map up beyond the virtual root of the application for security reasons. Server and Host Information Between these settings you can get all the information you may need to figure out where you are at and to build new Url if necessary. If you need to build a URL completely from scratch you can get access to information about the server you are accessing: Server Variable Function and Example SERVER_NAME The of the domain or IP Address wwww.west-wind.com or 127.0.0.1 SERVER_PORT The port that the request runs under. 80 SERVER_PORT_SECURE Determines whether https: was used. 0 or 1 APPL_MD_PATH ADSI DirectoryServices path to the virtual root directory. Note that LM typically doesn’t work for ADSI access so you should replace that with LOCALHOST or the machine’s NetBios name. /LM/W3SVC/1/ROOT/webstore Request.Url and Uri Parsing If you still need more control over the current request URL or  you need to create new URLs from an existing one, the current Request.Url Uri property offers a lot of control. Using the Uri class and UriBuilder makes it easy to retrieve parts of a URL and create new URLs based on existing URL. The UriBuilder class is the preferred way to create URLs – much preferable over creating URIs via string concatenation. Uri Property Function Scheme The URL scheme or protocol prefix. http or https Port The port if specifically specified. DnsSafeHost The domain name or local host NetBios machine name www.west-wind.com or rasnote LocalPath The full path of the URL including script name and extra PathInfo. /webstore/admin/paths.aspx Query The query string if any ?id=1 The Uri class itself is great for retrieving Uri parts, but most of the properties are read only if you need to modify a URL in order to change it you can use the UriBuilder class to load up an existing URL and modify it to create a new one. Here are a few common operations I’ve needed to do to get specific URLs: Convert the Request URL to an SSL/HTTPS link For example to take the current request URL and converted  it to a secure URL can be done like this: UriBuilder build = new UriBuilder(Request.Url); build.Scheme = "https"; build.Port = -1; // don't inject portUri newUri = build.Uri; string newUrl = build.ToString(); Retrieve the fully qualified URL without a QueryString AFAIK, there’s no native routine to retrieve the current request URL without the query string. It’s easy to do with UriBuilder however: UriBuilder builder = newUriBuilder(Request.Url); builder.Query = ""; stringlogicalPathWithoutQuery = builder.ToString();

    Read the article

  • Primary domain in vps in vps has been deactivated

    - by manix
    This is my scenario: I have a vps with two domains (example1.com, example2.com). When I started with this vps I set example1.com as primary domain and the nameserver were configured with the pattern ns1.example.com, ns2.example1.com. The domains were brought in name.com. Across the time, I usually only work whit the domain example2.com, for that reason I stopped to pay example1.com anual registration and just keep the example2.com. But, today my vps is unreacheable because the main domain was deactivated last ago 23th. I never imagined that it could affect my server. So, I am so worried because I don't know if rebuild the vps is the solution here because I could lost my data. Can you take me to the right direction in order to recover my vps?

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Oracle VM Deep Dives

    - by rickramsey
    "With IT staff now tasked to deliver on-demand services, datacenter virtualization requirements have gone beyond simple consolidation and cost reduction. Simply provisioning and delivering an operating environment falls short. IT organizations must rapidly deliver services, such as infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS). Virtualization solutions need to be application-driven and enable:" "Easier deployment and management of business critical applications" "Rapid and automated provisioning of the entire application stack inside the virtual machine" "Integrated management of the complete stack including the VM and the applications running inside the VM." Application Driven Virtualization, an Oracle white paper That was published in August of 2011. The new release of Oracle VM Server delivers significant virtual networking performance improvements, among other things. If you're not sure how virtual networks work or how to use them, these two articles by Greg King and friends might help. Looking Under the Hood at Virtual Networking by Greg King Oracle VM Server for x86 lets you create logical networks out of physical Ethernet ports, bonded ports, VLAN segments, virtual MAC addresses (VNICs), and network channels. You can then assign channels (or "roles") to each logical network so that it handles the type of traffic you want it to. Greg King explains how you go about doing this, and how Oracle VM Server for x86 implements the network infrastructure you configured. He also describes how the VM interacts with paravirtualized guest operating systems, hardware virtualized operating systems, and VLANs. Finally, he provides an example that shows you how it all looks from the VM Manager view, the logical view, and the command line view of Oracle VM Server for x86. Fundamental Concepts of VLAN Networks by Greg King and Don Smerker Oracle VM Server for x86 supports a wide range of options in network design, varying in complexity from a single network to configurations that include network bonds, VLANS, bridges, and multiple networks connecting the Oracle VM servers and guests. You can create separate networks to isolate traffic, or you can configure a single network for multiple roles. Network design depends on many factors, including the number and type of network interfaces, reliability and performance goals, the number of Oracle VM servers and guests, and the anticipated workload. The Oracle VM Manager GUI presents four different ways to create an Oracle VM network: Bonds and ports VLANs Both bond/ports and VLANS A local network This article focuses the second option, designing a complex Oracle VM network infrastructure using only VLANs, and it steps through the concepts needed to create a robust network infrastructure for your Oracle VM servers and guests. More Resources Virtual Networking for Dummies Download Oracle VM Server for x86 Find technical resources for Oracle VM Server for x86 -Rick Follow me on: Blog | Facebook | Twitter | Personal Twitter | YouTube | The Great Peruvian Novel

    Read the article

  • Strategy for using snapshots to back up Ubuntu Linux server?

    - by MountainX
    I need some backup advice for my home file server. Here are the mount points, volume groups, logical volumes and used/total space of all the volumes on my Ubuntu 8.10 home file server. / vgA/lvRoot [7.5G/50G] /tmp vgB/lvTmp [195M/30G] /var vgB/lvVar [780M/30G] swap vgB/lvSwap [16.00 GB] /media1 vgC/lvMedia1 [400G/975G] /media2 vgC/lvMedia2 [75G/295G] /boot partition (no volume group) [95M/200M] /video partition (no volume group) [450G/950G] /backups vgD/lvBackupTarget [800G/925G] /home vgE/lvHome [85G/200G] I have just added a 2.0 TB external USB drive that I would like to use to backup everything. (It will be a close fit to get it all on one 2.0 TB drive. I actually have a 2nd external USB drive if needed.) I'd like to backup "/", var, /media1, media2 and /home. I'll deal with /boot and /video separately since they are not logical volumes. For all the logical volumes I'm anticipating taking snapshots and then copying those snapshots to the 2.0 TB external USB drive. I have never done a task like that before. If I do that, I could use the tutorial I found here: http://www.howtoforge.com/linux_lvm_snapshots My questions are: What is the best overall strategy? Is it LVM snapshots, as I'm assuming? How should I prepare, subdivide and mount the 2.0 TB external USB drive? 2.a. Should I create one or more regular partitions or should I create a physical volume with one or more logical volumes? 2.b. Would it be advisable to extactly mirror the source pv/lv layout on the external drive, and if so, is this a good strategy? What's the best way to get the snapshots onto the external drive? dd? Even though this is a strategy question, feedback with actual commands is appreciated. I need step-by-step cookbook-style help because I don't do much server admin work. (Background: This is a home file server that I have rarely had to touch in about 2 years. It has done its job without much intervention. The really old PC that I used to back everything up recently failed, so I'm replacing that with the external USB drive(s) and I'd like to upgrade my backup strategy at the same time. Previously, I just copied stuff from /backups over to the other computer and that would not have made things very easy in a real restore situation. The /backups mount point contains backup copies of "most" of the important data on a file by file basis, but it does not contain copies of /boot, etc. BTW, the actual internal HDD that holds /backups is separate from the other storage devices.) EDIT: I'll propose a strategy... The idea came from a comment here: LVM mirroring VS RAID1 "LVM mirrors are for replication of a logical volume to a different physical volume. It's essentially meant to "move the data to a different disk". The mirror is then broken..." That would fit my requirements well. Here is an ideal situation: establish the LV mirror on the external drive break the link with the mirror create a (persistent) snapshot on the mirror after a week, resync the mirror with the original source and update the mirror break the link and create another snapshot on the mirror. Obviously, the mirror will be like a weekly full backup. And the snapshots on the mirror will represent earlier points in time. If this would work and if it would be time efficient, it would give a nice full & differential type backup on the external drive based on LVM. I have not heard of a strategy like this before. Will it work? Could it be scripted? Thoughts? EDIT 2: Creating Portable DiskSafes With LoopbackFS And LVM Snapshots This article seems intriguing: http://www.howtoforge.com/creating-portable-disksafes-with-loopbackfs-and-lvm-snapshots Unfortunately, I don't understand exactly how to map those ideas to the strategy I'm proposing above. I'm going to ask this last bit as a separate question. I will leave my original question in place because I still desire feedback on the overall best strategy. At this moment I'm assuming it is LVM mirroring in the style of "Creating Portable DiskSafes with LVM Snapshots" but that might be wrong.

    Read the article

  • Relay Access Denied (State 13) Postfix + Dovecot + Mysql

    - by Pierre Jeptha
    So we have been scratching our heads for quite some time over this relay issue that has presented itself since we re-built our mail-server after a failed Webmin update. We are running Debian Karmic with postfix 2.6.5 and Dovecot 1.1.11, sourcing from a Mysql database and authenticating with SASL2 and PAM. Here are the symptoms of our problem: 1) When users are on our local network they can send and receive 100% perfectly fine. 2) When users are off our local network and try to send to domains not of this mail server (ie. gmail) they get the "Relay Access Denied" error. However users can send to domains of this mail server when off the local network fine. 3) We host several virtual domains on this mailserver, the primary domain being airnet.ca. The rest of our virtual domains (ex. jeptha.ca) cannot receive email from domains not hosted by this mailserver (ie. gmail and such cannot send to them). They receive bounce backs of "Relay Access Denied (State 13)". This is regardless of whether they are on our local network or not, which is why it is so urgent for us to get this solved. Here is our main.cf from postfix: myhostname = mail.airnet.ca mydomain = airnet.ca smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu) biff = no smtpd_sasl_type = dovecot queue_directory = /var/spool/postfix smtpd_sasl_path = private/auth smtpd_sender_restrictions = permit_mynetworks permit_sasl_authenticated smtp_sasl_auth_enable = yes smtpd_sasl_auth_enable = yes append_dot_mydomain = no readme_directory = no smtp_tls_security_level = may smtpd_tls_security_level = may smtp_tls_note_starttls_offer = yes smtpd_tls_key_file = /etc/ssl/private/ssl-cert-snakeoil.key smtpd_tls_cert_file = /etc/ssl/certs/ssl-cert-snakeoil.pem smtpd_tls_loglevel = 1 smtpd_tls_received_header = yes smtpd_tls_auth_only = no alias_maps = proxy:mysql:/etc/postfix/mysql/alias.cf hash:/etc/aliases alias_database = hash:/etc/aliases mydestination = mail.airnet.ca, airnet.ca, localhost.$mydomain mailbox_command = procmail -a "$EXTENSION" mailbox_size_limit = 0 recipient_delimiter = + local_recipient_maps = $alias_maps $virtual_mailbox_maps proxy:unix:passwd.byname home_mailbox = /var/virtual/ mail_spool_directory = /var/spool/mail mailbox_transport = maildrop smtpd_helo_required = yes disable_vrfy_command = yes smtpd_etrn_restrictions = reject smtpd_data_restrictions = reject_unauth_pipelining, permit show_user_unknown_table_name = no proxy_read_maps = $local_recipient_maps $mydestination $virtual_alias_maps $virtual_alias_domains $virtual_mailbox_maps $virtual_mailbox_domains $relay_recipient_maps $relay_domains $canonical_maps $sender_canonical_maps $recipient_canonical_maps $relocated_maps $transport_maps $mynetworks $virtual_mailbox_limit_maps $virtual_uid_maps $virtual_gid_maps virtual_alias_domains = message_size_limit = 20971520 transport_maps = proxy:mysql:/etc/postfix/mysql/vdomain.cf virtual_mailbox_maps = proxy:mysql:/etc/postfix/mysql/vmailbox.cf virtual_alias_maps = proxy:mysql:/etc/postfix/mysql/alias.cf hash:/etc/mailman/aliases virtual_uid_maps = proxy:mysql:/etc/postfix/mysql/vuid.cf virtual_gid_maps = proxy:mysql:/etc/postfix/mysql/vgid.cf virtual_mailbox_base = / virtual_mailbox_limit = 209715200 virtual_mailbox_extended = yes virtual_create_maildirsize = yes virtual_mailbox_limit_maps = proxy:mysql:/etc/postfix/mysql/vmlimit.cf virtual_mailbox_limit_override = yes virtual_mailbox_limit_inbox = no virtual_overquote_bounce = yes virtual_minimum_uid = 1 maximal_queue_lifetime = 1d bounce_queue_lifetime = 4h delay_warning_time = 1h append_dot_mydomain = no qmgr_message_active_limit = 500 broken_sasl_auth_clients = yes smtpd_sasl_path = private/auth smtpd_sasl_local_domain = $myhostname smtpd_sasl_security_options = noanonymous smtpd_sasl_authenticated_header = yes smtp_bind_address = 142.46.193.6 relay_domains = $mydestination mynetworks = 127.0.0.0, 142.46.193.0/25 inet_interfaces = all inet_protocols = all And here is the master.cf from postfix: # ========================================================================== # service type private unpriv chroot wakeup maxproc command + args # (yes) (yes) (yes) (never) (100) # ========================================================================== smtp inet n - - - - smtpd #submission inet n - - - - smtpd # -o smtpd_tls_security_level=encrypt # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #smtps inet n - - - - smtpd # -o smtpd_tls_wrappermode=yes # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #628 inet n - - - - qmqpd pickup fifo n - - 60 1 pickup cleanup unix n - - - 0 cleanup qmgr fifo n - n 300 1 qmgr #qmgr fifo n - - 300 1 oqmgr tlsmgr unix - - - 1000? 1 tlsmgr rewrite unix - - - - - trivial-rewrite bounce unix - - - - 0 bounce defer unix - - - - 0 bounce trace unix - - - - 0 bounce verify unix - - - - 1 verify flush unix n - - 1000? 0 flush proxymap unix - - n - - proxymap proxywrite unix - - n - 1 proxymap smtp unix - - - - - smtp # When relaying mail as backup MX, disable fallback_relay to avoid MX loops relay unix - - - - - smtp -o smtp_fallback_relay= # -o smtp_helo_timeout=5 -o smtp_connect_timeout=5 showq unix n - - - - showq error unix - - - - - error retry unix - - - - - error discard unix - - - - - discard local unix - n n - - local virtual unix - n n - - virtual lmtp unix - - - - - lmtp anvil unix - - - - 1 anvil scache unix - - - - 1 scache maildrop unix - n n - - pipe flags=DRhu user=vmail argv=/usr/bin/maildrop -d ${recipient} # # See the Postfix UUCP_README file for configuration details. # uucp unix - n n - - pipe flags=Fqhu user=uucp argv=uux -r -n -z -a$sender - $nexthop!rmail ($recipient) # # Other external delivery methods. # ifmail unix - n n - - pipe flags=F user=ftn argv=/usr/lib/ifmail/ifmail -r $nexthop ($recipient) bsmtp unix - n n - - pipe flags=Fq. user=bsmtp argv=/usr/lib/bsmtp/bsmtp -t$nexthop -f$sender $recipient scalemail-backend unix - n n - 2 pipe flags=R user=scalemail argv=/usr/lib/scalemail/bin/scalemail-store ${nexthop} ${user} ${extension} mailman unix - n n - - pipe flags=FR user=list argv=/usr/lib/mailman/bin/postfix-to-mailman.py ${nexthop} ${user} spfpolicy unix - n n - - spawn user=nobody argv=/usr/bin/perl /usr/sbin/postfix-policyd-spf-perl smtp-amavis unix - - n - 4 smtp -o smtp_data_done_timeout=1200 -o smtp_send_xforward_command=yes -o disable_dns_lookups=yes #127.0.0.1:10025 inet n - n - - smtpd dovecot unix - n n - - pipe flags=DRhu user=dovecot:21pever1lcha0s argv=/usr/lib/dovecot/deliver -d ${recipient Here is Dovecot.conf protocols = imap imaps pop3 pop3s disable_plaintext_auth = no log_path = /etc/dovecot/logs/err info_log_path = /etc/dovecot/logs/info log_timestamp = "%Y-%m-%d %H:%M:%S ". syslog_facility = mail ssl_listen = 142.46.193.6 ssl_disable = no ssl_cert_file = /etc/ssl/certs/ssl-cert-snakeoil.pem ssl_key_file = /etc/ssl/private/ssl-cert-snakeoil.key mail_location = mbox:~/mail:INBOX=/var/virtual/%d/mail/%u mail_privileged_group = mail mail_debug = yes protocol imap { login_executable = /usr/lib/dovecot/imap-login mail_executable = /usr/lib/dovecot/rawlog /usr/lib/dovecot/imap mail_executable = /usr/lib/dovecot/gdbhelper /usr/lib/dovecot/imap mail_executable = /usr/lib/dovecot/imap imap_max_line_length = 65536 mail_max_userip_connections = 20 mail_plugin_dir = /usr/lib/dovecot/modules/imap login_greeting_capability = yes } protocol pop3 { login_executable = /usr/lib/dovecot/pop3-login mail_executable = /usr/lib/dovecot/pop3 pop3_enable_last = no pop3_uidl_format = %08Xu%08Xv mail_max_userip_connections = 10 mail_plugin_dir = /usr/lib/dovecot/modules/pop3 } protocol managesieve { sieve=~/.dovecot.sieve sieve_storage=~/sieve } mail_plugin_dir = /usr/lib/dovecot/modules/lda auth_executable = /usr/lib/dovecot/dovecot-auth auth_process_size = 256 auth_cache_ttl = 3600 auth_cache_negative_ttl = 3600 auth_username_chars = abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890.-_@ auth_verbose = yes auth_debug = yes auth_debug_passwords = yes auth_worker_max_count = 60 auth_failure_delay = 2 auth default { mechanisms = plain login passdb sql { args = /etc/dovecot/dovecot-sql.conf } userdb sql { args = /etc/dovecot/dovecot-sql.conf } socket listen { client { path = /var/spool/postfix/private/auth mode = 0660 user = postfix group = postfix } master { path = /var/run/dovecot/auth-master mode = 0600 } } } Please, if you require anything do not hesistate, I will post it ASAP. Any help or suggestions are greatly appreciated! Thanks, Pierre

    Read the article

  • Building a virtualized SPARC environment

    - by Owen Allen
    If you're interested in making effective use of virtualization tools like Oracle VM Server, there's a whitepaper on oracle.com that you should check out. The whitepaper starts with a few specific technologies and hardware: Oracle VM Server for SPARC, T4 Servers, Ops Center, Solaris 11, Sun Network 10GbE Switches, and Sun ZFS Storage Appliances. It then explains how to use them to plan and set up a virtualized environment, in which guests are grouped in Server Pools with high availability and are managed through Ops Center. It explains how Ops Center simplifies the management of logical domains by using custom plans to create new logical domains and managing their life cycle through its user interface. So, if you're interested in setting up a cloud and you want to avoid surprises along the way, have a look.

    Read the article

  • How to Use RDA to Generate WLS Thread Dumps At Specified Intervals?

    - by Daniel Mortimer
    Introduction There are many ways to generate a thread dump of a WebLogic Managed Server. For example, take a look at: Taking Thread Dumps - [an excellent blog post on the Middleware Magic site]or  Different ways to take thread dumps in WebLogic Server (Document 1098691.1) There is another method - use Remote Diagnostic Agent! The solution described below is not documented, but it is relatively straightforward to execute. One advantage of using RDA to collect the thread dumps is RDA will also collect configuration, log files, network, system, performance information at the same time. Instructions 1. Not familiar with Remote Diagnostic Agent? Take a look at my previous blog "Resolve SRs Faster Using RDA - Find the Right Profile" 2. Choose a profile, which includes the WebLogic Server data collection modules (for example the profile "WebLogicServer"). At RDA setup time you should see the prompt below: ------------------------------------------------------------------------------- S301WLS: Collects Oracle WebLogic Server Information ------------------------------------------------------------------------------- Enter the location of the directory where the domains to analyze are located (For example in UNIX, <BEA Home>/user_projects/domains or <Middleware Home>/user_projects/domains) Hit 'Return' to accept the default (/oracle/11AS/Middleware/user_projects/domains) > For a successful WLS connection, ensure that the domain Admin Server is up and running. Data Collection Type:   1  Collect for a single server (offline mode)   2  Collect for a single server (using WLS connection)   3  Collect for multiple servers (using WLS connection) Enter the item number Hit 'Return' to accept the default (1) > 2 Choose option 2 or 3. Note: Collect for a single server or multiple servers using WLS connection means that RDA will attempt to connect to execute online WLST commands against the targeted server(s). The thread dumps are collected using the WLST function - "threadDumps()". If WLST cannot connect to the managed server, RDA will proceed to collect other data and ignore the request to collect thread dumps. If in the final output you see no Thread Dump menu item, then it's likely that the managed server is in a state which prevents new connections to it. If faced with this scenario, you would have to employ alternative methods for collecting thread dumps. 3. The RDA setup will create a setup.cfg file in the RDA_HOME directory. Open this file in an editor. You will find the following parameters which govern the number of thread dumps and thread dump interval. #N.Number of thread dumps to capture WREQ_THREAD_DUMP=10 #N.Thread dump interval WREQ_THREAD_DUMP_INTERVAL=5000 The example lines above show the default settings. In other words, RDA will collect 10 thread dumps at 5000 millisecond (5 second) intervals. You may want to change this to something like: #N.Number of thread dumps to capture WREQ_THREAD_DUMP=10 #N.Thread dump interval WREQ_THREAD_DUMP_INTERVAL=30000 However, bear in mind, that such change will increase the total amount of time it takes for RDA to complete its run. 4. Once you are happy with the setup.cfg, run RDA. RDA will collect, render, generate and package all files in the output directory. 5. For ease of viewing, open up the RDA Start html file - "xxxx__start.htm". The thread dumps can be found under the WLST Collections for the target managed server(s). See screenshots belowScreenshot 1:RDA Start Page - Main Index Screenshot 2: Managed Server Sub Index Screenshot 3: WLST Collections Screenshot 4: Thread Dump Page - List of dump file links Screenshot 5: Thread Dump Dat File Link Additional Comment: A) You can view the thread dump files within the RDA Start Page framework, but most likely you will want to download the dat files for in-depth analysis via thread dump analysis tools such as: Thread Dump Analyzer -  Samurai - a GUI based tail , thread dump analysis tool If you are new to thread dump analysis - take a look at this recorded Support Advisor Webcast  Oracle WebLogic Server: Diagnosing Performance Issues through Java Thread Dumps[Slidedeck from webcast in PDF format]B) I have logged a couple of enhancement requests for the RDA Development Team to consider: Add timestamp to dump file links, dat filename and at the top of the body of the dat file Package the individual thread dumps in a zip so all dump files can be conveniently downloaded in one go.

    Read the article

  • BizTalk 2009 - Custom Functoid Categories

    - by StuartBrierley
    I recently had cause to code a number of custom functoids to aid with some maps that I was writing. Once these were developed and deployed to C:\Program Files\Microsoft BizTalk Server 2009\Developer Tools\Mapper Extensions a quick refresh allowed them to appear in toolbox.  After dropping these on a map and configuring the appropriate inputs I tested the map to check that they worked as expected.  All but one of the functoids worked as expecetd, but the final functoid appeared not to be firing at all. I had already tested the code used in a simple test harness application, so I was confident in the code used, but I still needed to figure out what the problem might be. Debugging the map helped me on the way; for some reason the functoid in question was not shown correctly - the functoid definition was wrong. After some investigations I found that the functoid type you assign when coding a custom functoid affects more than just the category it appears in; different functoid types have different capabilities, including what they can link too.  For example, a logical functoid can not provide content for an output element, it can only say whether the element exists.  Map this via a Value Mapping functoid and the value of true or false can be seen in the output element. The functoid I was having problems with was one whare I had used the XPath functoid type, this had seemed to be a good fit as I was looking up content in a config file using xpath and I wanted it to appear the advanced area.  From the table below you can see that this functoid type is marked as "Internal Only", preventing it from being used for custom functoids.  Changing my type to String allowed the functoid to function as expected. Category Description Toolbox Group Assert Internal Use Only Advanced Conversion Converts characters to and from numerics and converts numbers from one base to another. Conversion Count Internal Use Only Advanced Cumulative Performs accumulations of the value of a field that occurs multiple times in a source document and outputs a single output. Cumulative DatabaseExtract Internal Use Only Database DatabaseLookup Internal Use Only Database DateTime Adds date, time, date and time, or add days to a specified date, in output data. Date/Time ExistenceLooping Internal Use Only Advanced Index Internal Use Only Advanced Iteration Internal Use Only Advanced Keymatch Internal Use Only Advanced Logical Controls conditional behavior of other functoids to determine whether particular output data is created. Logical Looping Internal Use Only Advanced MassCopy Internal Use Only Advanced Math Performs specific numeric calculations such as addition, multiplication, and division. Mathematical NilValue Internal Use Only Advanced Scientific Performs specific scientific calculations such as logarithmic, exponential, and trigonometric functions. Scientific Scripter Internal Use Only Advanced String Manipulates data strings by using well-known string functions such as concatenation, length, find, and trim. String TableExtractor Internal Use Only Advanced TableLooping Internal Use Only Advanced Unknown Internal Use Only Advanced ValueMapping Internal Use Only Advanced XPath Internal Use Only Advanced Links http://msdn.microsoft.com/en-us/library/microsoft.biztalk.basefunctoids.functoidcategory(BTS.20).aspx http://blog.eliasen.dk/CommentView,guid,d33b686b-b059-4381-a0e7-1c56e808f7f0.aspx

    Read the article

  • Secure Deployment of Oracle VM Server for SPARC - updated

    - by Stefan Hinker
    Quite a while ago, I published a paper with recommendations for a secure deployment of LDoms.  Many things happend in the mean time, and an update to that paper was due.  Besides some minor spelling corrections, many obsolete or changed links were updated.  However, the main reason for the update was the introduction of a second usage model for LDoms.  In a very short few words: With the success especially of the T4-4, many deployments make use of the hardware partitioning capabilities of that platform, assigning full PCIe root complexes to domains, mimicking dynamic system domains if you will.  This different way of using the hypervisor needed to be addressed in the paper.  You can find the updated version here: Secure Deployment of Oracle VM Server for SPARCSecond Edition I hope it'll be useful!

    Read the article

  • WebLogic not reading boot.properties 11.1.1.x

    - by James Taylor
    In WebLogic 11.1.1.1 the boot.properties file was stored in the $MW_HOME/user_projects/domains/[domain] directory. It would be read at startup and there would be no requirement to enter username and password. In later releases the location has changed to $MW_HOME/user_projects/domains/[domain]/servers/[managed_server]/security In most instances you will need to create the security directory If you want to specify a custom directory add the following to the startup scripts for the server. -Dweblogic.system.BootIdentityFile=[loc]/boot.properties create a boot.properties file using the following entry username=<adminuser> password=<password>

    Read the article

  • How do I install Zimbra Desktop in an Ubuntu-friendly way?

    - by d3vid
    I'd like to install Zimbra Desktop but I'm worried about picking logical installation locations and how it will integrate with the Unity desktop. If it doesn't appear in the Messaging Menu there isn't much I can do about that, but what about the launcher? There doesn't seem to be PPA or similar resource. These instructions for 10.10 seem complete: http://www.ubuntugeek.com/how-to-install-zimbra-desktop-on-ubuntu-10-10-maverick.html 6 If you would, accept the default directori where it install /opt/zimbra/zdesktop Is this the logical location for Ubuntu? 9 Now you’ll be asked about where to install files, for example: Home//.zdesktop Sounds right. Is it? 10 And then you’ll be asked about the path where to locate the icon where you’ll launch Zimbra, for example: /home//Desktop How about this?

    Read the article

  • Ubuntu 12.04.1 LTS USB not being detected after formatting with Startup Disk Creator

    - by Zach
    sudo fdisk -l lists the drive, however, I cannot find it in the file explorer. Disk /dev/sda: 250.1 GB, 250059350016 bytes 255 heads, 63 sectors/track, 30401 cylinders, total 488397168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000d871e Device Boot Start End Blocks Id System /dev/sda1 * 2048 486322175 243160064 83 Linux /dev/sda2 486324222 488396799 1036289 5 Extended /dev/sda5 486324224 488396799 1036288 82 Linux swap / Solaris Disk /dev/sdb: 8195 MB, 8195480064 bytes 253 heads, 62 sectors/track, 1020 cylinders, total 16006797 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00027ae4 Device Boot Start End Blocks Id System /dev/sdb1 * 62 15999719 M 7999829 c W95 FAT32 (LBA) Manually mounting it produces this error message :~$ sudo mount -t vfat /dev/sdb1 /media/external -ouiduid=1000,gid=1000,utf8,dmask=027,fmask=137 mount: wrong fs type, bad option, bad superblock on /dev/sdb1, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so Is the usb toast?

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • Short brandable domain vs. long keyword domain

    - by bajki
    I need a counsel about my websites' domain. Let's say I have just bought two domains: xyz.com and xyzphotography.com. As we can see, the first one is shorter but way less meaningful than the second one. The second one contains a photography keyword but it's longer. I have only one website which is my photography portfolio. Can you advise me how to set those domains to make it all as SEO-friendly as possible? Which one should be the main one, does the rest should work on their own or have some kind of SEO-friendly redirect to the main domain?

    Read the article

  • Gauging Maturity of your BPM Strategy - part 2 / 2

    - by Sanjeev Sharma
    In my earlier post I had discussed the essence of maturity assessment and the business imperative for doing the same in the context of BPM. In this post I will discuss Oracle’s BPM Maturity assessment methodology. Oracle’s BPM Maturity model comprises of the following components: Maturity – represents stages of evolution of your BPM capability with 0 being the lowest level and 5 being the highest level  Domain – represents multiple perspectives both technical and business oriented against which your BPM capability can be assessed Adoption – represents scale of BPM rollout starting at the project level to the enterprise level Note: Your BPM capability can be at different levels of maturity for the different domains. Oracle’s BPM assessment methodology measures the maturity of your BPM capability at the individual domain level as well as the aggregate level. The output of Oracle’s BPM assessment benefits you in two ways: Gap Analysis by comparing the “As-Is” BPM capability with the desired “To-Be” BPM capability along the various domains  (see Figure 1) Systematic Adoption by aligning evolution of BPM capability with its rollout in multiple phases (see Figure 2)

    Read the article

  • Migrating from GlassFish 2.x to 3.1.x

    - by alexismp
    With clustering now available in GlassFish since version 3.1 (our Spring 2011 release), a good number of folks have been looking at migrating their existing GlassFish 2.x-based clustered environments to a more recent version to take advantage of Java EE 6, our modular design, improved SSH-based provisioning and enhanced HA performance. The GlassFish documentation set is quite extensive and has a dedicated Upgrade Guide. It obviously lists a number of small changes such as file layout on disk (mostly due to modularity), some option changes (grizzly, shoal), the removal of node agents (using SSH instead), new JPA default provider name, etc... There is even a migration tool (glassfish/bin/asupgrade) to upgrade existing domains. But really the only thing you need to know is that each module in GlassFish 3 and beyond is responsible for doing its part of the upgrade job which means that the migration is as simple as copying a 2.x domain directory to the domains/ directory and starting the server with asadmin start-domain --upgrade. Binary-compatible products eligible for such upgrades include Sun Java System Application Server 9.1 Update 2 as well as version 2.1 and 2.1.1 of Sun GlassFish Enterprise Server.

    Read the article

  • Can't connect to WIFI after sleep Ubuntu 14.04

    - by user3380404
    After an upgrade over a previous version to Ubuntu 14.04 I have problems with connecting to WiFi. After suspending it won't reconnect to any existing network unless I restart the laptop. sudo lshw -C network: *-network description: Ethernet interface product: 82567LM Gigabit Network Connection vendor: Intel Corporation physical id: 19 bus info: pci@0000:00:19.0 logical name: eth0 version: 03 serial: 00:27:13:b4:d3:58 capacity: 1Gbit/s width: 32 bits clock: 33MHz capabilities: pm msi bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000e driverversion=2.3.2-k firmware=1.8-3 latency=0 link=no multicast=yes port=twisted pair resources: irq:45 memory:fc200000-fc21ffff memory:fc225000-fc225fff ioport:1840(size=32) *-network description: Wireless interface product: PRO/Wireless 5100 AGN [Shiloh] Network Connection vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 00 serial: 00:26:c6:c6:6b:c8 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.13.0-29-generic firmware=8.83.5.1 build 33692 ip=10.0.1.160 latency=0 link=yes multicast=yes wireless=IEEE 802.11abgn resources: irq:48 memory:f4200000-f4201fff

    Read the article

  • Tripple boot install with Windows MBR

    - by Andre Doria
    I have 2 hard drives, each 1TB. First drive has only Windows 7. The second drive has Kali installed on logical partitions #5 (/boot), #6 (/), #7 (/home), and #8 (swap). The bootloader is installed in /dev/sdb5. It also has Ubuntu installed on logical partitions #9 (/boot), #10 (/), #11 (/home), and #12 (swap). I want to use Windows bootloader, so I use easyBCD to configure the boot menu. EasyBCD sees my second drive partitions as #1, #2, #3,..., #8. I then add Kali selecting second drive #1 (/boot) partition, and Ubuntu selecting its #5 (/boot) partition. After this my menu has choices of Windows 7 (default), Kali, and Ubuntu. The problem is that whether I select Kali or Ubuntu I always boot Kali! Any idea on how to enable Ubuntu boot while also keep using Windows bootloader in MBR?

    Read the article

  • Moving one site in Webmaster Tools to more then one site

    - by Towhid
    I have a Question and Answer site about immigration. now I divided it into 2 sites: mysite.co.uk about immigration to UK mysite.com with sub domains for every country, Like: australia.mysite.com , sweden.mysite.com , ... now I had moved All the content from my first site into .co.uk and .com site and it's sub domains to fill theme. I now that Google will detect my new 2 sites as duplicate of first on and it is very bad for SEO. and I don't think Google webmaster tools has a tool for it. so Please Guide me how to fix this problem.

    Read the article

  • WSE ServiceBus

    The article describes a design and implementation of the logical connectivity driven by the config Knowledge Base and the WSE2 Messaging.

    Read the article

  • How to access files on a drive from an older system, mounted in a new system?

    - by David Thomas
    I've recently built a new system, after a rather large physical injury was sustained by my previous system (a precarious balance, and gravity, were not a happy mix). Surprisingly the /home drive of that system appears to have more-or-less survived the trauma. However... I decided to use a fresh drive for / (and swap) partition(s), and another fresh drive for the new /home. Now that's working, I decided to install the old /home drive (that I had assumed until now would be entirely dead and without capacity for use) into the new system to recover the files and data (so far as is possible). At this point I've run into a snag: I have no idea how to go about this (with Windows it was relatively easy, the new drive would be the latest character of the alphabet, and go from there). With 'disk utility' (System - Administration - Disk Utitlity) I've worked out which drive it is (/dev/sda) but clicking on 'mount' produces an error: 1: helper failed with: mount: according to mtab, /dev/sdb1 is already mounted on / mount failed ...if it is mounted on / I can't see it. I'm also moderately confused by the disk (device /dev/sda) being referred to as /dev/sdb1. Any and all insights would be incredibly welcome (I've already voted for: Idea #9063: New internal hard drives default automount at Brainstorm). Edited in response to Roland's request for a screenshot of disk utility: Details (so far as I know them): 40GB disk is / and swap, 1.0 TB Samsung is /home 1.0 TB Hitachi is from the old system (and was the old /home drive). Output from sudo fdisk -l pasted below: Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000bef00 Device Boot Start End Blocks Id System /dev/sda1 1 121601 976760001 83 Linux Disk /dev/sdb: 40.0 GB, 40018599936 bytes 255 heads, 63 sectors/track, 4865 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00037652 Device Boot Start End Blocks Id System /dev/sdb1 * 1 4742 38084608 83 Linux /dev/sdb2 4742 4866 993281 5 Extended /dev/sdb5 4742 4866 993280 82 Linux swap / Solaris Disk /dev/sdc: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000e8d46 Device Boot Start End Blocks Id System /dev/sdc1 1 121602 976760832 83 Linux

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >