Search Results

Search found 37381 results on 1496 pages for 'string parsing'.

Page 482/1496 | < Previous Page | 478 479 480 481 482 483 484 485 486 487 488 489  | Next Page >

  • Validating a linked item&rsquo;s data template in Sitecore

    - by Kyle Burns
    I’ve been doing quite a bit of work in Sitecore recently and last week I encountered a situation that it appears many others have hit.  I was working with a field that had been configured originally as a grouped droplink, but now needed to be updated to support additional levels of hierarchy in the folder structure.  If you’ve done any work in Sitecore that statement makes sense, but if not it may seem a bit cryptic.  Sitecore offers a number of different field types and a subset of these field types focus on providing links either to other items on the content tree or to content that is not stored in Sitecore.  In the case of the grouped droplink, the field is configured with a “root” folder and each direct descendant of this folder is considered to be a header for a grouping of other items and displayed in a dropdown.  A picture is worth a thousand words, so consider the following piece of a content tree: If I configure a grouped droplink field to use the “Current” folder as its datasource, the control that gets to my content author looks like this: This presents a nicely organized display and limits the user to selecting only the direct grandchildren of the folder root.  It also presents the limitation that struck as we were thinking through the content architecture and how it would hold up over time – the authors cannot further organize content under the root folder because of the structure required for the dropdown to work.  Over time, not allowing the hierarchy to go any deeper would prevent out authors from being able to organize their content in a way that it would be found when needed, so the grouped droplink data type was not going to fit the bill. I needed to look for an alternative data type that allowed for selection of a single item and limited my choices to descendants of a specific node on the content tree.  After looking at the options available for links in Sitecore and considering them against each other, one option stood out as nearly perfect – the droptree.  This field type stores its data identically to the droplink and allows for the selection of zero or one items under a specific node in the content tree.  By changing my data template to use droptree instead of grouped droplink, the author is now presented with the following when selecting a linked item: Sounds great, but a did say almost perfect – there’s still one flaw.  The code intended to display the linked item is expecting the selection to use a specific data template (or more precisely it makes certain assumptions about the fields that will be present), but the droptree does nothing to prevent the author from selecting a folder (since folders are items too) instead of one of the items contained within a folder.  I looked to see if anyone had already solved this problem.  I found many people discussing the problem, but the closest that I found to a solution was the statement “the best thing would probably be to create a custom validator” with no further discussion in regards to what this validator might look like.  I needed to create my own validator to ensure that the user had not selected a folder.  Since so many people had the same issue, I decided to make the validator as reusable as possible and share it here. The validator that I created inherits from StandardValidator.  In order to make the validator more intuitive to developers that are familiar with the TreeList controls in Sitecore, I chose to implement the following parameters: ExcludeTemplatesForSelection – serves as a “deny list”.  If the data template of the selected item is in this list it will not validate IncludeTemplatesForSelection – this can either be empty to indicate that any template not contained in the exclusion list is acceptable or it can contain the list of acceptable templates Now that I’ve explained the parameters and the purpose of the validator, I’ll let the code do the rest of the talking: 1: /// <summary> 2: /// Validates that a link field value meets template requirements 3: /// specified using the following parameters: 4: /// - ExcludeTemplatesForSelection: If present, the item being 5: /// based on an excluded template will cause validation to fail. 6: /// - IncludeTemplatesForSelection: If present, the item not being 7: /// based on an included template will cause validation to fail 8: /// 9: /// ExcludeTemplatesForSelection trumps IncludeTemplatesForSelection 10: /// if the same value appears in both lists. Lists are comma seperated 11: /// </summary> 12: [Serializable] 13: public class LinkItemTemplateValidator : StandardValidator 14: { 15: public LinkItemTemplateValidator() 16: { 17: } 18:   19: /// <summary> 20: /// Serialization constructor is required by the runtime 21: /// </summary> 22: /// <param name="info"></param> 23: /// <param name="context"></param> 24: public LinkItemTemplateValidator(SerializationInfo info, StreamingContext context) : base(info, context) { } 25:   26: /// <summary> 27: /// Returns whether the linked item meets the template 28: /// constraints specified in the parameters 29: /// </summary> 30: /// <returns> 31: /// The result of the evaluation. 32: /// </returns> 33: protected override ValidatorResult Evaluate() 34: { 35: if (string.IsNullOrWhiteSpace(ControlValidationValue)) 36: { 37: return ValidatorResult.Valid; // let "required" validation handle 38: } 39:   40: var excludeString = Parameters["ExcludeTemplatesForSelection"]; 41: var includeString = Parameters["IncludeTemplatesForSelection"]; 42: if (string.IsNullOrWhiteSpace(excludeString) && string.IsNullOrWhiteSpace(includeString)) 43: { 44: return ValidatorResult.Valid; // "allow anything" if no params 45: } 46:   47: Guid linkedItemGuid; 48: if (!Guid.TryParse(ControlValidationValue, out linkedItemGuid)) 49: { 50: return ValidatorResult.Valid; // probably put validator on wrong field 51: } 52:   53: var item = GetItem(); 54: var linkedItem = item.Database.GetItem(new ID(linkedItemGuid)); 55:   56: if (linkedItem == null) 57: { 58: return ValidatorResult.Valid; // this validator isn't for broken links 59: } 60:   61: var exclusionList = (excludeString ?? string.Empty).Split(','); 62: var inclusionList = (includeString ?? string.Empty).Split(','); 63:   64: if ((inclusionList.Length == 0 || inclusionList.Contains(linkedItem.TemplateName)) 65: && !exclusionList.Contains(linkedItem.TemplateName)) 66: { 67: return ValidatorResult.Valid; 68: } 69:   70: Text = GetText("The field \"{0}\" specifies an item which is based on template \"{1}\". This template is not valid for selection", GetFieldDisplayName(), linkedItem.TemplateName); 71:   72: return GetFailedResult(ValidatorResult.FatalError); 73: } 74:   75: protected override ValidatorResult GetMaxValidatorResult() 76: { 77: return ValidatorResult.FatalError; 78: } 79:   80: public override string Name 81: { 82: get { return @"LinkItemTemplateValidator"; } 83: } 84: }   In this blog entry, I have shared some code that I found useful in solving a problem that seemed fairly common.  Hopefully the next person that is looking for this answer finds it useful as well.

    Read the article

  • Reverse-engineer SharePoint fields, content types and list instance—Part3

    - by ybbest
    Reverse-engineer SharePoint fields, content types and list instance—Part1 Reverse-engineer SharePoint fields, content types and list instance—Part2 Reverse-engineer SharePoint fields, content types and list instance—Part3 In Part 1 and Part 2 of this series, I demonstrate how to reverse engineer SharePoint fields, content types. In this post I will cover how to include lookup fields in the content type and create list instance using these content types. Firstly, I will cover how to create list instance and bind the custom content type to the custom list. 1. Create a custom list using list Instance item in visual studio and select custom list. 2. In the feature receiver add the Department content type to Department list and remove the item content type. C# AddContentTypeToList(web, “Department”, ” Department”); private void AddContentTypeToList(SPWeb web,string listName, string contentTypeName) { SPList list = web.Lists.TryGetList(listName); list.OnQuickLaunch = true; list.ContentTypesEnabled = true; list.Update(); SPContentType employeeContentType = web.ContentTypes[contentTypeName]; list.ContentTypes.Add(employeeContentType); list.ContentTypes["Item"].Delete(); list.Update(); } Next, I will cover how to create the lookup fields. The difference between creating a normal field and lookup fields is that you need to create the lookup fields after the lists are created. This is because the lookup fields references fields from the foreign list. 1. In your solution, you need to create a feature that deploys the list before deploying the lookup fields. 2. You need to write the following code in the feature receiver to add the lookup columns in the ContentType. C# //add the lookup fields SPFieldLookup departmentField = EnsureLookupField(currentWeb, “YBBESTDepartment”, currentWeb.Lists["DepartmentList"].ID, “Title”); //add to the content types SPContentType employeeContentType = currentWeb.ContentTypes["Employee"]; //Add the lookup fields as SPFieldLink employeeContentType.FieldLinks.Add(new SPFieldLink(departmentField)); employeeContentType.Update(true); private static SPFieldLookup EnsureLookupField(SPWeb currentWeb, String sFieldName, Guid LookupListID, String sLookupField) { //add the lookup fields SPFieldLookup lookupField = null; try { lookupField = currentWeb.Fields[sFieldName] as SPFieldLookup; } catch (Exception e) { } if (lookupField == null) { currentWeb.Fields.AddLookup(sFieldName, LookupListID, true); currentWeb.Update(); lookupField = currentWeb.Fields[sFieldName] as SPFieldLookup; lookupField.LookupField = sLookupField; lookupField.Group = “YBBEST”; lookupField.Required = true; lookupField.Update(); } return lookupField; }

    Read the article

  • Enhanced REST Support in Oracle Service Bus 11gR1

    - by jeff.x.davies
    In a previous entry on REST and Oracle Service Bus (see http://blogs.oracle.com/jeffdavies/2009/06/restful_services_with_oracle_s_1.html) I encoded the REST query string really as part of the relative URL. For example, consider the following URI: http://localhost:7001/SimpleREST/Products/id=1234 Now, technically there is nothing wrong with this approach. However, it is generally more common to encode the search parameters into the query string. Take a look at the following URI that shows this principle http://localhost:7001/SimpleREST/Products?id=1234 At first blush this appears to be a trivial change. However, this approach is more intuitive, especially if you are passing in multiple parameters. For example: http://localhost:7001/SimpleREST/Products?cat=electronics&subcat=television&mfg=sony The above URI is obviously used to retrieve a list of televisions made by Sony. In prior versions of OSB (before 11gR1PS3), parsing the query string of a URI was more difficult than in the current release. In 11gR1PS3 it is now much easier to parse the query strings, which in turn makes developing REST services in OSB even easier. In this blog entry, we will re-implement the REST-ful Products services using query strings for passing parameter information. Lets begin with the implementation of the Products REST service. This service is implemented in the Products.proxy file of the project. Lets begin with the overall structure of the service, as shown in the following screenshot. This is a common pattern for REST services in the Oracle Service Bus. You implement different flows for each of the HTTP verbs that you want your service to support. Lets take a look at how the GET verb is implemented. This is the path that is taken of you were to point your browser to: http://localhost:7001/SimpleREST/Products/id=1234 There is an Assign action in the request pipeline that shows how to extract a query parameter. Here is the expression that is used to extract the id parameter: $inbound/ctx:transport/ctx:request/http:query-parameters/http:parameter[@name="id"]/@value The Assign action that stores the value into an OSB variable named id. Using this type of XPath statement you can query for any variables by name, without regard to their order in the parameter list. The Log statement is there simply to provided some debugging info in the OSB server console. The response pipeline contains a Replace action that constructs the response document for our rest service. Most of the response data is static, but the ID field that is returned is set based upon the query-parameter that was passed into the REST proxy. Testing the REST service with a browser is very simple. Just point it to the URL I showed you earlier. However, the browser is really only good for testing simple GET services. The OSB Test Console provides a much more robust environment for testing REST services, no matter which HTTP verb is used. Lets see how to use the Test Console to test this GET service. Open the OSB we console (http://localhost:7001/sbconsole) and log in as the administrator. Click on the Test Console icon (the little "bug") next to the Products proxy service in the SimpleREST project. This will bring up the Test Console browser window. Unlike SOAP services, we don't need to do much work in the request document because all of our request information will be encoded into the URI of the service itself. Belore the Request Document section of the Test Console is the Transport section. Expand that section and modify the query-parameters and http-method fields as shown in the next screenshot. By default, the query-parameters field will have the tags already defined. You just need to add a tag for each parameter you want to pass into the service. For out purposes with this particular call, you'd set the quer-parameters field as follows: <tp:parameter name="id" value="1234" /> </tp:query-parameters> Now you are ready to push the Execute button to see the results of the call. That covers the process for parsing query parameters using OSB. However, what if you have an OSB proxy service that needs to consume a REST-ful service? How do you tell OSB to pass the query parameters to the external service? In the sample code you will see a 2nd proxy service called CallREST. It invokes the Products proxy service in exactly the same way it would invoke any REST service. Our CallREST proxy service is defined as a SOAP service. This help to demonstrate OSBs ability to mediate between service consumers and service providers, decreasing the level of coupling between them. If you examine the message flow for the CallREST proxy service, you'll see that it uses an Operational branch to isolate processing logic for each operation that is defined by the SOAP service. We will focus on the getProductDetail branch, that calls the Products REST service using the HTTP GET verb. Expand the getProduct pipeline and the stage node that it contains. There is a single Assign statement that simply extracts the productID from the SOA request and stores it in a local OSB variable. Nothing suprising here. The real work (and the real learning) occurs in the Route node below the pipeline. The first thing to learn is that you need to use a route node when calling REST services, not a Service Callout or a Publish action. That's because only the Routing action has access to the $oubound variable, especially when invoking a business service. The Routing action contains 3 Insert actions. The first Insert action shows how to specify the HTTP verb as a GET. The second insert action simply inserts the XML node into the request. This element does not exist in the request by default, so we need to add it manually. Now that we have the element defined in our outbound request, we can fill it with the parameters that we want to send to the REST service. In the following screenshot you can see how we define the id parameter based on the productID value we extracted earlier from the SOAP request document. That expression will look for the parameter that has the name id and extract its value. That's all there is to it. You now know how to take full advantage of the query parameter parsing capability of the Oracle Service Bus 11gR1PS2. Download the sample source code here: rest2_sbconfig.jar Ubuntu and the OSB Test Console You will get an error when you try to use the Test Console with the Oracle Service Bus, using Ubuntu (or likely a number of other Linux distros also). The error (shown below) will state that the Test Console service is not running. The fix for this problem is quite simple. Open up the WebLogic Server administrator console (usually running at http://localhost:7001/console). In the Domain Structure window on the left side of the console, select the Servers entry under the Environment heading. The select the Admin Server entry in the main window of the console. By default, you should be viewing the Configuration tabe and the General sub tab in the main window. Look for the Listen Address field. By default it is blank, which means it is listening on all interfaces. For some reason Ubuntu doesn't like this. So enter a value like localhost or the specific IP address or DNS name for your server (usually its just localhost in development envirionments). Save your changes and restart the server. Your Test Console will now work correctly.

    Read the article

  • Passthrough Objects – Duck Typing++

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Can't see a genuine use for this, but I got the idea in my head and wanted to work it through. It's an extension to the idea of duck typing, for scenarios where types have similar behaviour, but implemented in differently-named members. So you may have a set of objects you want to treat as an interface, which don't implement the interface explicitly, and don't have the same member names so they can't be duck-typed into implicitly implementing the interface. In a fictitious example, I want to call Get on whichever ICache implementation is current, and have the call passed through to the relevant method – whether it's called Read, Retrieve or whatever: A sample implementation is up on github here: PassthroughSample. This uses Castle's DynamicProxy behind the scenes in the same way as my duck typing sample, but allows you to configure the passthrough to specify how the inner (implementation) and outer (interface) members are mapped:       var setup = new Passthrough();     var cache = setup.Create("PassthroughSample.Tests.Stubs.AspNetCache, PassthroughSample.Tests")                             .WithPassthrough("Name", "CacheName")                             .WithPassthrough("Get", "Retrieve")                             .WithPassthrough("Set", "Insert")                             .As<ICache>(); - or using some ugly Lambdas to avoid the strings :     Expression<Func<ICache, string, object>> get = (o, s) => o.Get(s);     Expression<Func<Memcached, string, object>> read = (i, s) => i.Read(s);     Expression<Action<ICache, string, object>> set = (o, s, obj) => o.Set(s, obj);     Expression<Action<Memcached, string, object>> insert = (i, s, obj) => i.Put(s, obj);       ICache cache = new Passthrough<ICache, Memcached>()                     .Create()                     .WithPassthrough(o => o.Name, i => i.InstanceName)                     .WithPassthrough(get, read)                     .WithPassthrough(set, insert)                     .As();   - or even in config:   ICache cache = Passthrough.GetConfigured<ICache>(); ...  <passthrough>     <types>       <typename="PassthroughSample.Tests.Stubs.ICache, PassthroughSample.Tests"             passesThroughTo="PassthroughSample.Tests.Stubs.AppFabricCache, PassthroughSample.Tests">         <members>           <membername="Name"passesThroughTo="RegionName"/>           <membername="Get"passesThroughTo="Out"/>           <membername="Set"passesThroughTo="In"/>         </members>       </type>   Possibly useful for injecting stubs for dependencies in tests, when your application code isn't using an IoC container. Possibly it also has an alternative implementation using .NET 4.0 dynamic objects, rather than the dynamic proxy.

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • The last MVVM you'll ever need?

    - by Nuri Halperin
    As my MVC projects mature and grow, the need to have some omnipresent, ambient model properties quickly emerge. The application no longer has only one dynamic pieced of data on the page: A sidebar with a shopping cart, some news flash on the side – pretty common stuff. The rub is that a controller is invoked in context of a single intended request. The rest of the data, even though it could be just as dynamic, is expected to appear on it's own. There are many solutions to this scenario. MVVM prescribes creating elaborate objects which expose your new data as a property on some uber-object with more properties exposing the "side show" ambient data. The reason I don't love this approach is because it forces fairly acute awareness of the view, and soon enough you have many MVVM objects laying around, and views have to start doing null-checks in order to ensure you really supplied all the values before binding to them. Ick. Just as unattractive is the ViewData dictionary. It's not strongly typed, and in both this and the MVVM approach someone has to populate these properties – n'est pas? Where does that live? With MVC2, we get the formerly-futures  feature Html.RenderAction(). The feature allows you plant a line in a view, of the format: <% Html.RenderAction("SessionInterest", "Session"); %> While this syntax looks very clean, I can't help being bothered by it. MVC was touting a very strong separation of concerns, the Model taking on the role of the business logic, the controller handling route and performing minimal view-choosing operations and the views strictly focused on rendering out angled-bracket tags. The RenderAction() syntax has the view calling some controller and invoking it inline with it's runtime rendering. This – to my taste – embeds too much  knowledge of controllers into the view's code – which was allegedly forbidden.  The one way flow "Controller Receive Data –> Controller invoke Model –> Controller select view –> Controller Hand data to view" now gets a "View calls controller and gets it's own data" which is not so one-way anymore. Ick. I toyed with some other solutions a bit, including some base controllers, special view classes etc. My current favorite though is making use of the ExpandoObject and dynamic features with C# 4.0. If you follow Phil Haack or read a bit from David Heyden you can see the general picture emerging. The game changer is that using the new dynamic syntax, one can sprout properties on an object and make use of them in the view. Well that beats having a bunch of uni-purpose MVVM's any day! Rather than statically exposed properties, we'll just use the capability of adding members at runtime. Armed with new ideas and syntax, I went to work: First, I created a factory method to enrich the focuse object: public static class ModelExtension { public static dynamic Decorate(this Controller controller, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = CodeCampBL.SessoinInterest(); result.TagUsage = CodeCampBL.TagUsage(); return result; } } This gives me a nice fluent way to have the controller add the rest of the ambient "side show" items (SessionInterest, TagUsage in this demo) and expose them all as the Model: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); dynamic result = this.Decorate(data); return View(result); } So now what remains is that my view knows to expect a dynamic object (rather than statically typed) so that the ASP.NET page compiler won't barf: <%@ Page Language="C#" Title="Ambient Demo" MasterPageFile="~/Views/Shared/Ambient.Master" Inherits="System.Web.Mvc.ViewPage<dynamic>" %> Notice the generic ViewPage<dynamic>. It doesn't work otherwise. In the page itself, Model.Value property contains the main data returned from the controller. The nice thing about this, is that the master page (Ambient.Master) also inherits from the generic ViewMasterPage<dynamic>. So rather than the page worrying about all this ambient stuff, the side bars and panels for ambient data all reside in a master page, and can be rendered using the RenderPartial() syntax: <% Html.RenderPartial("TagCloud", Model.SessionInterest as Dictionary<string, int>); %> Note here that a cast is necessary. This is because although dynamic is magic, it can't figure out what type this property is, and wants you to give it a type so its binder can figure out the right property to bind to at runtime. I use as, you can cast if you like. So there we go – no violation of MVC, no explosion of MVVM models and voila – right? Well, I could not let this go without a tweak or two more. The first thing to improve, is that some views may not need all the properties. In that case, it would be a waste of resources to populate every property. The solution to this is simple: rather than exposing properties, I change d the factory method to expose lambdas - Func<T> really. So only if and when a view accesses a member of the dynamic object does it load the data. public static class ModelExtension { // take two.. lazy loading! public static dynamic LazyDecorate(this Controller c, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = new Func<Dictionary<string, int>>(() => CodeCampBL.SessoinInterest()); result.TagUsage = new Func<Dictionary<string, int>>(() => CodeCampBL.TagUsage()); return result; } } Now that lazy loading is in place, there's really no reason not to hook up all and any possible ambient property. Go nuts! Add them all in – they won't get invoked unless used. This now requires changing the signature of usage on the ambient properties methods –adding some parenthesis to the master view: <% Html.RenderPartial("TagCloud", Model.SessionInterest() as Dictionary<string, int>); %> And, of course, the controller needs to call LazyDecorate() rather than the old Decorate(). The final touch is to introduce a convenience method to the my Controller class , so that the tedium of calling Decorate() everywhere goes away. This is done quite simply by adding a bunch of methods, matching View(object), View(string,object) signatures of the Controller class: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); return AmbientView(data); } //these methods can reside in a base controller for the solution: public ViewResult AmbientView(dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(result); } public ViewResult AmbientView(string viewName, dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(viewName, result); } The call to AmbientView now replaces any call the View() that requires the ambient data. DRY sattisfied, lazy loading and no need to replace core pieces of the MVC pipeline. I call this a good MVC day. Enjoy!

    Read the article

  • How to test a localized WPF application in visual studio 2012

    - by Michel Keijzers
    I am trying to create a localized application in C# / WPF in Visual Studio 2012. For that I created two resource files and changed one string in a (XAML) window to use the resource files (instead of a hardcoded string). I see the English text from the resource file, which is correct. However, I want to check if the other resource file (fr-FR) also works but I cannot find a setting or procedure how to change my 'project' to run in French. Thanks in advance.

    Read the article

  • Delete directory by referencing symbolic link

    - by Adam
    To set up the question, imagine this scenario: mkdir ~/temp cd ~/ ln -s temp temporary rm -rf temporary, rm -f temporary, and rm temporary each will remove the symbolic link but leave the directory ~/temp/. I have a script where the name of the symbolic link is easily derived but the name of the linked directory is not. Is there a way to remove the directory by referencing the symbolic link, short of parsing the name of the directory from ls -od ~/temporary?

    Read the article

  • Trying to run my code and compiler seems to just close after it executes [migrated]

    - by Shane
    I am trying to run a program and the compiler seems to just crash right after it executes ... i have no build errors so i am wondering what the hell is going on ... I am a bit of a novice so all help would be appreciated =). I don't know if you might have time to scan through the code but this is what i have got : using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApplication1 { public class Student { string Fname, Lname, Program ; int Sid ; // Inputting information for students public void InputStudentInfo () { Console.WriteLine ("Please enter your first name") ; Fname = Console.ReadLine() ; Console.WriteLine ("Please enter you last name") ; Lname = Console.ReadLine() ; Console.WriteLine ("Please enter you student ID#") ; Sid = int.Parse(Console.ReadLine()) ; Console.WriteLine ("Enter the Program that you are completeing") ; Program = Console.ReadLine() ; } // Printing information for students public void PrintStudentInfo () { Console.Write (" Your name is " + Fname) ; Console.Write(" " + Lname); Console.WriteLine (" Your student identification number is " + Sid) ; Console.WriteLine (" The program you are registered for is " + Program) ; } /* public void MenuInterface() { Console.WriteLine (" 1. Input Student information" ) ; Console.WriteLine (" 2. Input Course information" ) ; Console.WriteLine (" 3. Input Grade information" ) ; Console.WriteLine (" 4. Print Course information" ) ; Console.WriteLine (" 5. Print Student information" ) ; Console.WriteLine (" 6. Print Grade information" ) ; Console.WriteLine (" 7. Print Student information including Course they are registered in and the grade obtained for that course" ) ; Console.WriteLine (" 8. Print grade info of the course in which student has achieved the highest grade" ) ; Console.WriteLine (" 0. Exit") ; Console.WriteLine (" Please select a choice from 0-8") ; accode = Console.ReadLine(); } */ } public class Course { string course1, course2, course3 ; int Stuid ; // Inputting Course Information public void InputCourseInfo () { Console.WriteLine (" Please re-enter your identification number") ; Stuid = int.Parse(Console.ReadLine()) ; Console.WriteLine (" Enter the name of your first course") ; course1 = Console.ReadLine() ; Console.WriteLine (" Enter the name of your second course") ; course2 = Console.ReadLine() ; Console.WriteLine (" Enter the name of your third course") ; course3 = Console.ReadLine() ; } // Printing Course Information public void PrintCourseInfo () { Console.WriteLine (" Your ID # is " + Stuid) ; Console.Write (" The Courses you selected are " + course1) ; Console.Write("," + course2); Console.Write(" and " + course3); } } public class Grade : Course { int Studentid ; int [] hwgrade ; int [] cwgrade ; int [] midegrade ; int [] finalegrade ; int [] totalgrade ; string coursename ; public Grade ( string cname , int Studentident , int [] homework , int [] classwork , int [] midexam , int [] finalexam) { coursename = cname ; Studentid = Studentident ; hwgrade = homework ; cwgrade = classwork ; midegrade = midexam ; finalegrade = finalexam ; } public string coname { get { return coursename ; } set { coursename = value ; } } public int Studentidenty { get { return Studentid ; } set { Studentid = value ; } } public void InputGradeInfo() { Console.WriteLine (" Please enter your Student ID" ) ; grade.Studentidenty = Console.ReadLine() ; for ( int i = 0; i < 3; i++) { Console.Writeline (" Please enter the Course name" ) ; grade.coname[i] = Console.Readline() ; Console.Writeline (" Please enter your homework grade") ; grade.hwgrade[i] = int.parse(Console.Readline()) ; // ..... } } public void CalcTotalGrade() { for (int i = 0; i < 3; i++) { grade.courseper[i] = (grade.hwgrade[i] + grade.cwgrade[i]) / 2; grade.finalper[i] = (grade.midexam[i] + grade.finalegrade[i]) / 2; grade.totalgrade[i] = (grade.courseper[i] + finalper[i]) / 2; } } public void PrintGradeInfo() { for ( int i = 0; i < 3; i++) { Console.Writeline (" Your homework grade is" + grade.hwgrade[i]) ; // ..... } } static void Main(string[] args) { int accode ; Student student = new Student() ; Course course = new Course() ; Grade grade = new Grade() ; do { Console.WriteLine(" 1. Input Student information"); Console.WriteLine(" 2. Input Course information"); Console.WriteLine(" 3. Input Grade information"); Console.WriteLine(" 4. Print Course information"); Console.WriteLine(" 5. Print Student information"); Console.WriteLine(" 6. Print Grade information"); Console.WriteLine(" 7. Print Student information including Course they are registered in and the grade obtained for that course"); Console.WriteLine(" 8. Print grade info of the course in which student has achieved the highest grade"); Console.WriteLine(" 0. Exit"); Console.WriteLine(" Please select a choice from 0-8"); accode = Console.ReadLine(); switch (accode) { case 1: student.InputStudentInfo(); break; case 2: course.InputCourseInfo(); break; case 3: grade.InputGradeInfo(); break; case 4: course.PrintCourseInfo(); break; case 5: student.PRintStudentInfo(); break; case 6: grade.PrintGradeInfo(); break; case 0: Console.WriteLine(" You have chosen to exit the program have a good day. =)"); break; } } while (accode != 0); Console.ReadKey(); } } }

    Read the article

  • Do I suffer from encapsulation overuse?

    - by Florenc
    I have noticed something in my code in various projects that seems like code smell to me and something bad to do, but I can't deal with it. While trying to write "clean code" I tend to over-use private methods in order to make my code easier to read. The problem is that the code is indeed cleaner but it's also more difficult to test (yeah I know I can test private methods...) and in general it seems a bad habit to me. Here's an example of a class that reads some data from a .csv file and returns a group of customers (another object with various fields and attributes). public class GroupOfCustomersImporter { //... Call fields .... public GroupOfCustomersImporter(String filePath) { this.filePath = filePath; customers = new HashSet<Customer>(); createCSVReader(); read(); constructTTRP_Instance(); } private void createCSVReader() { //.... } private void read() { //.... Reades the file and initializes the class attributes } private void readFirstLine(String[] inputLine) { //.... Method used by the read() method } private void readSecondLine(String[] inputLine) { //.... Method used by the read() method } private void readCustomerLine(String[] inputLine) { //.... Method used by the read() method } private void constructGroupOfCustomers() { //this.groupOfCustomers = new GroupOfCustomers(**attributes of the class**); } public GroupOfCustomers getConstructedGroupOfCustomers() { return this.GroupOfCustomers; } } As you can see the class has only a constructor which calls some private methods to get the job done, I know that's not a good practice not a good practice in general but I prefer to encapsulate all the functionality in the class instead of making the methods public in which case a client should work this way: GroupOfCustomersImporter importer = new GroupOfCustomersImporter(filepath) importer.createCSVReader(); read(); GroupOfCustomer group = constructGoupOfCustomerInstance(); I prefer this because I don't want to put useless lines of code in the client's side code bothering the client class with implementation details. So, Is this actually a bad habit? If yes, how can I avoid it? Please note that the above is just a simple example. Imagine the same situation happening in something a little bit more complex.

    Read the article

  • How to Customize the Internet Explorer 8 Title Bar

    - by Mysticgeek
    If you’re looking for a way to personalize IE 8, one method is to customize the Title Bar. Here we look at a simple Registry hack that will get the job done. The Internet Explorer Title Bar is displayed on the top of the browser with the site name followed by Windows Internet Explorer by default. If you have a small office you might want to change it to the company name, or just change it something more personal at home.   Customize the IE 8 Title Bar Note: Before making any changes to the Registry, make sure to back it up. The first thing we need to do is open the Registry by typing regedit into the Search box in the Start Menu and hit Enter. With the Registry open, navigate to HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main. Then create a new String Value and name it Window Title. Right-click on the Window Title String and enter in whatever you want to display on the Title Bar in the Value data field and click OK. When you’re done, you should see the new String called Windows Title with whatever you entered in as the value. Close out of the Registry. Restart or launch Internet Explorer and you’ll now see your new text in the Title Bar. If you want to change it to something else, just go in and modify the Value data. If you want to switch it back to the default, just go back in and delete the string we created. A lot of times you’ll see corporate branding already in the title bar from your ISP or some computer company. To get rid of it, check out The Geek’s article on how to remove it. This should work with other versions of Internet Explorer as well. Similar Articles Productive Geek Tips Remove ISP Text or Corporate Branding from Internet Explorer Title BarReset All Internet Explorer 8 Settings to Fix Stability ProblemsMysticgeek Blog: A Look at Internet Explorer 8 Beta 1 on Windows XPDisable Third Party Extensions in Internet ExplorerToggle Flash On or Off in Internet Explorer the Easy Way TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics How to Add Exceptions to the Windows Firewall

    Read the article

  • TFS 2010 SDK: Smart Merge - Programmatically Create your own Merge Tool

    - by Tarun Arora
    Technorati Tags: Team Foundation Server 2010,TFS SDK,TFS API,TFS Merge Programmatically,TFS Work Items Programmatically,TFS Administration Console,ALM   The information available in the Merge window in Team Foundation Server 2010 is very important in the decision making during the merging process. However, at present the merge window shows very limited information, more that often you are interested to know the work item, files modified, code reviewer notes, policies overridden, etc associated with the change set. Our friends at Microsoft are working hard to change the game again with vNext, but because at present the merge window is a model window you have to cancel the merge process and go back one after the other to check the additional information you need. If you can relate to what i am saying, you will enjoy this blog post! I will show you how to programmatically create your own merging window using the TFS 2010 API. A few screen shots of the WPF TFS 2010 API – Custom Merging Application that we will be creating programmatically, Excited??? Let’s start coding… 1. Get All Team Project Collections for the TFS Server You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetAllTeamProjectCollections() 2: { 3: TfsConfigurationServer configurationServer = 4: TfsConfigurationServerFactory. 5: GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 6: 7: CatalogNode catalogNode = configurationServer.CatalogNode; 8: return catalogNode.QueryChildren(new Guid[] 9: { CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: } 2. Get All Team Projects for the selected Team Project Collection You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetTeamProjects(string instanceId) 2: { 3: ReadOnlyCollection<CatalogNode> teamProjects = null; 4: 5: TfsConfigurationServer configurationServer = 6: TfsConfigurationServerFactory.GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 7: 8: CatalogNode catalogNode = configurationServer.CatalogNode; 9: var teamProjectCollections = catalogNode.QueryChildren(new Guid[] {CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: 12: foreach (var teamProjectCollection in teamProjectCollections) 13: { 14: if (string.Compare(teamProjectCollection.Resource.Properties["InstanceId"], instanceId, true) == 0) 15: { 16: teamProjects = teamProjectCollection.QueryChildren(new Guid[] { CatalogResourceTypes.TeamProject }, false, 17: CatalogQueryOptions.None); 18: } 19: } 20: 21: return teamProjects; 22: } 3. Get All Branches with in a Team Project programmatically I will be passing the name of the Team Project for which i want to retrieve all the branches. When consuming the ‘Version Control Service’ you have the method QueryRootBranchObjects, you need to pass the recursion type => none, one, full. Full implies you are interested in all branches under that root branch. 1: public static List<BranchObject> GetParentBranch(string projectName) 2: { 3: var branches = new List<BranchObject>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<teamProjectName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var allBranches = versionControl.QueryRootBranchObjects(RecursionType.Full); 9: 10: foreach (var branchObject in allBranches) 11: { 12: if (branchObject.Properties.RootItem.Item.ToUpper().Contains(projectName.ToUpper())) 13: { 14: branches.Add(branchObject); 15: } 16: } 17: 18: return branches; 19: } 4. Get All Branches associated to the Parent Branch Programmatically Now that we have the parent branch, it is important to retrieve all child branches of that parent branch. Lets see how we can achieve this using the TFS API. 1: public static List<ItemIdentifier> GetChildBranch(string parentBranch) 2: { 3: var branches = new List<ItemIdentifier>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var i = new ItemIdentifier(parentBranch); 9: var allBranches = 10: versionControl.QueryBranchObjects(i, RecursionType.None); 11: 12: foreach (var branchObject in allBranches) 13: { 14: foreach (var childBranche in branchObject.ChildBranches) 15: { 16: branches.Add(childBranche); 17: } 18: } 19: 20: return branches; 21: } 5. Get Merge candidates between two branches Programmatically Now that we have the parent and the child branch that we are interested to perform a merge between we will use the method ‘GetMergeCandidates’ in the namespace ‘Microsoft.TeamFoundation.VersionControl.Client’ => http://msdn.microsoft.com/en-us/library/bb138934(v=VS.100).aspx 1: public static MergeCandidate[] GetMergeCandidates(string fromBranch, string toBranch) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetMergeCandidates(fromBranch, toBranch, RecursionType.Full); 7: } 6. Get changeset details Programatically Now that we have the changeset id that we are interested in, we can get details of the changeset. The Changeset object contains the properties => http://msdn.microsoft.com/en-us/library/microsoft.teamfoundation.versioncontrol.client.changeset.aspx - Changes: Gets or sets an array of Change objects that comprise this changeset. - CheckinNote: Gets or sets the check-in note of the changeset. - Comment: Gets or sets the comment of the changeset. - PolicyOverride: Gets or sets the policy override information of this changeset. - WorkItems: Gets an array of work items that are associated with this changeset. 1: public static Changeset GetChangeSetDetails(int changeSetId) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetChangeset(changeSetId); 7: } 7. Possibilities In future posts i will try and extend this idea to explore further possibilities, but few features that i am sure will further help during the merge decision making process would be, - View changed files - Compare modified file with current/previous version - Merge Preview - Last Merge date Any other features that you can think of?

    Read the article

  • ASP.NET Localization: Enabling resource expressions with an external resource assembly

    - by Brian Schroer
    I have several related projects that need the same localized text, so my global resources files are in a shared assembly that’s referenced by each of those projects. It took an embarrassingly long time to figure out how to have my .resx files generate “public” properties instead of “internal” so I could have a shared resources assembly (apparently it was pretty tricky pre-VS2008, and my “googling” bogged me down some out-of-date instructions). It’s easy though – Just change the “Custom Tool” to “PublicResXFileCodeGenerator”:    …which can be done via the “Access Modifier” dropdown of the resource file designer window:   A reference to my shared resources DLL gives me the ability to use the resources in code, but by default, the ASP.NET resource expression syntax: <asp:Button ID="BeerButton" runat="server" Text="<%$ Resources:MyResources, Beer %>" />   …assumes that your resources are in your web site project.   To make resource expressions work with my shared resources assembly, I added two classes to the resources assembly: 1) a custom IResourceProvider implementation:   1: using System; 2: using System.Web.Compilation; 3: using System.Globalization; 4:   5: namespace DuffBeer 6: { 7: public class CustomResourceProvider : IResourceProvider 8: { 9: public object GetObject(string resourceKey, CultureInfo culture) 10: { 11: return MyResources.ResourceManager.GetObject(resourceKey, culture); 12: } 13:   14: public System.Resources.IResourceReader ResourceReader 15: { 16: get { throw new NotSupportedException(); } 17: } 18: } 19: }   2) and a custom factory class inheriting from the ResourceProviderFactory base class:   1: using System; 2: using System.Web.Compilation; 3:   4: namespace DuffBeer 5: { 6: public class CustomResourceProviderFactory : ResourceProviderFactory 7: { 8: public override IResourceProvider CreateGlobalResourceProvider(string classKey) 9: { 10: return new CustomResourceProvider(); 11: } 12:   13: public override IResourceProvider CreateLocalResourceProvider(string virtualPath) 14: { 15: throw new NotSupportedException(String.Format( 16: "{0} does not support local resources.", 17: this.GetType().Name)); 18: } 19: } 20: }   In the “system.web / globalization” section of my web.config file, I point the “resourceProviderFactoryType" property to my custom factory:   <system.web> <globalization culture="auto:en-US" uiCulture="auto:en-US" resourceProviderFactoryType="DuffBeer.CustomResourceProviderFactory, DuffBeer" />   This simple approach met my needs for these projects , but if you want to create reusable resource provider and factory classes that allow you to specify the assembly in the resource expression, the instructions are here.

    Read the article

  • Caching no .NET Framework 4.0

    - by anobre
    Olá pessoal, como estão? Hoje vou apresentar uma mudança interessante sobre caching, em comparação com versões anteriores. Introdução A versão 4.0 da plataforma .NET trouxe uma mudança estrutural esperada para os recursos de Cache. Nas versão 3.5 (até SP1), a plataforma fornecia uma implementação do Cache através do namespace System.Web.Caching. Nas versões anteriores o cache estava disponível no namespace System.Web, o que criada uma dependência com as classes do ASP.NET. Neste novo framework, o namespace System.Runtime.Caching reúne toda a API necessária para criar todas as tarefas comuns ao ASP.NET Caching de versões anteriores. System.Runtime.Caching e MemoryCache Tudo que precisamos para trabalhar com cache, em aplicações Web ou não, está reunido no namespace System.Runtime.Caching. A unidade básica de trabalho é a classe abstrata ObjectCache, que fornece a base para criar implementações customizadas de cache. E como é de se esperar, a classe MemoryCache é a implementação da classe abstrata ObjectCache para armazenamento das informações em memória. public class MemoryCache : ObjectCache, IEnumerable, IDisposable A utilização do cache é muito simples, bem parecida com o modelo anterior: ObjectCache cache = MemoryCache.Default; string fileContents = cache["filecontents"] as string; if (fileContents == null) { CacheItemPolicy policy = new CacheItemPolicy(); List<string> filePaths = new List<string>(); filePaths.Add("c:\\cache\\example.txt"); policy.ChangeMonitors.Add(new HostFileChangeMonitor(filePaths)); // Fetch the file contents. fileContents = File.ReadAllText("c:\\cache\\example.txt"); cache.Set("filecontents", fileContents, policy); } Label1.Text = fileContents; Extendendo o Cache É possível customizar todo mecanismo de cache através de várias abordagens. ScottGu escreveu sobre isto, que você pode acessar através deste link. Conclusão Algo muito esperado em versões anteriores, finalmente o cache está disponível sem criar relacionamento com assemblies exclusivamente Web. Perfeito para quem desenvolve outros tipos de aplicação, usufruindo deste recurso sem carregar código desnecessário. Abraços!

    Read the article

  • The Breakpoint Ep. 4 —The Tour De Timeline

    The Breakpoint Ep. 4 —The Tour De Timeline Ask and vote for questions at: goo.gl The DevTools' Timeline shows the heartbeat and health of your application's performance. In this episode we'll do a deep deep dive into how to uncover the cost of internal browser operations like parsing HTML, decoding images, invalidating layout geometry and painting to screen. Paul and Addy will show you how best to approach improving the performance of your CSS and JS. From: GoogleDevelopers Views: 0 0 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • ASP.Net MVC - how to post values to the server that are not in an input element

    - by David Carter
    Problem As was mentioned in a previous blog I am building a web page that allows the user to select dates in a calendar and then shows the dates in an unordered list. The problem now is that those dates need to be sent to the server on page submit so that they can be saved to the database. If I was storing the dates in an input element, say a textbox, that wouldn't be an issue but because they are in an html element whose contents are not posted to the server an alternative strategy needs to be developed. Solution The approach that I took to solve this problem is as follows: 1. Place a hidden input field on the form <input id="hiddenDates" name="hiddenDates" type="hidden" value="" /> ASP.Net MVC has an Html helper with a method called Hidden() that will do this for you @Html.Hidden("hiddenDates"). 2. Copy the values from the html element to the hidden input field before submitting the form The following javascript is added to the page:        $(function () {          $('#formCreate').submit(function () {               PopulateHiddenDates();          });        });            function PopulateHiddenDates() {          var dateValues = '';          $($('#dateList').children('li')).each(function(index) {             dateValues += $(this).attr("id") + ",";          });          $('#hiddenDates').val(dateValues);        } I'm using jQuery to bind to the form submit event so that my method to populate the hidden field gets called before the form is submitted. The dateList element is an unordered list and by using the jQuery each function I can itterate through all the <li> items that it contains, get each items id attribute (to which I have assigned the value of the date in millisecs) and write them to the hidden field as a comma delimited string. 3. Process the dates on the server        [HttpPost]         public ActionResult Create(string hiddenDates, string utcOffset)         {            List<DateTime> dates = GetDates(hiddenDates, utcOffset);         }         private List<DateTime> GetDates(string hiddenDates, int utcOffset)         {             List<DateTime> dates = new List<DateTime>();             var values = hiddenDates.Split(",".ToCharArray(),StringSplitOptions.RemoveEmptyEntries);             foreach (var item in values)             {                 DateTime newDate = new DateTime(1970, 1, 1).AddMilliseconds(double.Parse(item)).AddMinutes(utcOffset*-1);                 dates.Add(newDate);                }             return dates;         } By declaring a parameter with the same name as the hidden field ASP.Net will take care of finding the corresponding entry in the form collection posted back to the server and binding it to the hiddenDates parameter! Excellent! I now have my dates the user selected and I can save them to the database. I have also used the same technique to pass back a utcOffset so that I know what timezone the user is in and I can show the dates correctly to users in other timezones if necessary (this isn't strictly necessary at the moment but I plan to introduce times later), Saving multiple dates from an unordered list - DONE!

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Web Application : How to upload multiple images at a time

    - by SAMIR BHOGAYTA
    //First add image control into the web form how many you want to upload images at a time //Add one button //Write the below code into the button_click event if (FileUpload1.HasFile) { string imagefile = FileUpload1.FileName; if (CheckFileType(imagefile) == true) { Random rndob = new Random(); int db = rndob.Next(1, 100); filename = System.IO.Path.GetFileNameWithoutExtension(imagefile) + db.ToString() + System.IO.Path.GetExtension(imagefile); String FilePath = "images/" + filename; FileUpload1.SaveAs(Server.MapPath(FilePath)); objimg.ImageName = filename; Image1(); if (Session["imagecount"].ToString() == "1") { Img1.ImageUrl = FilePath; ViewState["img1"] = FilePath; } else if (Session["imagecount"].ToString() == "2") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = FilePath; ViewState["img2"] = FilePath; } else if (Session["imagecount"].ToString() == "3") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = FilePath; ViewState["img3"] = FilePath; } else if (Session["imagecount"].ToString() == "4") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = FilePath; ViewState["img4"] = FilePath; } else if (Session["imagecount"].ToString() == "5") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = ViewState["img4"].ToString(); Img5.ImageUrl = FilePath; ViewState["img5"] = FilePath; } } } //execption handling else { lblErrMsg.Visible = true; lblErrMsg.Text = ""; lblErrMsg.Text = "please select a file"; } } //if file extension belongs to these list then only allowed public bool CheckFileType(string filename) { string ext; ext = System.IO.Path.GetExtension(filename); switch (ext.ToLower()) { case ".gif": return true; case ".jpeg": return true; case ".jpg": return true; case ".bmp": return true; case ".png": return true; default: return false; } }

    Read the article

  • View Clipboard & Copy To Clipboard from NetBeans IDE

    - by Geertjan
    Thanks to this code, I can press Ctrl-Alt-V in NetBeans IDE and then view whatever is in the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.DataFlavor; import java.awt.datatransfer.Transferable; import java.awt.datatransfer.UnsupportedFlavorException; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.IOException; import javax.swing.JOptionPane; import org.openide.awt.ActionRegistration; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionID; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.ShowClipboardAction") @ActionRegistration( displayName = "#CTL_ShowClipboardAction") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 5), @ActionReference(path = "Shortcuts", name = "DA-V") }) @Messages("CTL_ShowClipboardAction=Show Clipboard") public final class ShowClipboardAction implements ActionListener { @Override public void actionPerformed(ActionEvent e) { JOptionPane.showMessageDialog(null, getClipboard(), "Clipboard Content", 1); } public String getClipboard() { String text = null; Transferable t = Toolkit.getDefaultToolkit().getSystemClipboard().getContents(null); try { if (t != null && t.isDataFlavorSupported(DataFlavor.stringFlavor)) { text = (String) t.getTransferData(DataFlavor.stringFlavor); } } catch (UnsupportedFlavorException e) { } catch (IOException e) { } return text; } } And now I can also press Ctrl-Alt-C, which copies the path to the current file to the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.Clipboard; import java.awt.datatransfer.StringSelection; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.openide.awt.ActionID; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionRegistration; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.CopyPathToClipboard") @ActionRegistration( displayName = "#CTL_CopyPathToClipboard") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 0), @ActionReference(path = "Editors/Popup", position = 10), @ActionReference(path = "Shortcuts", name = "DA-C") }) @Messages("CTL_CopyPathToClipboard=Copy Path to Clipboard") public final class CopyPathToClipboardAction implements ActionListener { private final DataObject context; public CopyPathToClipboardAction(DataObject context) { this.context = context; } @Override public void actionPerformed(ActionEvent e) { String path = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(path); StringSelection ss = new StringSelection(path); Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard(); clipboard.setContents(ss, null); } }

    Read the article

  • ASP.NET ViewState Tips and Tricks #2

    - by João Angelo
    If you need to store complex types in ViewState DO implement IStateManager to control view state persistence and reduce its size. By default a serializable object will be fully stored in view state using BinaryFormatter. A quick comparison for a complex type with two integers and one string property produces the following results measured using ASP.NET tracing: BinaryFormatter: 328 bytes in view state IStateManager: 28 bytes in view state BinaryFormatter sample code: // DO NOT [Serializable] public class Info { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get { object o = this.ViewState["Example_User"]; if (o == null) return null; return (Info)o; } set { this.ViewState["Example_User"] = value; } } } IStateManager sample code: // DO public class Info : IStateManager { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } private bool isTrackingViewState; bool IStateManager.IsTrackingViewState { get { return this.isTrackingViewState; } } void IStateManager.LoadViewState(object state) { var triplet = (Triplet)state; this.Id = (int)triplet.First; this.Name = (string)triplet.Second; this.Age = (int)triplet.Third; } object IStateManager.SaveViewState() { return new Triplet(this.Id, this.Name, this.Age); } void IStateManager.TrackViewState() { this.isTrackingViewState = true; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get; set; } protected override object SaveViewState() { return new Pair( ((IStateManager)this.User).SaveViewState(), base.SaveViewState()); } protected override void LoadViewState(object savedState) { if (savedState != null) { var pair = (Pair)savedState; this.User = new Info(); ((IStateManager)this.User).LoadViewState(pair.First); base.LoadViewState(pair.Second); } } }

    Read the article

  • Trouble compiling MonoDevelop 4 on Ubuntu 12.04

    - by Mehran
    I'm trying to compile the latest version of MonoDevelop (4.0.9) on my Ubuntu 12.04 and I'm facing errors I can not overcome. Here are my machine's configurations: OS: Ubuntu 12.04 64-bit Mono: version 3.0.12 And here are the commands that I ran to download MonoDevelop: $ git clone git://github.com/mono/monodevelop.git $ cd monodevelop $ git submodule init $ git submodule update And afterwards to compile: ./configure --prefix=`pkg-config --variable=prefix mono` --profile=stable make Then I faced the following errors (sorry if it's long): ... Building ./Main.sln xbuild /verbosity:quiet /nologo /property:CodePage=65001 ./Main.sln /property:Configuration=Debug /home/mehran/git/monodevelop/main/Main.sln: warning : Don't know how to handle GlobalSection MonoDevelopProperties.Debug, Ignoring. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' Editor/IDocument.cs(98,30): warning CS0419: Ambiguous reference in cref attribute `GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched PatternMatching/INode.cs(51,37): warning CS1574: XML comment on `ICSharpCode.NRefactory.PatternMatching.PatternExtensions.Match(this ICSharpCode.NRefactory.PatternMatching.INode, ICSharpCode.NRefactory.PatternMatching.INode)' has cref attribute `PatternMatching.Match.Success' that could not be resolved TextLocation.cs(35,23): warning CS0419: Ambiguous reference in cref attribute `Editor.IDocument.GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched TypeSystem/FullTypeName.cs(87,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/INamedElement.cs(59,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/IType.cs(50,26): warning CS1584: XML comment on `ICSharpCode.NRefactory.TypeSystem.IType' has syntactically incorrect cref attribute `IEquatable{IType}.Equals(IType)' TypeSystem/IType.cs(319,38): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `GetMethods(Predicate{IUnresolvedMethod}, GetMemberOptions)' TypeSystem/TypeKind.cs(61,17): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' TypeSystem/SpecialType.cs(50,52): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1.

    Read the article

  • Issue with Godaddy DNS manager

    - by Fischer
    I'm using domains.live.com to setup an email to a domain registered on Godaddy. The domains.live.com configuration page says: Godaddy's DNS manager isn't accepting this string Value: v=spf1 include:hotmail.com ~all it gives an error, something is wrong, either with the string or with the DNS manager and I would like to know how to fix it. Notes: The more information link is dead, Godaddy no longer gives support by email, no Microsoft support

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • SSIS: Deploying OLAP cubes using C# script tasks and AMO

    - by DrJohn
    As part of the continuing series on Building dynamic OLAP data marts on-the-fly, this blog entry will focus on how to automate the deployment of OLAP cubes using SQL Server Integration Services (SSIS) and Analysis Services Management Objects (AMO). OLAP cube deployment is usually done using the Analysis Services Deployment Wizard. However, this option was dismissed for a variety of reasons. Firstly, invoking external processes from SSIS is fraught with problems as (a) it is not always possible to ensure SSIS waits for the external program to terminate; (b) we cannot log the outcome properly and (c) it is not always possible to control the server's configuration to ensure the executable works correctly. Another reason for rejecting the Deployment Wizard is that it requires the 'answers' to be written into four XML files. These XML files record the three things we need to change: the name of the server, the name of the OLAP database and the connection string to the data mart. Although it would be reasonably straight forward to change the content of the XML files programmatically, this adds another set of complication and level of obscurity to the overall process. When I first investigated the possibility of using C# to deploy a cube, I was surprised to find that there are no other blog entries about the topic. I can only assume everyone else is happy with the Deployment Wizard! SSIS "forgets" assembly references If you build your script task from scratch, you will have to remember how to overcome one of the major annoyances of working with SSIS script tasks: the forgetful nature of SSIS when it comes to assembly references. Basically, you can go through the process of adding an assembly reference using the Add Reference dialog, but when you close the script window, SSIS "forgets" the assembly reference so the script will not compile. After repeating the operation several times, you will find that SSIS only remembers the assembly reference when you specifically press the Save All icon in the script window. This problem is not unique to the AMO assembly and has certainly been a "feature" since SQL Server 2005, so I am not amazed it is still present in SQL Server 2008 R2! Sample Package So let's take a look at the sample SSIS package I have provided which can be downloaded from here: DeployOlapCubeExample.zip  Below is a screenshot after a successful run. Connection Managers The package has three connection managers: AsDatabaseDefinitionFile is a file connection manager pointing to the .asdatabase file you wish to deploy. Note that this can be found in the bin directory of you OLAP database project once you have clicked the "Build" button in Visual Studio TargetOlapServerCS is an Analysis Services connection manager which identifies both the deployment server and the target database name. SourceDataMart is an OLEDB connection manager pointing to the data mart which is to act as the source of data for your cube. This will be used to replace the connection string found in your .asdatabase file Once you have configured the connection managers, the sample should run and deploy your OLAP database in a few seconds. Of course, in a production environment, these connection managers would be associated with package configurations or set at runtime. When you run the sample, you should see that the script logs its activity to the output screen (see screenshot above). If you configure logging for the package, then these messages will also appear in your SSIS logging. Sample Code Walkthrough Next let's walk through the code. The first step is to parse the connection string provided by the TargetOlapServerCS connection manager and obtain the name of both the target OLAP server and also the name of the OLAP database. Note that the target database does not have to exist to be referenced in an AS connection manager, so I am using this as a convenient way to define both properties. We now connect to the server and check for the existence of the OLAP database. If it exists, we drop the database so we can re-deploy. svr.Connect(olapServerName); if (svr.Connected) { // Drop the OLAP database if it already exists Database db = svr.Databases.FindByName(olapDatabaseName); if (db != null) { db.Drop(); } // rest of script } Next we start building the XMLA command that will actually perform the deployment. Basically this is a small chuck of XML which we need to wrap around the large .asdatabase file generated by the Visual Studio build process. // Start generating the main part of the XMLA command XmlDocument xmlaCommand = new XmlDocument(); xmlaCommand.LoadXml(string.Format("<Batch Transaction='false' xmlns='http://schemas.microsoft.com/analysisservices/2003/engine'><Alter AllowCreate='true' ObjectExpansion='ExpandFull'><Object><DatabaseID>{0}</DatabaseID></Object><ObjectDefinition/></Alter></Batch>", olapDatabaseName));  Next we need to merge two XML files which we can do by simply using setting the InnerXml property of the ObjectDefinition node as follows: // load OLAP Database definition from .asdatabase file identified by connection manager XmlDocument olapCubeDef = new XmlDocument(); olapCubeDef.Load(Dts.Connections["AsDatabaseDefinitionFile"].ConnectionString); // merge the two XML files by obtain a reference to the ObjectDefinition node oaRootNode.InnerXml = olapCubeDef.InnerXml;   One hurdle I had to overcome was removing detritus from the .asdabase file left by the Visual Studio build. Through an iterative process, I found I needed to remove several nodes as they caused the deployment to fail. The XMLA error message read "Cannot set read-only node: CreatedTimestamp" or similar. In comparing the XMLA generated with by the Deployment Wizard with that generated by my code, these read-only nodes were missing, so clearly I just needed to strip them out. This was easily achieved using XPath to find the relevant XML nodes, of which I show one example below: foreach (XmlNode node in rootNode.SelectNodes("//ns1:CreatedTimestamp", nsManager)) { node.ParentNode.RemoveChild(node); } Now we need to change the database name in both the ID and Name nodes using code such as: XmlNode databaseID = xmlaCommand.SelectSingleNode("//ns1:Database/ns1:ID", nsManager); if (databaseID != null) databaseID.InnerText = olapDatabaseName; Finally we need to change the connection string to point at the relevant data mart. Again this is easily achieved using XPath to search for the relevant nodes and then replace the content of the node with the new name or connection string. XmlNode connectionStringNode = xmlaCommand.SelectSingleNode("//ns1:DataSources/ns1:DataSource/ns1:ConnectionString", nsManager); if (connectionStringNode != null) { connectionStringNode.InnerText = Dts.Connections["SourceDataMart"].ConnectionString; } Finally we need to perform the deployment using the Execute XMLA command and check the returned XmlaResultCollection for errors before setting the Dts.TaskResult. XmlaResultCollection oResults = svr.Execute(xmlaCommand.InnerXml);  // check for errors during deployment foreach (Microsoft.AnalysisServices.XmlaResult oResult in oResults) { foreach (Microsoft.AnalysisServices.XmlaMessage oMessage in oResult.Messages) { if ((oMessage.GetType().Name == "XmlaError")) { FireError(oMessage.Description); HadError = true; } } } If you are not familiar with XML programming, all this may all seem a bit daunting, but perceiver as the sample code is pretty short. If you would like the script to process the OLAP database, simply uncomment the lines in the vicinity of Process method. Of course, you can extend the script to perform your own custom processing and to even synchronize the database to a front-end server. Personally, I like to keep the deployment and processing separate as the code can become overly complex for support staff.If you want to know more, come see my session at the forthcoming SQLBits conference.

    Read the article

  • Bash Printing, how to

    - by Uncle Leo
    Wrote a script in bash. Now im need to bring information into a text file,for example in PostScript, but there is one problem. I need to have a certain length of string in characters, and stretch or shrink the string on the entire width of the page layout. I have tried a2ps and enscript, but there is no such option. Please tell me the solution to this problem, maybe in Ghostscript. Thanks in advance!

    Read the article

< Previous Page | 478 479 480 481 482 483 484 485 486 487 488 489  | Next Page >