Search Results

Search found 25496 results on 1020 pages for 'development fabric'.

Page 485/1020 | < Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Terrain square loading

    - by AndroidXTr3meN
    Games like Skyrim, Morrowind, and more are using quads or square to divide the terrain if im correct. The player is always at #5 1 | 2 | 3 4 | 5 | 6 7 | 8 | 9 So whenever you cross the border you unload and load the new "areas" But if the user goes just over the edge and then the second after goes back previous area a lot of unnecessary loading and unloading is done. Is there a general approach to this because I dont think games like skyrim have this issue? Cheers!

    Read the article

  • How should I sort images in an isometric game so that they appear in the correct order?

    - by Andrew
    This seems like a rather simple problem but I am having a lot of difficulty with it. What should I do to properly sort images in an isometric game? In a normal 2d top-down game one could use the screen y axis to sort the images. In this example the trees are properly sorted but the isometric walls are not. Example image: sorted by screen y Wall2 is one pixel below wall1 therefore it is drawn after wall1. If I sort by the isometric y axis the walls appear in the correct order but the trees do not. Example image: sorted by isometric y

    Read the article

  • Dynamic navigation mesh changes

    - by Nairou
    I'm currently trying to convert from grids to navigation meshes for pathfinding, since grids are either too coarse for accurate navigation, or too fine to be useful for object tracking. While my map is fairly static, and the navigation mesh could be created in advance, this is somewhat of a tower defense game, where objects can be placed to block paths, so I need a way to recalculate portions of the navigation mesh to allow pathing around them. Is there any existing documentation on good ways to do this? I'm still very new to navigation meshes, so the prospect of modifying them to cut or fill holes sounds daunting.

    Read the article

  • Why does my player stop when stepping onto a new tile?

    - by user220631
    Me and my friend are creating a game from scratch. He is in charge of art design and I am in charge of coding. I have done well so far with the code, but I have a collision detection problem when the character moves right: Once the player moves right, whenever a new block is encountered, the player stops. I don't know if this is a problem with collision or the player but I can't work around it. Here is the collision code: this.IsColliding = function(obj) { if(this.X > obj.X + obj.Width) return false; else if(this.X + this.Width < obj.X) return false; else if(this.Y > obj.Y + obj.Height) return false; else if(this.Y + this.Height < obj.Y) return false; else return true; } I also wanted to see if there as a way to make the player collide with the bottom of the block and the right side of the block instead of running through it.

    Read the article

  • Am I missing something about these considerations about Leaderboard's database's schema?

    - by misiMe
    I just finished to develop a mobile game, now I want to implement an online leaerboard using mysql. I'm wondering about the database's schema, I thought about some possibilities: (I didn't got in detail with syntax because my question is just about the logic of it) Name: string; Score: integer I thought to ask the name just the first time. If, in the future, you will modify that, it will call just an update to the name associated with your id. Leaderboard(ID, Name, Score) ID: integer autoincrement, PrimaryKey With this kind of idea maybe the db will grow fast because if you choose everytime a different name for the score, it will add a new entry. Leaderboard(PhoneId, Name, Score) Here PhoneId will be the unique identifier of the phone, PrimaryKey. A con of this choice is that if you want to play with your friends' phone, you can't put a different name for the score. Leaderboard(Name, Score) Here Name is PrimaryKey. With that, if you enter a name that already exists, you will be prompted to choose another one. Do you agree with this considerations? What will you do? Am I missing something?

    Read the article

  • How do I render an animation where some frames appear twice?

    - by hustlerinc
    I am animating a sprite. The sprite has 7 different frames, but the animation is 10 frames long. This is because 3 of the original frames appear twice in the animation: 3 -> 4 -> 5 -> 6 -> 4 -> 3 -> 2 -> 1 -> 0 -> 2 Frames 2, 3 and 4 appear twice. This avoids having to store duplicate frames in the spritesheet. How can I render the animation in this sequence with repeated frames?

    Read the article

  • Geometry Shader : points + Triangles

    - by CmasterG
    I have different Shaders and for each Shader a instance of the ShaderClass class, which initializes the Shaders, Renders the Shaders, etc. I use most of the Shaderclasses without Geometry Shader, but in one Shader Class i also use a Geometry Shader. The problem is, that when I render one object with the Shaderclass that uses the Geometry shader, all other object are rendered with the same geometry that I create in the Geometry Shader. Can you help me? Is it possible that I have to use a Geometry Shader for each object, when I use one for one object? I use DirectX 11 with C++.

    Read the article

  • Help with Strategy-game AI

    - by f20k
    Hi, I am developing a strategy-game AI (think: Final Fantasy Tactics), and I am having trouble coming up for the design of the AI. My main problem is determining which is the optimal thing for it to do. First let me describe the priority of what action I would like the AI to take: Kill nearest player unit Fulfill primary directive (kill all player units, kill target unit, survive for x turns) Heal ally unit / cast buffer Now the AI can do the following in its turn: Move - {Attack / Ability / Item} (either attack or ability or item) {Attack / Ability / Item} - Move Move closer (if targets not in range) {Attack / Ability / Item} (if move not available) Notes Abilities have various ranges / effects / costs / effects. Each ai unit has maybe 5-10 abilities to choose from. The AI will prioritize killing over safety unless its directive is to survive for x turns. It also doesn't care about ability cost much. While a player may want to save a big spell for later, the AI will most likely use it asap. Movement is on a (hex) grid num of player units: 3-6 num of ai units: 3-7 or more. Probably max 10. AI and player take turns controlling ONE unit, instead of all at the same time. Platform is Android (if program doesnt respond after some time, there will be a popup saying to Force Quit or Wait - which looks really bad!). Now comes the questions: The best ability to use would obviously be the one that hits the most targets for the most damage. But since each ability has different ranges, I won't know if they are in range without exploring each possible place I can move to. One solution would be to go through each possible places to move to, determine the optimal attack at that location - which gives me a list of optimal moves for each location. Then choose the optimal out of the list and execute it. But this will take a lot of CPU time. Is there a better solution? My current idea is to move as close as possible towards the closest, largest group of people, and determine the optimal attack/ability from there. I think this would be a lot less work for the CPU and still allow for wide-range attacks. Its sub-optimal but the AI will still seem 'smart'. Other notes/questions: Am I over-thinking/over-complicating it? Better solution? I am open to all sorts of suggestions I have taken a look at the spell-casting question, but it doesn't take into account the movement - so perhaps use that algo for each possible move location? The top answer mentioned it wasn't great for area-of-effect and group fights - so maybe requires more tweaking? Please, if you mention a graph/tree, let me know basically how to use it. E.g. Node means ability, level corresponds to damage, then search for the deepest node.

    Read the article

  • Is there a library that handles hexagon tiled 2D maps?

    - by Pete Mancini
    It would represent a map that is semi-square of arbitrary size. It would have a simple system for representation of the map coordinates such as 0101 (first column, 1st hex). I'd want the map to be able to tell me the distance between two points, and what other hexes lay between those two points as a list or array. I don't care as much about the language but c# or python would be ideal. Does one exist?

    Read the article

  • Why is my shadowmap all white?

    - by Berend
    I was trying out a shadowmap. But all my shadow is white. I think there is some problem with my homogeneous component. Can anybody help me? The rest of my code is written in xna Here is the hlsl code I used float4x4 xWorld; float4x4 xView; float4x4 xProjection; struct VertexToPixel { float4 Position : POSITION; float4 ScreenPos : TEXCOORD1; float Depth : TEXCOORD2; }; struct PixelToFrame { float4 Color : COLOR0; }; //------- Technique: ShadowMap -------- VertexToPixel MyVertexShader(float4 inPos: POSITION0, float3 inNormal: NORMAL0) { VertexToPixel Output = (VertexToPixel)0; float4x4 preViewProjection = mul(xView, xProjection); float4x4 preWorldViewProjection = mul(xWorld, preViewProjection); Output.Position =mul(inPos, mul(xWorld, preViewProjection)); Output.Depth = Output.Position.z / Output.Position.w; Output.ScreenPos = Output.Position; return Output; } float4 MyPixelShader(VertexToPixel PSIn) : COLOR0 { PixelToFrame Output = (PixelToFrame)0; Output.Color = PSIn.ScreenPos.z/PSIn.ScreenPos.w; return Output.Color; } technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 MyVertexShader(); PixelShader = compile ps_2_0 MyPixelShader(); } }

    Read the article

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • How to blend the sprite into background?

    - by optimisez
    I try to blend the character into game but I still cannot remove the blue color in the sprite sheet and discover that the white area of sprite is semi-transparent. Before that, the color D3DCOLOR_XRGB(255, 255, 255) is set in D3DXCreateTextureFromFileEx. You will see the fireball through the sprite. After I change the color to D3DCOLOR_XRGB(0, 255, 255), the result will be Now, I am trying to remove the blue color of the sprite sheet and my expected result is something like that Until now, I still cannot figure out how to do that. Any ideas? void initPlayer() { // Create texture. hr = D3DXCreateTextureFromFileEx(d3dDevice, "player.png", 169, 44, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(0, 255, 255), NULL, NULL, &player); } void renderPlayer() { sprite->Draw(player, &playerRect, NULL, &D3DXVECTOR3(playerDest.X, playerDest.Y, 0),D3DCOLOR_XRGB(255, 255, 255)); } void initFireball() { hr = D3DXCreateTextureFromFileEx(d3dDevice, "fireball.png", 512, 512, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 255), NULL, NULL, &fireball); } void renderFireball() { sprite->Draw(fireball, &fireballRect, NULL, &D3DXVECTOR3(fireballDest.X, fireballDest.Y, 0), D3DCOLOR_XRGB(255,255, 255)); }

    Read the article

  • How to render a retro-like pixel graphics from 3d models?

    - by momijigari
    I was wondering if there's a possibility to render a retro-pixel-like graphics from 3d model in real time? I'm talking about the Starfarer-like graphics. I know it's hand drawn, and it's 2d. But if I need a 3d objects with the same aesthetics? I'm currently working with Flash. But I don't need any ready-solutions, I just want to understand the principle from any other platform if there is one. So if anybody met anything like this I would appreciate your help. (If it's not possible to do in real time, I could at least pre-render a sequence of sprites. It would be much better than creating hundreds of hand-drawn ones)

    Read the article

  • Making retro games: Any good known game architectures?

    - by A.Quiroga
    I'm trying to do a remake of Snowbros . I'm doing it using libgdx but at each time i must try to thought how things got done . For example the physics of the jump and collisions . It seams to be time perfect , but i use the deltaTime to try to aproximate the value in game . I think in this case maybe its using some calcs with processor Hz , but i don't know. Then the simple question , is there any resources of how did they programm this games? Or any idea of the simple ideas repeated each game to game in the old style retro games.

    Read the article

  • What game systems exist which uses camera input?

    - by Marc Pilgaard
    The group and I is in the middle of a semester project where we are currently researching on which game systems are using camera as input or as an interactive medium? We would like some help listing some of the game systems which uses camera input, as it seems hard to find other examples. Currently we know that webcam browser games uses camera input (Newgrounds webcam games), as well as the xbox kinect. I know this questions seems rather vague, though I still hope some people is capable of helping.

    Read the article

  • What forms of non-interactive RPG battle systems exist?

    - by Landstander
    I am interested in systems that allow players to develop a battle plan or setup strategy for the party or characters prior to entering battle. During the battle the player either cannot input commands or can choose not to. Rule Based In this system the player can setup a list of rules in the form of [Condition - Action] that are then ordered by priority. Gambits in Final Fantasy XII Tactics in Dragon Age Origin & II

    Read the article

  • Profiling and containing memory per system

    - by chadb
    I have been interesting in profiling and keeping a managed memory pool for each subsystem, so I could get statistic on how much memory was being used in something such as sounds or graphics. However, what is the best design for doing this? I was thinking of using multiple allocators and just using one per subsystem, however, that would result in global variables for my allocators (or so it would seem to me). Another approach I have seen/been suggested is to just overload new and pass in an allocator for a parameter. I had a similar question over on stackoverflow here with a bounty, however, it seems as if perhaps I was too vague or just there is not enough people with knowledge in the subject.

    Read the article

  • how to solve ArrayList outOfBoundsExeption?

    - by iQue
    Im getting: 09-02 17:15:39.140: E/AndroidRuntime(533): java.lang.IndexOutOfBoundsException: Invalid index 1, size is 1 09-02 17:15:39.140: E/AndroidRuntime(533): at java.util.ArrayList.throwIndexOutOfBoundsException(ArrayList.java:251) when Im killing enemies using this method: private void checkCollision() { Rect h1 = happy.getBounds(); for (int i = 0; i < enemies.size(); i++) { for (int j = 0; j < bullets.size(); j++) { Rect b1 = bullets.get(j).getBounds(); Rect e1 = enemies.get(i).getBounds(); if (b1.intersect(e1)) { enemies.get(i).damageHP(5); bullets.remove(j); Log.d("TAG", "HERE: LOLTHEYTOUCHED"); } if (h1.intersect(e1)){ happy.damageHP(5); } if(enemies.get(i).getHP() <= 0){ enemies.remove(i); } if(happy.getHP() <= 0){ //end-screen !!!!!!! } } } } using this ArrayList: private ArrayList<Enemy> enemies = new ArrayList<Enemy>(); and adding to array like this: public void createEnemies() { Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.female); if (enemyCounter < 24) { enemies.add(new Enemy(bmp, this, controls)); } enemyCounter++; } I dont really understand what the problem is, Ive been looking around for a while but cant really find anything that helps me. If you know or if you can link me someplace where they have a solution for a similar problem Ill be a very happy camper! Thanks for ur time.

    Read the article

  • I want to learn to program in SDL C++where do i start? I want to learn only what i need to to start making 2d games [on hold]

    - by user2644399
    Lazyfoo of Lazyfoo.net of the SDL 2d tutorial wrote that in order for me to start game programming in SDL, I need to know these concepts well; Operators, Controls, Loops, Functions, Structures, Arrays, References, Pointers, Classes, Objects how to use a template and Bitwise and/or. I want to know the fastest way to learn as much as I need of basic c++ that would allow me to make 2d games. Thanks in advance.

    Read the article

  • Finding vectors with two points

    - by Christian Careaga
    We're are trying to get the direction of a projectile but we can't find out how For example: [1,1] will go SE [1,-1] will go NE [-1,-1] will go NW and [-1,1] will go SW we need an equation of some sort that will take the player pos and the mouse pos and find which direction the projectile needs to go. Here is where we are plugging in the vectors: def update(self): self.rect.x += self.vector[0] self.rect.y += self.vector[1] Then we are blitting the projectile at the rects coords.

    Read the article

  • Lag compensation of projectile shooting game

    - by Denis Ermolin
    I'm thinking about an algorithm for firing projectiles with lag compensation. Now I did find only one descent solution: Player hits fire button. Client sends input "fire". Client waits for server response. Server generates bullet then sends response to client. Client recieves response and finally fires projectile. Is this solution only "trueway"? I find it the only one that can be fair to all of the clients. Valve in this case, doesn't compensate lag from rocket shots. I am feeling that I will not compensate it, too. I think that with today's bandwidth I can close my eyes on this problem, because I don't see any solutions with fair logic. What do you think?

    Read the article

  • Algorithm to simplify building/structural meshes

    - by morpheus
    I am looking for an algorithm to simplify the meshes of buildings or similar structures. EDIT: I had made a comment that Hoppe's algorithm tends to make meshes more and more spherical with simplification. But, I am not sure about it, so am deleting the comment. Buildings in contrast should tend to become more and more rectangular with increasing simplification. The D3DX extensions for D3D in version 9.0 (d3dx9.lib) used to have classes to do progressive mesh simplification. See: http://doc.51windows.net/Directx9_SDK/?url=/directx9_sdk/graphics/reference/d3dx/functions/mesh/d3dxgeneratepmesh.htm http://msdn.microsoft.com/en-us/library/windows/desktop/bb281243(v=vs.85).aspx

    Read the article

  • Optimal way to learn DirectX?

    - by BluePhase
    I am finding it very difficult to learn DirectX 11. The MSDN website is just full of unorganized information that doesn't seem to help at all. I am particularly looking for something that explains many if not all aspects of developing with DirectX 11. I have been searching for weeks and still come up empty. I have found some books but they don't really explain the fundamentals of the language at all. Thanks in advanced.

    Read the article

  • Ease Rotate RigidBody2D toward arbitrary angle

    - by Plastic Sturgeon
    I'm trying to make a rigidbody2D circle return to an orientation after a collision. But there is a weird behavior I do not expect - it always orients to the same direction. This is what I call in FixedUpdate(): rotationdifference = -halfPI + rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); I would expect this would rotate 90 degrees (1/2 Pi Radians) off of the neutral axis. But it does not. In fact it performs exactly the same as: rotationdifference = rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); What is going on? How would I be able to set an angle I want it to ease towards, and then have it ease towards it when its not colliding with some other force?

    Read the article

< Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >