Search Results

Search found 6031 results on 242 pages for 'imaginary numbers'.

Page 49/242 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • What do the numbers 240 and 360 mean when downloading video? How can I tell which video is more compressed?

    - by DaMing
    I have downloaded some computer science lectures from YouTube recently. There is usually more than one choice of file size and file format to download. I noticed that for the same video, the downloadable one with FLV 240 extension is larger than another one with MPEG4 360 extension. What does the number (240 and 360) mean? And which file's compression rate is bigger? That is to say, which one removed much more file elements than the other from the orignal file?

    Read the article

  • Network speeds being report as 4x higher than actual in Windows 7 SP1

    - by Synetech
    Ever since installing Windows 7 SP1, I have noticed that all programs that display my network transfer rate have been exactly 4x higher than they actually are. For example, when I download something from a high-bandwidth web site or through torrents with lots of sources, the download rate indicated is is ~5MBps (~40Mbps) even though my Internet connection has a maximum of only 1.5MBps (12Mbps). It is the same situation with the upstream bandwidth: the connection maximum is 64KBps, but I’m seeing up to 256KBps. I have tried several different programs for monitoring bandwidth throughput and they all give the same results. I also tried different times and different days, and they always show the rate as being four times too high. My initial thought was that my ISP had increased the speeds (without my noticing), which they have done before. However, I checked my ISP’s site and they have not increased the speeds. Moreover, when I look at the speeds in the program actually doing the transfer (eg Chrome, µTorrent, etc.), the numbers are in line with the expected values at the same time that bandwidth monitoring programs are showing the high numbers. The only significant change (and pretty much the only change at all) that has occurred to my system since the change was the installation of SP1 for Windows 7. As such, it is my belief that some sort of change exists in SP1 whereby software that accesses the bandwidth via a specific API receives (erroneously?) high numbers while others that have access to the raw data continue to receive the correct values. I booted into Windows XP and downloaded some things via HTTP and torrent and in both cases, the numbers were as expected (like they were in Windows 7 before installing SP1). I then booted back into 7SP1 and once again, the numbers were four times higher than possible. Therefore it is definitely something in SP1 that has changed how local bandwidth is calculated/returned. There is definitely something wonky with Windows 7 SP1’s network speed calculation. I tried Googling this, but (for multiple reasons), have had a difficult time finding anything relevant. Has anybody else noticed this behavior? Does anybody know of any bugs or changes in SP1 that could account for it?

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • The Difference Between .com, .net, .org and Why We’re About To See Many More Top-Level Domains

    - by Chris Hoffman
    .com, .net, .org and other website suffixes are known as “top-level domains” (TLDs). While we normally see only a few of these, there are hundreds of them – and there may be thousands more soon. Top-level domains are managed by the Internet Assigned Numbers Authority (IANA), which is run by the Internet Corporation for Assigned Names and Numbers (ICANN). HTG Explains: What is the Windows Page File and Should You Disable It? How To Get a Better Wireless Signal and Reduce Wireless Network Interference How To Troubleshoot Internet Connection Problems

    Read the article

  • Retrieving only the first record or record at a certain index in LINQ

    - by vik20000in
    While working with data it’s not always required that we fetch all the records. Many a times we only need to fetch the first record, or some records in some index, in the record set. With LINQ we can get the desired record very easily with the help of the provided element operators. Simple get the first record. If you want only the first record in record set we can use the first method [Note that this can also be done easily done with the help of the take method by providing the value as one].     List<Product> products = GetProductList();      Product product12 = (         from prod in products         where prod.ProductID == 12         select prod)         .First();   We can also very easily put some condition on which first record to be fetched.     string[] strings = { "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine" };     string startsWithO = strings.First(s => s[0] == 'o');  In the above example the result would be “one” because that is the first record starting with “o”.  Also the fact that there will be chances that there are no value returned in the result set. When we know such possibilities we can use the FirstorDefault() method to return the first record or incase there are no records get the default value.        int[] numbers = {};     int firstNumOrDefault = numbers.FirstOrDefault();  In case we do not want the first record but the second or the third or any other later record then we can use the ElementAt() method. In the ElementAt() method we need to pass the index number for which we want the record and we will receive the result for that element.      int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };      int fourthLowNum = (         from num in numbers         where num > 5         select num )         .ElementAt(1); Vikram

    Read the article

  • Configuring JPA Primary key sequence generators

    - by pachunoori.vinay.kumar(at)oracle.com
    This article describes the JPA feature of generating and assigning the unique sequence numbers to JPA entity .This article provides information on jpa sequence generator annotations and its usage. UseCase Description Adding a new Employee to the organization using Employee form should assign unique employee Id. Following description provides the detailed steps to implement the generation of unique employee numbers using JPA generators feature Steps to configure JPA Generators 1.Generate Employee Entity using "Entities from Table Wizard". View image2.Create a Database Connection and select the table "Employee" for which entity will be generated and Finish the wizards with default selections. View image 3.Select the offline database sources-Schema-create a Sequence object or you can copy to offline db from online database connection. View image 4.Open the persistence.xml in application navigator and select the Entity "Employee" in structure view and select the tab "Generators" in flat editor. 5.In the Sequence Generator section,enter name of sequence "InvSeq" and select the sequence from drop down list created in step3. View image 6.Expand the Employees in structure view and select EmployeeId and select the "Primary Key Generation" tab.7.In the Generated value section,select the "Use Generated value" check box ,select the strategy as "Sequence" and select the Generator as "InvSeq" defined step 4. View image   Following annotations gets added for the JPA generator configured in JDeveloper for an entity To use a specific named sequence object (whether it is generated by schema generation or already exists in the database) you must define a sequence generator using a @SequenceGenerator annotation. Provide a unique label as the name for the sequence generator and refer the name in the @GeneratedValue annotation along with generation strategy  For  example,see the below Employee Entity sample code configured for sequence generation. EMPLOYEE_ID is the primary key and is configured for auto generation of sequence numbers. EMPLOYEE_SEQ is the sequence object exist in database.This sequence is configured for generating the sequence numbers and assign the value as primary key to Employee_id column in Employee table. @SequenceGenerator(name="InvSeq", sequenceName = "EMPLOYEE_SEQ")   @Entity public class Employee implements Serializable {    @Id    @Column(name="EMPLOYEE_ID", nullable = false)    @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="InvSeq")   private Long employeeId; }   @SequenceGenerator @GeneratedValue @SequenceGenerator - will define the sequence generator based on a  database sequence object Usage: @SequenceGenerator(name="SequenceGenerator", sequenceName = "EMPLOYEE_SEQ") @GeneratedValue - Will define the generation strategy and refers the sequence generator  Usage:     @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="name of the Sequence generator defined in @SequenceGenerator")

    Read the article

  • Mathemagics - 3 consecutive number

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Three Consecutive numbers When I was young and handsome (OK, OK, just young), my father used to challenge us with riddles and tricks involving Logic, Math and general knowledge. Most of the time, at least after reaching the ripe age of 10, I would see thru his tricks in no time. This one is a bit more subtle. I had to think about it for close to an hour and then when I had the ‘AHA!’ effect, I could not understand why it had taken me so long. So here it is. You select a volunteer from the audience (or a shill, but that would be cheating!) and ask him to select three consecutive numbers, all of them 1 or 2 digits. So {1, 2, 3} would be good, albeit trivial set, as would {8, 9, 10} or {97, 98, 99} but not {99, 99, 100} (why?!). Now, using a calculator – and these days almost every phone has a built in calculator – he is to perform these steps: 1.      Select a single digit 2.      Multiply it by 3 and write it down 3.      Add the 3 consecutive numbers 4.      Add the number from step 2 5.      Multiply the sum by 67 6.      Now tell me the last 2 digits of the result and also the number you wrote down in step 2 I will tell you which numbers you selected. How do I do this? I’ll give you the mechanical answer, but because I like you to have the pleasure of an ‘AHA!’ effect, I will not really explain the ‘why’. So let’s you selected 30, 31, and 32 and also that your 3 multiple was 24, so here is what you get 30 + 31 + 32 = 93 93 + 24 = 117 117 x 67 = 7839, last 2 digits are 39, so you say “the last 2 digits are 39, and the other number is 24.” Now, I divide 24 by 3 getting 8. I subtract 8 from 39 and get 31. I then subtract 1 from this getting 30, and say: “You selected 30, 31, and 32.” This is the ‘how’. I leave the ‘why’ to you! That’s all folks! PS do you really want to know why? Post a feedback below. When 11 people or more will have asked for it, I’ll add a link to the full explanation.

    Read the article

  • Character Stats and Power

    - by Stephen Furlani
    I'm making an RPG game system and I'm having a hard time deciding on doing detailed or abstract character statistics. These statistics define the character's natural - not learned - abilities. For example: Mass Effect: 0 (None that I can see) X20 (Xtreme Dungeon Mastery): 1 "STAT" Diablo: 4 "Strength, Magic, Dexterity, Vitality" Pendragon: 5 "SIZ, STR, DEX, CON, APP" Dungeons & Dragons (3.x, 4e): 6 "Str, Dex, Con, Wis, Int, Cha" Fallout 3: 7 "S.P.E.C.I.A.L." RIFTS: 8 "IQ, ME, MA, PS, PP, PE, PB, Spd" Warhammer Fantasy Roleplay (1st ed?): 12-ish "WS, BS, S, T, Ag, Int, WP, Fel, A, Mag, IP, FP" HERO (5th ed): 14 "Str, Dex, Con, Body, Int, Ego, Pre, Com, PD, ED, Spd, Rec, END, STUN" The more stats, the more complex and detailed your character becomes. This comes with a trade-off however, because you usually only have limited resources to describe your character. D&D made this infamous with the whole min/max-ing thing where strong characters were typically not also smart. But also, a character with a high Str typically also has high Con, Defenses, Hit Points/Health. Without high numbers in all those other stats, they might as well not be strong since they wouldn't hold up well in hand-to-hand combat. So things like that force trade-offs within the category of strength. So my original (now rejected) idea was to force players into deciding between offensive and defensive stats: Might / Body Dexterity / Speed Wit / Wisdom Heart Soul But this left some stat's without "opposites" (or opposites that were easily defined). I'm leaning more towards the following: Body (Physical Prowess) Mind (Mental Prowess) Heart (Social Prowess) Soul (Spiritual Prowess) This will define a character with just 4 numbers. Everything else gets based off of these numbers, which means they're pretty important. There won't, however, be ways of describing characters who are fast, but not strong or smart, but absent minded. Instead of defining the character with these numbers, they'll be detailing their character by buying skills and powers like these: Quickness Add a +2 Bonus to Body Rolls when Dodging. for a character that wants to be faster, or the following for a big, tough character Body Building Add a +2 Bonus to Body Rolls when Lifting, Pushing, or Throwing objects. [EDIT - removed subjectiveness] So my actual questions is what are some pitfalls with a small stat list and a large amount of descriptive powers? Is this more difficult to port cross-platform (pen&paper, PC) for example? Are there examples of this being done well/poorly? Thanks,

    Read the article

  • Dynamic Number Table

    - by Derek D.
    Using a numbers table is helpful for many things. Like finding gaps in a supposed sequence of primary keys, or generating date ranges or any numerical range. In some cases, you will be in a production system that does not already contain a numbers table and you will also be unable to add [...]

    Read the article

  • Offshore IT Outsourcing Companies

    One can never tire of talking about Offshore IT Outsourcing Companies as the numbers only keep increasing with each passing day. The numbers have in fact presently become so overwhelming that one bec... [Author: John Anthony - Computers and Internet - March 29, 2010]

    Read the article

  • Configurable tables in sql database

    - by dot
    I have the following tables in my database: Config Table: ====================================== Start_Range | End Range | Config_id 10 | 15 | 1 ====================================== Available_UserIDs ========================== ID | UserID | Used_YN | 1 | 10 | t | 1 | 11 | f | 1 | 12 | f | 1 | 13 | f | 1 | 14 | f | 1 | 15 | f | ========================== Users ========================== UserId | FName | LName | 10 |John | Doe | ========================== This is used in a reservation system of sorts... which lets an administrator specify a range of numbers that will be assigned to users in the config table. Once the range has been defined, the system then populates the Available_userIDs table with all the numbers in between the range, and sets the Used_YN flag to false As users sign up, they grab the next user_id number that's not in use... and reserve it. Then the system adds a record to the Users table. Once the admin has specified a range, it is possible that they can change it. For example, they can start with 10-15... and then when the range is used up, they should be able to specify another range like 16 - 99. I've put a unique constraint on the Available_UserIDs table, as well as on the Users table - to ensure that UserIds can't be duplicated. My questions are as follows: What's the best way to prevent the admins from using a range that's already in use? I thought of the following options: -- check either the Users table to see if the start range or ending range numbers are being used. If they are, assume that all the numbers in between are in use too, and reject the range. -- let them specify whatever they want, try to populate the Available_UserIDs table. If there are duplicates, just ignore that specific error message from the database and continue on. How do I find gaps in the number ranges? For example, if they specify 10-15, and then 20-25, it'd be nice to be able to somehow suggest on my web page that 16-19 is currently available. I found this article: http://stackoverflow.com/questions/1312101/how-to-find-a-gap-in-running-counter-with-sql But it only seems to return the first available number... so in my example above, it would only return the number 16. I'm sure there's a simpler way to do things that I'm overlooking!

    Read the article

  • What are the app file size limitations for different smartphone OSes & carriers?

    - by Nick Gotch
    I know the iPhone App Store limits how large an app can be in general and there are also limitations with AT&T over the size it can be to transmit over a data plan vs WiFi. I have no idea what, if any, these limits are for Android apps and what I'm finding online is a mix of different numbers. Does anyone know these numbers definitively? The Android game I'm porting is in the 20-30MB range and we'd like to know if we need to further reduce its size.

    Read the article

  • Algorithm for finding symmetries of a tree

    - by Paxinum
    I have n sectors, enumerated 0 to n-1 counterclockwise. The boundaries between these sectors are infinite branches (n of them). The sectors live in the complex plane, and for n even, sector 0 and n/2 are bisected by the real axis, and the sectors are evenly spaced. These branches meet at certain points, called junctions. Each junction is adjacent to a subset of the sectors (at least 3 of them). Specifying the junctions, (in pre-fix order, lets say, starting from junction adjacent to sector 0 and 1), and the distance between the junctions, uniquely describes the tree. Now, given such a representation, how can I see if it is symmetric wrt the real axis? For example, n=6, the tree (0,1,5)(1,2,4,5)(2,3,4) have three junctions on the real line, so it is symmetric wrt the real axis. If the distances between (015) and (1245) is equal to distance from (1245) to (234), this is also symmetric wrt the imaginary axis. The tree (0,1,5)(1,2,5)(2,4,5)(2,3,4) have 4 junctions, and this is never symmetric wrt either imaginary or real axis, but it has 180 degrees rotation symmetry if the distance between the first two and the last two junctions in the representation are equal. Edit: This is actually for my research. I have posted the question at mathoverflow as well, but my days in competition programming tells me that this is more like an IOI task. Code in mathematica would be excellent, but java, python, or any other language readable by a human suffices. Here are some examples (pretend the double edges are single and we have a tree) http://www2.math.su.se/~per/files.php?file=contr_ex_1.pdf http://www2.math.su.se/~per/files.php?file=contr_ex_2.pdf http://www2.math.su.se/~per/files.php?file=contr_ex_5.pdf Example 1 is described as (0,1,4)(1,2,4)(2,3,4)(0,4,5) with distances (2,1,3). Example 2 is described as (0,1,4)(1,2,4)(2,3,4)(0,4,5) with distances (2,1,1). Example 5 is described as (0,1,4,5)(1,2,3,4) with distances (2). So, given the description/representation, I want to find some algorithm to decide if it is symmetric wrt real, imaginary, and rotation 180 degrees. The last example have 180 degree symmetry. (These symmetries corresponds to special kinds of potential in the Schroedinger equation, which has nice properties in quantum mechanics.)

    Read the article

  • Forcing positive sign on double in .Net String.Format

    - by Max Yaffe
    Context: .Net, C# I want to print a complex number made from two doubles. The sign needs to show on the imaginary part. I'd like to use the default double formatting for each part to minimize the number of characters. I tried using String.Format("{0:+G;-G}{1:+G;-G}j", real, imaginary) but this ended up printing: "+G-Gj". Not quite what I wanted. Is there any way to do this using the G specifier or do I need to do a custom format which would sacrifice auto-switching the exponent, e.g. {1:+#.######e###;-#.######e###}j"

    Read the article

  • tcp msl timeout implementation in linux

    - by iamrohitbanga
    The following is given in the book TCP IP Illustrated by Stevens Quiet Time Concept The 2MSL wait provides protection against delayed segments from an earlier incarnation of a connection from being interpreted as part of a new connection that uses the same local and foreign IP addresses and port numbers. But this works only if a host with connections in the 2MSL wait does not crash. What if a host with ports in the 2MSL wait crashes, reboots within MSL seconds, and immediately establishes new connections using the same local and foreign IP addresses and port numbers corresponding to the local ports that were in the 2MSL wait before the crash? In this scenario, delayed segments from the connections that existed before the crash can be misinterpreted as belonging to the new connections created after the reboot. This can happen regardless of how the initial sequence number is chosen after the reboot. To protect against this scenario, RFC 793 states that TCP should not create any connections for MSL seconds after rebooting. This is called the quiet time Few implementations abide by this since most hosts take longer than MSL seconds to reboot after a crash. Do operating systems wait for 2MSL seconds now after a reboot before initiating a TCP connection. The boot times are also less these days. Although the ports and sequence numbers are random but is this wait implemented in Linux? Also RFC 793 says that this wait is not required if history is maintained. Does linux maintain any history of used sequence numbers for connections to handle this case?

    Read the article

  • Dual-monitor Windows XP, monitors are "identified wrong"

    - by Susan
    Trying to use a dual-monitor desktop system with Windows XP.... 1 graphics card... with digital/analog outputs. Picking: Desktop - Properties - Settings - Identify It shows "2" as my left monitor... and "1" as my right. How do I switch them around? Here's what I've tried so far: Switch the cables (I can't. I need the digital cable on the better monitor.) Switch the monitors (I can't. One has a few dead pixels.) Drag the 1+2 graphics around (That doesn't change the IDENTIFY numbers.) Pick "use as primary" or "extend" (That doesn't change the IDENTIFY numbers.) Anything else I can try? What exactly controls/switches the "IDENTIFY numbers" around? I know it can be done. For weeks I ran this exact set-up... with the CORRECT numbers appearing on the monitors.... then just recently... after a few reboots... they now appear "switched around".

    Read the article

  • T-SQL Tuesday 24: Ode to Composable Code

    - by merrillaldrich
    I love the T-SQL Tuesday tradition, started by Adam Machanic and hosted this month by Brad Shulz . I am a little pressed for time this month, so today’s post is a short ode to how I love saving time with Composable Code in SQL. Composability is one of the very best features of SQL, but sometimes gets picked on due to both real and imaginary performance worries. I like to pick composable solutions when I can, while keeping the perf issues in mind, because they are just so handy and eliminate so much...(read more)

    Read the article

  • Excel formula: can MATCH recognise 'n'&"01", or 'n'&"02 "

    - by Mike
    I have an Excel sheet (source) that has simple ID numbers in column A (01 to 40000). In another sheet (child) I have these same ID numbers in column A but with either an additional 01 or 02 added on; e.g. 0101 or 0102, 250001 or 250002, etc. Therefore this list of ID numbers is nearly twice as long. In column B there are figures. I'm trying to extract the data from column B in the child sheet, and based on whether it has a "01" or a "02" place the figure into either column B or C of the source sheet. My idea is to use INDEX/MATCH, but I'm not sure how the match would be written to take into account the NOT EXACT MATCH of the lookup value. MATCH(A1&"01",child!A1:A100000,). Any tips and links greatly appreciated. Mike.

    Read the article

  • Multi sim GSM modem or alternative

    - by Ando
    I'm trying to administer the SMS trafic of my businesss centrally through a web portal. In Europe (except UK) we don't have a numbers/SMS trafic provider like Twilio or Clickatell, nor any build in way to administer the SMS traffic for a number via http, so I will have to buy the long numbers and administer the SMS traffic myself. For this I was looking into a hardware solution for hosting all my SIM cards - I have like 400 sims cards (= numbers). I saw that GSM modems might fit in but they don't seem to scale up very well. Could you recommend me a GSM modem? If this is not the best way to approach this, what would my alternatives be? Thanks in advance

    Read the article

  • How to get age field in Google Docs form:

    - by Juhele
    we need to create a form asking the clients for their age. Is there any way to create a field where you can only fill in numbers - maybe only 4 numbers like 1976 or 2011. Second alternative could be date. It would be perfect if I could limit the number - something like "not lower than 1800 and not higher than 2012" to prevent invalid numbers. I can create question with drop down list, but creating a list of all possible years would be stupid and incomfortable to choose from. thanks much

    Read the article

  • What apps are available for smartphone platforms to allow free calling to the UK and other countries? [closed]

    - by Andrew Ferrier
    On the iPhone, I use MagicJack to get completely free calls over WiFi to US numbers. I'm looking for a similar app to enable me to call UK numbers for free on the iPhone. Does anyone know of one? To make this question of broader applicability to everyone, what apps also allow free calling to other countries? Any smartphone platform (iPhone, Android, Blackberry, Windows Phone) could be useful. Note: I'm talking only about apps that allow completely free calling - the Apple app stores at least are full of apps that allow "cheap" calling. Suspicious apps that require credit card numbers upfront, etc., aren't as interesting.

    Read the article

  • How to check if cell contains a value of another cell

    - by Antonio Oliveira
    Here is the scenario: On column A each cell has random text within it (names, address, account numbers, etc). Column A extends down to over 40 thousand rows. On column B I have a list of (account) numbers. Column B extends down to about 5 thousand rows. I need to filter column A to show only the rows that contain the account numbers that are part of column B. Neither column A nor B are in any specific order. I think he above scenario speaks for itself, but I can provide a quick example if needed (don't want to over complicate it).

    Read the article

  • What is the Xbox360's D3DRS_VIEWPORTENABLE equivalent on WinXP D3D9?

    - by Jim Buck
    I posted this on StackOverlow, but of course it should be posted here. I am maintaining a multiplatform codebase for Xbox360 and WinXP. I am seeing an issue on the XP side that appears to be related to D3DRS_VIEWPORTENABLE on the Xbox360 version not having an equivalent on WinXP D3D9. This article had an interesting idea, but the only way to construct an identity matrix is to supply negative numbers to D3DVIEWPORT9::X and D3DVIEWPORT9::Height, but they are unsigned numbers. (I tried to put in negative numbers anyway, but nothing interesting happened.) So, how does one emulate the behavior of D3DRS_VIEWPORTENABLE under WinXP/D3D9? (For clarity, the result I'm seeing is that a 2d screen-aligned quad works fine on Xbox360 but is offset/stretched on WinXP. In fact, the (0, 0) starts in the center of the screen on WinXP instead of in the lower-left corner like on the Xbox360 as a result of applying the viewport transform.) Update: I didn't have an Xbox360 devkit at the time I wrote up this question, but I've since gotten one. I commented out the disabling of the D3DRS_VIEWPORTENABLE state, and the exact same behavior resulted on the Xbox360 as on the WinXP build. So, there must be some DirectX magic to bridge the gap here for emulating D3DRS_VIEWPORTENABLE being turned off on WinXP.

    Read the article

  • SSW Scrum Rule: Do you know to use clear task descriptions?

    - by Martin Hinshelwood
    When you create tasks in Scrum you are doing this within a time box and you tend to add only the information you need to remember what the task is. And the entire Team was at the meeting and were involved in the discussions around the task, so why do you need more? Once you have accepted a task you should then add as much information as possible so that anyone can pick up that task; what if your numbers come up? Will you be into work the next day? Figure: What if your numbers come up in the lottery? What if the Team runs a syndicate and all your numbers come up? The point is that anything can happen and you need to protect the integrity of the project, the company and the Customer. Add as much information to the task as you think is necessary for anyone to work on the task. If you need to add rich text and images you can do this by attaching an email to the task.   Figure: Bad example, there is not enough information for a non team member to complete this task Figure: Julie provided a lot more information and another team should be able to pick this up. This has been published as Do you know to ensure that relevant emails are attached to tasks in our Rules to Better Scrum using TFS.   Technorati Tags: Scrum,SSW Rules,TFS 2010

    Read the article

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >