Search Results

Search found 2180 results on 88 pages for 'projection matrix'.

Page 50/88 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Dual-licensing LGPL 2.1 and LGPL 3

    - by user594694
    I maintain a software, a small PHP library, that is released under the LGPL version 3 license (LGPLv3). Someone wants to use the library in their software which has the GPL version 2 license. This license compatibility matrix suggests this is not possible without changing the licensing terms of one of the software. I have been requested to dual-license my code under LGPLv2.1 and LGPLv3. Does it make sense, and what might the drawbacks be? Thank you.

    Read the article

  • Isometric screen to 3D world coordinates efficiently

    - by Justin
    Been having a difficult time transforming 2D screen coordinates to 3D isometric space. This is the situation where I am working in 3D but I have an orthographic camera. Then my camera is positioned at (100, 200, 100), Where the xz plane is flat and y is up and down. I've been able to get a sort of working solution, but I feel like there must be a better way. Here's what I'm doing: With my camera at (0, 1, 0) I can translate my screen coordinates directly to 3D coordinates by doing: mouse2D.z = (( event.clientX / window.innerWidth ) * 2 - 1) * -(window.innerWidth /2); mouse2D.x = (( event.clientY / window.innerHeight) * 2 + 1) * -(window.innerHeight); mouse2D.y = 0; Everything okay so far. Now when I change my camera back to (100, 200, 100) my 3D space has been rotated 45 degrees around the y axis and then rotated about 54 degrees around a vector Q that runs along the xz plane at a 45 degree angle between the positive z axis and the negative x axis. So what I do to find the point is first rotate my point by 45 degrees using a matrix around the y axis. Now I'm close. So then I rotate my point around the vector Q. But my point is closer to the origin than it should be, since the Y value is not 0 anymore. What I want is that after the rotation my Y value is 0. So now I exchange my X and Z coordinates of my rotated vector with the X and Z coordinates of my non-rotated vector. So basically I have my old vector but it's y value is at an appropriate rotated amount. Now I use another matrix to rotate my point around the vector Q in the opposite direction, and I end up with the point where I clicked. Is there a better way? I feel like I must be missing something. Also my method isn't completely accurate. I feel like it's within 5-10 coordinates of where I click, maybe because of rounding from many calculations. Sorry for such a long question.

    Read the article

  • Moving sprites on a graph in libGDX

    - by nosferat
    In my game I'd like to move sprites on a fixed path. Until this point I was trying to stick with the tools already provided by libGDX, like the Tiled map renderer classes so I'm looking for a solution nearly as convenient as that, e.g. I'd like to avoid creating the adjacency matrix by hand. Tiled has the functionality to add objects to the map but I'm not sure if I can use it for this purpose. Any idea?

    Read the article

  • Textures do not render on ATI graphics cards?

    - by Mathias Lykkegaard Lorenzen
    I'm rendering textured quads to an orthographic view in XNA through hardware instancing. On Nvidia graphics cards, this all works, tested on 3 machines. On ATI cards, it doesn't work at all, tested on 2 machines. How come? Culling perhaps? My orthographic view is set up like this: Matrix projection = Matrix.CreateOrthographicOffCenter(0, graphicsDevice.Viewport.Width, -graphicsDevice.Viewport.Height, 0, 0, 1); And my elements are rendered with the Z-coordinate 0. Edit: I just figured out something weird. If I do not call this spritebatch code above doing my textured quad rendering code, then it won't work on Nvidia cards either. Could that be due to culling information or something like that? Batch.Instance.SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.Default, RasterizerState.CullNone); ... spriteBatch.End(); Edit 2: Here's the full code for my instancing call. public void DrawTextures() { Batch.Instance.SpriteBatch.Begin(SpriteSortMode.Texture, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.Default, RasterizerState.CullNone, textureEffect); while (texturesToDraw.Count > 0) { TextureJob texture = texturesToDraw.Dequeue(); spriteBatch.Draw(texture.Texture, texture.DestinationRectangle, texture.TintingColor); } spriteBatch.End(); #if !NOTEXTUREINSTANCING // no work to do if (positionInBufferTextured > 0) { device.BlendState = BlendState.Opaque; textureEffect.CurrentTechnique = textureEffect.Techniques["Technique1"]; textureEffect.Parameters["Texture"].SetValue(darkTexture); textureEffect.CurrentTechnique.Passes[0].Apply(); if ((textureInstanceBuffer == null) || (positionInBufferTextured > textureInstanceBuffer.VertexCount)) { if (textureInstanceBuffer != null) textureInstanceBuffer.Dispose(); textureInstanceBuffer = new DynamicVertexBuffer(device, texturedInstanceVertexDeclaration, positionInBufferTextured, BufferUsage.WriteOnly); } if (positionInBufferTextured > 0) { textureInstanceBuffer.SetData(texturedInstances, 0, positionInBufferTextured, SetDataOptions.Discard); } device.Indices = textureIndexBuffer; device.SetVertexBuffers(textureGeometryBuffer, new VertexBufferBinding(textureInstanceBuffer, 0, 1)); device.DrawInstancedPrimitives(PrimitiveType.TriangleStrip, 0, 0, textureGeometryBuffer.VertexCount, 0, 2, positionInBufferTextured); // now that we've drawn, it's ok to reset positionInBuffer back to zero, // and write over any vertices that may have been set previously. positionInBufferTextured = 0; } #endif }

    Read the article

  • Work Item Traceability in TFS 2010

    - by Sam Patrick
    I have created a Windows Form project (VS solution) under a TFS 2010 project. I may eventually add more solutions to the TFS project. My question: Can we create a Use Case WIT for a specific solution within a TFS project? Furthermore, is it possible to create a "traceability matrix" that starts at the Use Case level and goes down to the the code level (at least the namespace level) of that particular VS solution?

    Read the article

  • Even More Storage Options in VDI 3.4.1

    - by mprove
    Oracle Virtual Desktop Infrastructure 3.4.1 has been released to complete the storage matrix below. Storage Type VirtualBox on Solaris VirtualBox on Enterprise Linux Sun ZFS yes yes Sun ZFS (pool on Solaris) yes yes iSCSI - new in VDI 3.4 Network File System new in VDI 3.4.1 new in VDI 3.4 Local Storage new in VDI 3.4.1 new in VDI 3.4

    Read the article

  • How do I draw a scene with 2 nested frames

    - by Guido Granobles
    I have been trying for long time to figure out this: I have loaded a model from a directx file (I am using opengl and Java) the model have a hierarchical system of nested reference frames (there are not bones). There are just 2 frames, one of them is called x3ds_Torso and it has a child frame called x3ds_Arm_01. Each one of them has a mesh. The thing is that I can't draw the arm connected to the body. Sometimes the body is in the center of the screen and the arm is at the top. Sometimes they are both in the center. I know that I have to multiply the matrix transformation of every frame by its parent frame starting from the top to the bottom and after that I have to multiply every vertex of every mesh by its final transformation matrix. So I have this: public void calculeFinalMatrixPosition(Bone boneParent, Bone bone) { System.out.println("-->" + bone.name); if (boneParent != null) { bone.matrixCombined = bone.matrixTransform.multiply(boneParent.matrixCombined); } else { bone.matrixCombined = bone.matrixTransform; } bone.matrixFinal = bone.matrixCombined; for (Bone childBone : bone.boneChilds) { calculeFinalMatrixPosition(bone, childBone); } } Then I have to multiply every vertex of the mesh: public void transformVertex(Bone bone) { for (Iterator<Mesh> iterator = meshes.iterator(); iterator.hasNext();) { Mesh mesh = iterator.next(); if (mesh.boneName.equals(bone.name)) { float[] vertex = new float[4]; double[] newVertex = new double[3]; if (mesh.skinnedVertexBuffer == null) { mesh.skinnedVertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); } mesh.vertexBuffer.buffer.rewind(); while (mesh.vertexBuffer.buffer.hasRemaining()) { vertex[0] = mesh.vertexBuffer.buffer.get(); vertex[1] = mesh.vertexBuffer.buffer.get(); vertex[2] = mesh.vertexBuffer.buffer.get(); vertex[3] = 1; newVertex = bone.matrixFinal.transpose().multiply(vertex); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[0])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[1])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[2])); } mesh.vertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); mesh.skinnedVertexBuffer.buffer.rewind(); mesh.vertexBuffer.buffer.put(mesh.skinnedVertexBuffer.buffer); } } for (Bone childBone : bone.boneChilds) { transformVertex(childBone); } } I know this is not the more efficient code but by now I just want to understand exactly how a hierarchical model is organized and how I can draw it on the screen. Thanks in advance for your help.

    Read the article

  • Improve mouse movement in First person game

    - by brainydexter
    In my current FPS game, I have the mouse setup in a way, that it always forces the position of the mouse to be centered at the screen. This gets the job done, but also gets very annoying, since the mouse is "fixed" at the center of the screen. Here is what I am doing: get mouse current position find offset from center of the screen set mouse current position to center of the screen apply difference to m_pTransformation (transformation matrix of the player) Is there a better way to deal with this ?

    Read the article

  • Printer Ink Cartridges

    Inkjet printers, driven by their printer ink cartridges, have made fast, quality printing work available for everyone both at home and in business. If you remember the old dot matrix printers which c... [Author: Kathryn Dawson - Computers and Internet - May 30, 2010]

    Read the article

  • Can't start Psychonauts game -- segfault

    - by tremby
    This looks similar to Psychonauts Humble Indie Bundle V error but I don't have the ERROR message (missing GL capability) and its solution does not work for me. When trying to run Psychonauts from the Humble Indie Bundle on my x86_64 laptop running Ubuntu 12.04 I get the following output: <bjn@segnus:/usr/local/games/psychonauts>$ ./Psychonauts STUBBED: fix up the rest of the SSE code first at DetectSSESupport (/home/icculus/projects/psychonauts/Source/CommonLibs/DFMath/MathGeneral.cpp:32) STUBBED: write me? at SetPCLanguage (/home/icculus/projects/psychonauts/Source/game/luatest/UnixMain.cpp:120) STUBBED: fix up the rest of the SSE code first at DetectCPUCaps (/home/icculus/projects/psychonauts/Source/game/luatest/Game/PCGameApp.cpp:223) STUBBED: check LANG envr var at _GetDefaultGameLanguage (/home/icculus/projects/psychonauts/Source/game/luatest/Game/GameApp.cpp:171) Console created Save path: /home/bjn/.local/share/Psychonauts Write path: WorkResource STUBBED: inline asm at SSEMul_4x4_4x4_2arg (/home/icculus/projects/psychonauts/Source/CommonLibs/DFMath/Matrix.cpp:710) STUBBED: inline asm at SSEMul_4x4_4x4_3arg (/home/icculus/projects/psychonauts/Source/CommonLibs/DFMath/Matrix.cpp:698) ******** unit test failed ******** STUBBED: VK_* at InitInputNames (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:1220) No joysticks detected Transport started DaveD: NCListenSocket: Listening on port 40001 SDL_SetVideoMode() failed: Failed loading libGL.so.1 Start Up completed in 0.06 seconds [1] 9718 segmentation fault (core dumped) ./Psychonauts <bjn@segnus:/usr/local/games/psychonauts>$ Output of lspci: 00:00.0 Host bridge: Intel Corporation Mobile 4 Series Chipset Memory Controller Hub (rev 07) 00:02.0 VGA compatible controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller (rev 07) 00:02.1 Display controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller (rev 07) 00:19.0 Ethernet controller: Intel Corporation 82567LM Gigabit Network Connection (rev 03) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 03) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 03) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 03) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 03) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 03) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 03) 00:1c.1 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 2 (rev 03) 00:1c.3 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 4 (rev 03) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 03) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 03) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 03) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 03) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev 93) 00:1f.0 ISA bridge: Intel Corporation ICH9M-E LPC Interface Controller (rev 03) 00:1f.2 RAID bus controller: Intel Corporation 82801 Mobile SATA Controller [RAID mode] (rev 03) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 03) 02:01.0 FireWire (IEEE 1394): Ricoh Co Ltd R5C832 IEEE 1394 Controller (rev 05) 02:01.1 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 22) 0c:00.0 Network controller: Intel Corporation WiFi Link 5100 Any ideas?

    Read the article

  • New BIDSHelper Release - 1.4.3.0

    - by Darren Gosbell
    Today we released an update for BIDSHelper which you can download from here This release addresses the following issues: For some people the BIDS Helper extensions to the Project Properties page for the SSIS Deploy plugin was not available. Copy and Paste in errors in SSIS packages Updates to Parent-Child Dim Naturalizer The following features are new in this release: Analysis Services Many-to-Many Matrix Compression Roles Report General Preferences   If you are interested to find out what else BIDSHelper can do, full documentation of all the features is available on the project website here: http://bidshelper.codeplex.com

    Read the article

  • Rotate/Translate object in local space

    - by Mathias Hölzl
    I am just trying to create a movementcontroller class for game entities. These class should transform the entity affected by the mouse and keyboard input. I am able to calculate the changed rotation and the new globalPosition. Then I multiply: newGlobalMatrix = changedRotationMatrix * oldGlobalMatrix; newGlobalMatrix = MatrixSetPosition(newPosition); The problem is that the object rotates around the global axis and not around the local axis. I use XNAMath for the matrix calculation.

    Read the article

  • Rotate model using quaternion

    - by ChocoMan
    Currently I have this to rotate my 3D model that rotates on it's local axis independent from the world's axis: // Rotate model with Right Thumbstick modelRotation -= pController.ThumbSticks.Right.X * mRotSpeed; // float value What I'm trying to do is rotate the model using quaternion and not by a matrix. I've searched for tutorials, but have found none that explains thoroughly on how to achieve this. Does anyone know how to I can use quaternions to rotate my model or a complete tutorial?

    Read the article

  • Draw multiple objects with textures

    - by Simplex
    I want to draw cubes using textures. void OperateWithMainMatrix(ESContext* esContext, GLfloat offsetX, GLfloat offsetY, GLfloat offsetZ) { UserData *userData = (UserData*) esContext->userData; ESMatrix modelview; ESMatrix perspective; //Manipulation with matrix ... glVertexAttribPointer(userData->positionLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //in cubeFaces coordinates verticles cube glVertexAttribPointer(userData->normalLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //for normals (use in fragment shaider for textures) glEnableVertexAttribArray(userData->positionLoc); glEnableVertexAttribArray(userData->normalLoc); // Load the MVP matrix glUniformMatrix4fv(userData->mvpLoc, 1, GL_FALSE, (GLfloat*)&userData->mvpMatrix.m[0][0]); //Bind base map glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, userData->baseMapTexId); //Set the base map sampler to texture unit to 0 glUniform1i(userData->baseMapLoc, 0); // Draw the cube glDrawArrays(GL_TRIANGLES, 0, 36); } (coordinates transformation is in OperateWithMainMatrix() ) Then Draw() function is called: void Draw(ESContext *esContext) { UserData *userData = esContext->userData; // Set the viewport glViewport(0, 0, esContext->width, esContext->height); // Clear the color buffer glClear(GL_COLOR_BUFFER_BIT); // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } This work fine, but if I try to draw multiple cubes (next code for example): void Draw(ESContext *esContext) { ... // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 2.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -2.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } A side faces overlapes frontal face. The side face of the right cube overlaps frontal face of the center cube. How can i remove this effect and display miltiple cubes without it?

    Read the article

  • Picture rendered from above and below using an Orthographic camera do not match

    - by Roy T.
    I'm using an orthographic camera to render slices of a model (in order to voxelize it). I render each slice both from above and below in order to determine what is inside each slice. I am using an orthographic camera The model I render is a simple 'T' shape constructed from two cubes. The cubes have the same dimensions and have the same Y (height) coordinate. See figure 1 for a render of it in Blender. I render this model once directly from above and once directly from below. My expectation was that I would get exactly the same image (except for mirroring over the y-axis). However when I render using a very low resolution render target (25x25) the position (in pixels) of the 'T' is different when rendered from above as opposed to rendered from below. See figure 2 and 3. The pink blocks are not part of the original rendering but I've added them so you can easily count/see the differences. Figure 2: the T rendered from above Figure 3: the T rendered from below This is probably due to what I've read about pixel and texel coordinates which might be biased to the top-left as seen from the camera. Since I'm using the same 'up' vector for both of my camera's my bias only shows on the x-axis. I've tried to change the position of the camera and it's look-at by, what I thought, should be half a pixel. I've tried both shifting a single camera and shifting both cameras and while I see some effect I am not able to get a pixel-by-pixel perfect copy from both camera's. Here I initialize the camera and compute, what I believe to be, half pixel. boundsDimX and boundsDimZ is a slightly enlarged bounding box around the model which I also use as the width and height of the view volume of the orthographic camera. Matrix projection = Matrix.CreateOrthographic(boundsDimX, boundsDimZ, 0.5f, sliceHeight + 0.5f); Vector3 halfPixel = new Vector3(boundsDimX / (float)renderTarget.Width, 0, boundsDimY / (float)renderTarget.Height) * 0.5f; This is the code where I set the camera position and camera look ats // Position camera if (downwards) { float cameraHeight = bounds.Max.Y + 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, // possibly adjust by half a pixel? cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight - 1.0f, cameraPosition.Z); } else { float cameraHeight = bounds.Max.Y - 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight + 1.0f, cameraPosition.Z); } Main Question Now you've seen all the problems and code you can guess it. My main question is. How do I align both camera's so that they each render exactly the same image (mirrored along the Y axis)? Figure 1 the original model rendered in blender

    Read the article

  • Ray Intersecting Plane Formula in C++/DirectX

    - by user4585
    I'm developing a picking system that will use rays that intersect volumes and I'm having trouble with ray intersection versus a plane. I was able to figure out spheres fairly easily, but planes are giving me trouble. I've tried to understand various sources and get hung up on some of the variables used within their explanations. Here is a snippet of my code: bool Picking() { D3DXVECTOR3 vec; D3DXVECTOR3 vRayDir; D3DXVECTOR3 vRayOrig; D3DXVECTOR3 vROO, vROD; // vect ray obj orig, vec ray obj dir D3DXMATRIX m; D3DXMATRIX mInverse; D3DXMATRIX worldMat; // Obtain project matrix D3DXMATRIX pMatProj = CDirectXRenderer::GetInstance()->Director()->Proj(); // Obtain mouse position D3DXVECTOR3 pos = CGUIManager::GetInstance()->GUIObjectList.front().pos; // Get window width & height float w = CDirectXRenderer::GetInstance()->GetWidth(); float h = CDirectXRenderer::GetInstance()->GetHeight(); // Transform vector from screen to 3D space vec.x = (((2.0f * pos.x) / w) - 1.0f) / pMatProj._11; vec.y = -(((2.0f * pos.y) / h) - 1.0f) / pMatProj._22; vec.z = 1.0f; // Create a view inverse matrix D3DXMatrixInverse(&m, NULL, &CDirectXRenderer::GetInstance()->Director()->View()); // Determine our ray's direction vRayDir.x = vec.x * m._11 + vec.y * m._21 + vec.z * m._31; vRayDir.y = vec.x * m._12 + vec.y * m._22 + vec.z * m._32; vRayDir.z = vec.x * m._13 + vec.y * m._23 + vec.z * m._33; // Determine our ray's origin vRayOrig.x = m._41; vRayOrig.y = m._42; vRayOrig.z = m._43; D3DXMatrixIdentity(&worldMat); //worldMat = aliveActors[0]->GetTrans(); D3DXMatrixInverse(&mInverse, NULL, &worldMat); D3DXVec3TransformCoord(&vROO, &vRayOrig, &mInverse); D3DXVec3TransformNormal(&vROD, &vRayDir, &mInverse); D3DXVec3Normalize(&vROD, &vROD); When using this code I'm able to detect a ray intersection via a sphere, but I have questions when determining an intersection via a plane. First off should I be using my vRayOrig & vRayDir variables for the plane intersection tests or should I be using the new vectors that are created for use in object space? When looking at a site like this for example: http://www.tar.hu/gamealgorithms/ch22lev1sec2.html I'm curious as to what D is in the equation AX + BY + CZ + D = 0 and how does it factor in to determining a plane intersection? Any help will be appreciated, thanks.

    Read the article

  • Complete Math Library for use in OpenGL ES 2.0 Game?

    - by Bunkai.Satori
    Are you aware of a complete (or almost complete) cross platform math library for use in OpenGL ES 2.0 games? The library should contain: Matrix2x2, Matrix 3x3, Matrix4x4 classes Quaternions Vector2, Vector3, Vector4 Classes Euler Angle Class Operations amongh the above mentioned classes, conversions, etc.. Standardly used math operations in 3D graphics (Dot Product, Cross Product, SLERP, etc...) Is there such Math API available either standalone or as a part of any package? Programming Language: Visual C++ but planned to be ported to OS X and Android OS.

    Read the article

  • Attaching two objects and changing their world matrices accordingly

    - by A-Type
    I'm having a hard time wrapping my head around the transformations required to bind two objects together in either a two-way or one-way relationship. I will need to implement both types. For the first case, I want to be able to 'couple' two ships together in space. The ships have different mass, of course. Forces applied to either ship will use combined mass and moment of inertia to calculate and move both ships. The trick is, being sure that the point at which they are coupled remains the same, and they don't move at all relative to each other. The second case is similar: I want a ship to be able to enter the atmosphere of a planet and move relative to the planet. The planet will be orbiting the sun, which is fixed at 0,0,0. Essentially, when the ship is sitting still outside of the atmosphere, the planet will move past it on its course-- but when the ship is sitting still inside the atmosphere, it moves and rotates with the planet, so that it is always relative to the horizon. Essentially, the vertices which make up the ship are now transformed just like the ones that make up the planet, except that the ship can move itself around relative to the planet. I get the feeling I can implement both of these with the same code. Essentially, I am thinking of giving each object (which I call Fixtures) a list of "slave" Fixtures onto which that Fixture's world matrix is imposed. So, this would be the planet imposing its world on any contained ships. In the case of coupling, I would simply make each ship a slave of the other, somehow. Obviously I can't just multiply the ship's world matrix by the planet's, or each ship by the others. What I'd like some help with is what calculations to make in order to get a nice, seamless relative world to the other object. I was thinking maybe I could just multiply the world of the slave by the inverse of the master, but then when you couple two ships you would lose all that world data. So, perhaps I need an intermediate "world" which is the absolute world, but use a secondary "final world" to actually transform the objects?

    Read the article

  • Quaternion based rotation and pivot position

    - by Michael IV
    I can't figure out how to perform matrix rotation using Quaternion while taking into account pivot position in OpenGL.What I am currently getting is rotation of the object around some point in the space and not a local pivot which is what I want. Here is the code [Using Java] Quaternion rotation method: public void rotateTo3(float xr, float yr, float zr) { _rotation.x = xr; _rotation.y = yr; _rotation.z = zr; Quaternion xrotQ = Glm.angleAxis((xr), Vec3.X_AXIS); Quaternion yrotQ = Glm.angleAxis((yr), Vec3.Y_AXIS); Quaternion zrotQ = Glm.angleAxis((zr), Vec3.Z_AXIS); xrotQ = Glm.normalize(xrotQ); yrotQ = Glm.normalize(yrotQ); zrotQ = Glm.normalize(zrotQ); Quaternion acumQuat; acumQuat = Quaternion.mul(xrotQ, yrotQ); acumQuat = Quaternion.mul(acumQuat, zrotQ); Mat4 rotMat = Glm.matCast(acumQuat); _model = new Mat4(1); scaleTo(_scaleX, _scaleY, _scaleZ); _model = Glm.translate(_model, new Vec3(_pivot.x, _pivot.y, 0)); _model =rotMat.mul(_model);//_model.mul(rotMat); //rotMat.mul(_model); _model = Glm.translate(_model, new Vec3(-_pivot.x, -_pivot.y, 0)); translateTo(_x, _y, _z); notifyTranformChange(); } Model matrix scale method: public void scaleTo(float x, float y, float z) { _model.set(0, x); _model.set(5, y); _model.set(10, z); _scaleX = x; _scaleY = y; _scaleZ = z; notifyTranformChange(); } Translate method: public void translateTo(float x, float y, float z) { _x = x - _pivot.x; _y = y - _pivot.y; _z = z; _position.x = _x; _position.y = _y; _position.z = _z; _model.set(12, _x); _model.set(13, _y); _model.set(14, _z); notifyTranformChange(); } But this method in which I don't use Quaternion works fine: public void rotate(Vec3 axis, float angleDegr) { _rotation.add(axis.scale(angleDegr)); // change to GLM: Mat4 backTr = new Mat4(1.0f); backTr = Glm.translate(backTr, new Vec3(_pivot.x, _pivot.y, 0)); backTr = Glm.rotate(backTr, angleDegr, axis); backTr = Glm.translate(backTr, new Vec3(-_pivot.x, -_pivot.y, 0)); _model =_model.mul(backTr);///backTr.mul(_model); notifyTranformChange(); }

    Read the article

  • How can I achieve a 3D-like effect with spritebatch's rotation and scale parameters

    - by Alic44
    I'm working on a 2d game with a top-down perspective similar to Secret of Mana and the 2D Final Fantasy games, with one big difference being that it's an action rpg using a 3-dimensional physics engine. I'm trying to draw an aimer graphic (basically an arrow) at my characters' feet when they're aiming a ranged weapon. At first I just converted the character's aim vector to radians and passed that into spritebatch, but there was a problem. The position of every object in my world is scaled for perspective when it's drawn to the screen. So if the physics engine coordinates are (1, 0, 1), the screen coords are actually (1, .707) -- the Y and Z axis are scaled by a perspective factor of .707 and then added together to get the screen coordinates. This meant that the direction the aimer graphic pointed (thanks to its rotation value passed into spritebatch) didn't match up with the direction the projectile actually traveled over time. Things looked fine when the characters fired left, right, up, or down, but if you fired on a diagonal the perspective of the physics engine didn't match with the simplistic way I was converting the character's aim direction to a screen rotation. Ok, fast forward to now: I've got the aimer's rotation matched up with the path the projectile will actually take, which I'm doing by decomposing a transform matrix which I build from two rotation matrices (one to represent the aimer's rotation, and one to represent the camera's 45 degree rotation on the x axis). My question is, is there a way to get not just rotation from a series of matrix transformations, but to also get a Vector2 scale which would give the aimer the appearance of being a 3d object, being warped by perspective? Orthographic perspective is what I'm going for, I think. So, the aimer arrow would get longer when facing sideways, and shorter when facing north and south because of the perspective. At the same time, it would get wider when facing north and south, and less wide when facing right or left. I'd like to avoid actually drawing the aimer texture in 3d because I'm still using spritebatch's layerdepth parameter at this point in my project, and I don't want to have to figure out how to draw a 3d object within the depth sorting system I already have. I can provide code and more details if this is too vague as a question... This is my first post on stack exchange. Thanks a lot for reading! Note: (I think) I realize it can't be a technically correct 3D perspective, because the spritebatch's vector2 scaling argument doesn't allow for an object to be skewed the way it actually should be. What I'm really interested in is, is there a good way to fake the effect, or should I just drop it and not scale at all? Edit to clarify without the help of a picture (apparently I can't post them yet): I want the aimer arrow to look like it has been painted on the ground at the character's feet, so it should appear to be drawn on the ground plane (in my case the XZ plane) which should be tilted at a 45 degree angle (around the X axis) from the viewing perspective. Alex

    Read the article

  • Need help on a problemset in a programming contest

    - by topher
    I've attended a local programming contest on my country. The name of the contest is "ACM-ICPC Indonesia National Contest 2013". The contest has ended on 2013-10-13 15:00:00 (GMT +7) and I am still curious about one of the problems. You can find the original version of the problem here. Brief Problem Explanation: There are a set of "jobs" (tasks) that should be performed on several "servers" (computers). Each job should be executed strictly from start time Si to end time Ei Each server can only perform one task at a time. (The complicated thing goes here) It takes some time for a server to switch from one job to another. If a server finishes job Jx, then to start job Jy it will need an intermission time Tx,y after job Jx completes. This is the time required by the server to clean up job Jx and load job Jy. In other word, job Jy can be run after job Jx if and only if Ex + Tx,y = Sy. The problem is to compute the minimum number of servers needed to do all jobs. Example: For example, let there be 3 jobs S(1) = 3 and E(1) = 6 S(2) = 10 and E(2) = 15 S(3) = 16 and E(3) = 20 T(1,2) = 2, T(1,3) = 5 T(2,1) = 0, T(2,3) = 3 T(3,1) = 0, T(3,2) = 0 In this example, we need 2 servers: Server 1: J(1), J(2) Server 2: J(3) Sample Input: Short explanation: The first 3 is the number of test cases, following by number of jobs (the second 3 means that there are 3 jobs for case 1), then followed by Ei and Si, then the T matrix (sized equal with number of jobs). 3 3 3 6 10 15 16 20 0 2 5 0 0 3 0 0 0 4 8 10 4 7 12 15 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 10 4 7 12 15 1 4 0 50 50 50 50 0 50 50 50 50 0 50 50 50 50 0 Sample Output: Case #1: 2 Case #2: 1 Case #3: 4 Personal Comments: The time required can be represented as a graph matrix, so I'm supposing this as a directed acyclic graph problem. Methods I tried so far is brute force and greedy, but got Wrong Answer. (Unfortunately I don't have my code anymore) Could probably solved by dynamic programming too, but I'm not sure. I really have no clear idea on how to solve this problem. So a simple hint or insight will be very helpful to me.

    Read the article

  • Simple thruster like behaviour when rotating sprite

    - by ensamgud
    I'm prototyping some 2D game concepts with XNA and have added some basic keyboard inputs to control a triangle sprite. When I press key up the sprite accelerates in it's current facing direction, when I release the key it brakes down. For rotation, when I press left/right keys I rotate the sprite. Currently the sprite immedately changes direction when I rotate it. What I want is for it to keep moving in the same direction when I rotate, until I hit key up, adding thrust in whatever direction the sprite is pointing at. This would simulate thrusters on a classic space shooter like Asteroids. I'm adding an image to describe the behaviour I'm after and some code samples of how I'm doing things at the moment. This is my player struct, holding information of the sprite. public struct PlayerData { public Vector2 Position; // where to draw the sprite public Vector2 Direction; // travel direction of sprite public float Angle; // rotation of sprite public float Velocity; public float Acceleration; public float Decelleration; public float RotationAcceleration; public float RotationDecceleration; public float TopSpeed; public float Scale; } This is how I'm currently handling thrusting / braking (when pressing/releasing key up) (simplified, removed some bounds checking etc): player.Velocity += player.Acceleration * 0.1f; player.Velocity -= player.Acceleration * 0.1f; And when I rotate the sprite left and right: player.Angle -= player.RotationAcceleration * 0.1f; player.Angle += player.RotationAcceleration * 0.1f; This runs in the update loop, keeps the direction updated and updates the position: Vector2 up = new Vector2(0f, -1f); Matrix rotMatrix = Matrix.CreateRotationZ(player.Angle); player.Direction = Vector2.Transform(up, rotMatrix); player.Direction *= player.Velocity; player.Position += player.Direction; I am following along various beginner tutorials and haven't found any describing this, but I have tried some on my own without success. Do I need to change my velocity and acceleration fields to Vectors instead of floats to accomplish this type of movement? I realise my Angle and the Direction vector is currently tied together and I need to disconnect these somehow to be able to rotate freely without changing the direction of the movement, but I can't quite figure out how to do this while keeping the acceleration/decceleration functional. Would appreciate an explanation rather than pure code samples. Thanks,

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >