Search Results

Search found 24037 results on 962 pages for 'game design'.

Page 514/962 | < Previous Page | 510 511 512 513 514 515 516 517 518 519 520 521  | Next Page >

  • Strange rendering in XNA/Monogame

    - by Gerhman
    I am trying to render G-Code generated for a 3d-printer as the printed product by reading the file as line segments and the drawing cylinders with the diameter of the filament around the segment. I think I have managed to do this part right because the vertex I am sending to the graphics device appear to have been processed correctly. My problem I think lies somewhere in the rendering. What basically happens is that when I start rotating my model in the X or Y axis then it renders perfectly for half of the rotation but then for the other half it has this weird effect where you start seeing through the outer filament into some of the shapes inside. This effect is the strongest with X rotations though. Here is a picture of the part of the rotation that looks correct: And here is one that looks horrible: I am still quite new to XNA and/Monogame and 3d programming as a whole. I have no idea what could possibly be causing this and even less of an idea of what this type of behavior is called. I am guessing this has something to do with rendering so have added the code for that part: protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Black); basicEffect.World = world; basicEffect.View = view; basicEffect.Projection = projection; basicEffect.VertexColorEnabled = true; basicEffect.EnableDefaultLighting(); GraphicsDevice.SetVertexBuffer(vertexBuffer); RasterizerState rasterizerState = new RasterizerState(); rasterizerState.CullMode = CullMode.CullClockwiseFace; rasterizerState.ScissorTestEnable = true; GraphicsDevice.RasterizerState = rasterizerState; foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawPrimitives(PrimitiveType.TriangleList, 0, vertexBuffer.VertexCount); } base.Draw(gameTime); } I don't know if it could be because I am shading something that does not really have a texture. I am using this custom vertex declaration I found on some tutorial that allows me to store a vertex with a position, color and normal: public struct VertexPositionColorNormal { public Vector3 Position; public Color Color; public Vector3 Normal; public readonly static VertexDeclaration VertexDeclaration = new VertexDeclaration ( new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0), new VertexElement(sizeof(float) * 3, VertexElementFormat.Color, VertexElementUsage.Color, 0), new VertexElement(sizeof(float) * 3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0) ); } If any of you have ever seen this type of thing please help. Also, if you think that the problem might lay somewhere else in my code then please just request what part you would like to see in the comments section.

    Read the article

  • Should I always be checking every neighbor when building voxel meshes?

    - by Raven Dreamer
    I've been playing around with Unity3d, seeing if I can make a voxel-based engine out of it (a la Castle Story, or Minecraft). I've dynamically built a mesh from a volume of cubes, and now I'm looking into reducing the number of vertices built into each mesh, as right now, I'm "rendering" vertices and triangles for cubes that are fully hidden within the larger voxel volume. The simple solution is to check each of the 6 directions for each cube, and only add the face to the mesh if the neighboring voxel in that direction is "empty". Parsing a voxel volume is BigO(N^3), and checking the 6 neighbors keeps it BigO(7*N^3)-BigO(N^3). The one thing this results in is a lot of redundant calls, as the same voxel will be polled up to 7 times, just to build the mesh. My question, then, is: Is there a way to parse a cubic volume (and find which faces have neighbors) with fewer redundant calls? And perhaps more importantly, does it matter (as BigO complexity is the same in both cases)?

    Read the article

  • Wikipedia A* pathfinding algorithm takes a lot of time

    - by Vee
    I've successfully implemented A* pathfinding in C# but it is very slow, and I don't understand why. I even tried not sorting the openNodes list but it's still the same. The map is 80x80, and there are 10-11 nodes. I took the pseudocode from here Wikipedia And this is my implementation: public static List<PGNode> Pathfind(PGMap mMap, PGNode mStart, PGNode mEnd) { mMap.ClearNodes(); mMap.GetTile(mStart.X, mStart.Y).Value = 0; mMap.GetTile(mEnd.X, mEnd.Y).Value = 0; List<PGNode> openNodes = new List<PGNode>(); List<PGNode> closedNodes = new List<PGNode>(); List<PGNode> solutionNodes = new List<PGNode>(); mStart.G = 0; mStart.H = GetManhattanHeuristic(mStart, mEnd); solutionNodes.Add(mStart); solutionNodes.Add(mEnd); openNodes.Add(mStart); // 1) Add the starting square (or node) to the open list. while (openNodes.Count > 0) // 2) Repeat the following: { openNodes.Sort((p1, p2) => p1.F.CompareTo(p2.F)); PGNode current = openNodes[0]; // a) We refer to this as the current square.) if (current == mEnd) { while (current != null) { solutionNodes.Add(current); current = current.Parent; } return solutionNodes; } openNodes.Remove(current); closedNodes.Add(current); // b) Switch it to the closed list. List<PGNode> neighborNodes = current.GetNeighborNodes(); double cost = 0; bool isCostBetter = false; for (int i = 0; i < neighborNodes.Count; i++) { PGNode neighbor = neighborNodes[i]; cost = current.G + 10; isCostBetter = false; if (neighbor.Passable == false || closedNodes.Contains(neighbor)) continue; // If it is not walkable or if it is on the closed list, ignore it. if (openNodes.Contains(neighbor) == false) { openNodes.Add(neighbor); // If it isn’t on the open list, add it to the open list. isCostBetter = true; } else if (cost < neighbor.G) { isCostBetter = true; } if (isCostBetter) { neighbor.Parent = current; // Make the current square the parent of this square. neighbor.G = cost; neighbor.H = GetManhattanHeuristic(current, neighbor); } } } return null; } Here's the heuristic I'm using: private static double GetManhattanHeuristic(PGNode mStart, PGNode mEnd) { return Math.Abs(mStart.X - mEnd.X) + Math.Abs(mStart.Y - mEnd.Y); } What am I doing wrong? It's an entire day I keep looking at the same code.

    Read the article

  • Initializing OpenFeint for Android outside the main Application

    - by Ef Es
    I am trying to create a generic C++ bridge to use OpenFeint with Cocos2d-x, which is supposed to be just "add and run" but I am finding problems. OpenFeint is very exquisite when initializing, it requires a Context parameter that MUST be the main Application, in the onCreate method, never the constructor. Also, the main Apps name must be edited into the manifest. I am trying to fix this. So far I have tried to create a new Application that calls my Application to test if just the type is needed, but you do really need the main Android application. I also tried using a handler for a static initialization but I found pretty much the same problem. Has anybody been able to do it? This is my working-but-not-as-intended code snippet public class DerpHurr extends Application{ @Override public void onCreate() { super.onCreate(); initializeOpenFeint("TestApp", "edthedthedthedth", "aeyaetyet", "65462"); } public void initializeOpenFeint(String appname, String key, String secret, String id){ Map<String, Object> options = new HashMap<String, Object>(); options.put(OpenFeintSettings.SettingCloudStorageCompressionStrategy, OpenFeintSettings.CloudStorageCompressionStrategyDefault); OpenFeintSettings settings = new OpenFeintSettings(appname, key, secret, id, options); //RIGHT HERE OpenFeint.initialize(***this***, settings, new OpenFeintDelegate() { }); System.out.println("OpenFeint Started"); } } Manifest <application android:debuggable="true" android:label="@string/app_name" android:name=".DerpHurr">

    Read the article

  • XNA calculate normals for linesegment

    - by Gerhman
    I am quite new to 3D graphical programming and thus far only understand that normal somehow define the direction in which a vertex faces and therefore the direction in which light is reflected. I have now idea how they are calculated though, only that they are defined by a Vector3. For a visualizer that I am creating I am importing a bunch of coordinate which represent layer upon layer of line segments. At the moment I am only using a vertex buffer and adding the start and end point of each line and then rendering a linelist. The thing is now that I need to calculate the normal for the vertices of these line segments so that I can get some realistic lighting. I have no idea how to calculate these normal but I know they all face sideways and not up or down. To calculate them all I have are the start and end positions of each line segment. The below image is a representation of what I think I need to do in the case of an example layer: The red arrows represent the normal that should be calculates, the blue text represent the coordinates of the vertices and the green numbers represent their indices. I would greatly appreciate it if someone could please explain to me how I should calculate these normal.

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • Examples of good Javascript/HTML5 based games

    - by Zuch
    Now that Flash is largely being replaced with HTML5 elements (video, audio, canvas, etc.) are there any good examples of web-based games built on completely open standards (meaning Javascript, HTML and CSS)? I see a lot of examples of pure HTML5 implementations of what was once only in Flash (like stuff here: http://www.html5rocks.com/) but not many games, a domain which still seem dominated by Flash. I'm curious what's possible and what the limitations are.

    Read the article

  • Time calculation between openGL update calls.

    - by Vijayendra
    In XNA, the system calls update and draw function with the time information. This contains information such as how much time has passed since last update was called. This makes easy to integrate time and do animation calculation accordingly. But I dont see any such mechanism in openGL. I see openGL requires programmers to have their own implementation which could be buggy or inefficient. Is there any standard (and efficient) code that demonstrate this practice in openGL?

    Read the article

  • Having trouble with projection matrix, need help

    - by Mr.UNOwen
    I'm having trouble with what appears to be the projection matrix. Given a wide enough of a screen, when a cube is on the left and right most edge, the left or right wall will appear stretched to the point that the front face is 1/10 the width of the side. So I do update the screen ratio along with the projection matrix and view port on screen resize, am I safe to assume all the trouble is from the matrix class? Also the cube follows the mouse, but it's only vertically aligned and ahead of the mouse when going left or right from the center of the screen. Perspective function call: * setPerspective * * @param fov: angle in radians * @param aspect: screen ratio w/h * @param near: near distance * @param far: far distance **/ void APCamera::setPerspective(GMFloat_t fov, GMFloat_t aspect, GMFloat_t near, GMFloat_t far) { GMFloat_t difZ = near - far; GMFloat_t *data; mProjection->clear(); //set to identity matrix data = mProjection->getData(); GMFloat_t v = 1.0f / tan(fov / 2.0f); data[_AP_MAA] = v / aspect; data[_AP_MBB] = v; data[_AP_MCC] = (far + near) / difZ; data[_AP_MCD] = -1.0f; data[_AP_MDD] = 0.0f; data[_AP_MDC] = 2.0f * far * near/ difZ; mRatio = aspect; mInvProjOutdated = true; mIsPerspective = true; } and... #define _AP_MAA 0 #define _AP_MAB 1 #define _AP_MAC 2 #define _AP_MAD 3 #define _AP_MBA 4 #define _AP_MBB 5 #define _AP_MBC 6 #define _AP_MBD 7 #define _AP_MCA 8 #define _AP_MCB 9 #define _AP_MCC 10 #define _AP_MCD 11 #define _AP_MDA 12 #define _AP_MDB 13 #define _AP_MDC 14 #define _AP_MDD 15

    Read the article

  • When does depth testing happen?

    - by Utkarsh Sinha
    I'm working with 2D sprites - and I want to do 3D style depth testing with them. When writing a pixel shader for them, I get access to the semantic DEPTH0. Would writing to this value help? It seems it doesn't. Maybe it's done before the pixel shader step? Or is depth testing only done when drawing 3D things (I'm using SpriteBatch)? Any links/articles/topics to read/search for would be appreciated.

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug?

    Read the article

  • Most efficient way to handle coordinate maps in Java

    - by glowcoder
    I have a rectangular tile-based layout. It's your typical Cartesian system. I would like to have a single class that handles two lookup styles Get me the set of players at position X,Y Get me the position of player with key K My current implementation is this: class CoordinateMap<V> { Map<Long,Set<V>> coords2value; Map<V,Long> value2coords; // convert (int x, int y) to long key - this is tested, works for all values -1bil to +1bil // My map will NOT require more than 1 bil tiles from the origin :) private Long keyFor(int x, int y) { int kx = x + 1000000000; int ky = y + 1000000000; return (long)kx | (long)ky << 32; } // extract the x and y from the keys private int[] coordsFor(long k) { int x = (int)(k & 0xFFFFFFFF) - 1000000000; int y = (int)((k >>> 32) & 0xFFFFFFFF) - 1000000000; return new int[] { x,y }; } } From there, I proceed to have other methods that manipulate or access the two maps accordingly. My question is... is there a better way to do this? Sure, I've tested my class and it works fine. And sure, something inside tells me if I want to reference the data by two different keys, I need two different maps. But I can also bet I'm not the first to run into this scenario. Thanks!

    Read the article

  • Rendering different materials in a voxel terrain

    - by MaelmDev
    Each voxel datapoint in my terrain model is made up of two properties: density and material type. Each is stored as an unsigned integer value (but the density is interpreted as a decimal value between 0 and 1). My current idea for rendering these different materials on the terrain mesh is to store eleven extra attributes in each vertex: six material values corresponding to the materials of the voxels that the vertices lie between, three decimal values that correspond to the interpolation each vertex has between each voxel, and two decimal values that are used to determine where the fragment lies on the triangle. The material and interpolation attributes are the exact same for each vertex in the triangle. The fragment shader samples each texture that corresponds to each material and then uses the aforementioned couple of decimal values to interpolate between these samples and obtain the final textured color of the fragment. It should work fine, but it seems like a big memory hog. I won't be able to reuse vertices in the mesh with indexing, and each vertex will have a lot of data associated with it. It also seems pretty slow. What are some ways to improve or replace this technique for drawing materials on a voxel terrain mesh?

    Read the article

  • What does SetTextureStage(0, D3DTSS_COLORARG2, 0) in DirectX mean?

    - by Vite Falcon
    I'm trying to convert some DirectX code to Ogre3D and was wondering what the following translates to: pDev->SetTextureStage(0, D3DTSS_TEXCOORDINDEX, 0) pDev->SetTextureStage(0, D3DTSS_COLORARG1, D3DTA_TEXTURE) pDev->SetTextureStage(0, D3DTSS_COLOROP, D3DTOP_MODULATE) pDev->SetTextureStage(0, D3DTSS_COLORARG2, 0) What is the modulation operation happening here? Is the texture getting modulated with the background? Or is it getting zeroed? I've tried searching for what this means and unfortunately I haven't come across anything meaningful. Any help to shed light on this matter will be much appreciated.

    Read the article

  • loading 3d model data into buffers

    - by mulletdevil
    I am using assimp to load 3d model data. I have noticed that each loaded model is made up of different meshes. I was wondering should each mesh have it's own vertex/index buffer or should there just be one for the whole model? From looking through the index data that is loaded it seems to suggest that I will need a vertex buffer per mesh but I'm not 100% sure. I am using C++ and DirectX9 Thank you, Mark

    Read the article

  • Per-pixel displacement mapping GLSL

    - by Chris
    Im trying to implement a per-pixel displacement shader in GLSL. I read through several papers and "tutorials" I found and ended up with trying to implement the approach NVIDIA used in their Cascade Demo (http://www.slideshare.net/icastano/cascades-demo-secrets) starting at Slide 82. At the moment I am completly stuck with following problem: When I am far away the displacement seems to work. But as more I move closer to my surface, the texture gets bent in x-axis and somehow it looks like there is a little bent in general in one direction. EDIT: I added a video: click I added some screen to illustrate the problem: Well I tried lots of things already and I am starting to get a bit frustrated as my ideas run out. I added my full VS and FS code: VS: #version 400 layout(location = 0) in vec3 IN_VS_Position; layout(location = 1) in vec3 IN_VS_Normal; layout(location = 2) in vec2 IN_VS_Texcoord; layout(location = 3) in vec3 IN_VS_Tangent; layout(location = 4) in vec3 IN_VS_BiTangent; uniform vec3 uLightPos; uniform vec3 uCameraDirection; uniform mat4 uViewProjection; uniform mat4 uModel; uniform mat4 uView; uniform mat3 uNormalMatrix; out vec2 IN_FS_Texcoord; out vec3 IN_FS_CameraDir_Tangent; out vec3 IN_FS_LightDir_Tangent; void main( void ) { IN_FS_Texcoord = IN_VS_Texcoord; vec4 posObject = uModel * vec4(IN_VS_Position, 1.0); vec3 normalObject = (uModel * vec4(IN_VS_Normal, 0.0)).xyz; vec3 tangentObject = (uModel * vec4(IN_VS_Tangent, 0.0)).xyz; //vec3 binormalObject = (uModel * vec4(IN_VS_BiTangent, 0.0)).xyz; vec3 binormalObject = normalize(cross(tangentObject, normalObject)); // uCameraDirection is the camera position, just bad named vec3 fvViewDirection = normalize( uCameraDirection - posObject.xyz); vec3 fvLightDirection = normalize( uLightPos.xyz - posObject.xyz ); IN_FS_CameraDir_Tangent.x = dot( tangentObject, fvViewDirection ); IN_FS_CameraDir_Tangent.y = dot( binormalObject, fvViewDirection ); IN_FS_CameraDir_Tangent.z = dot( normalObject, fvViewDirection ); IN_FS_LightDir_Tangent.x = dot( tangentObject, fvLightDirection ); IN_FS_LightDir_Tangent.y = dot( binormalObject, fvLightDirection ); IN_FS_LightDir_Tangent.z = dot( normalObject, fvLightDirection ); gl_Position = (uViewProjection*uModel) * vec4(IN_VS_Position, 1.0); } The VS just builds the TBN matrix, from incoming normal, tangent and binormal in world space. Calculates the light and eye direction in worldspace. And finally transforms the light and eye direction into tangent space. FS: #version 400 // uniforms uniform Light { vec4 fvDiffuse; vec4 fvAmbient; vec4 fvSpecular; }; uniform Material { vec4 diffuse; vec4 ambient; vec4 specular; vec4 emissive; float fSpecularPower; float shininessStrength; }; uniform sampler2D colorSampler; uniform sampler2D normalMapSampler; uniform sampler2D heightMapSampler; in vec2 IN_FS_Texcoord; in vec3 IN_FS_CameraDir_Tangent; in vec3 IN_FS_LightDir_Tangent; out vec4 color; vec2 TraceRay(in float height, in vec2 coords, in vec3 dir, in float mipmap){ vec2 NewCoords = coords; vec2 dUV = - dir.xy * height * 0.08; float SearchHeight = 1.0; float prev_hits = 0.0; float hit_h = 0.0; for(int i=0;i<10;i++){ SearchHeight -= 0.1; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = coords + dUV * (1.0-hit_h) * 10.0f - dUV; vec2 Temp = NewCoords; SearchHeight = hit_h+0.1; float Start = SearchHeight; dUV *= 0.2; prev_hits = 0.0; hit_h = 0.0; for(int i=0;i<5;i++){ SearchHeight -= 0.02; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = Temp + dUV * (Start - hit_h) * 50.0f; return NewCoords; } void main( void ) { vec3 fvLightDirection = normalize( IN_FS_LightDir_Tangent ); vec3 fvViewDirection = normalize( IN_FS_CameraDir_Tangent ); float mipmap = 0; vec2 NewCoord = TraceRay(0.1,IN_FS_Texcoord,fvViewDirection,mipmap); //vec2 ddx = dFdx(NewCoord); //vec2 ddy = dFdy(NewCoord); vec3 BumpMapNormal = textureLod(normalMapSampler, NewCoord.xy, mipmap).xyz; BumpMapNormal = normalize(2.0 * BumpMapNormal - vec3(1.0, 1.0, 1.0)); vec3 fvNormal = BumpMapNormal; float fNDotL = dot( fvNormal, fvLightDirection ); vec3 fvReflection = normalize( ( ( 2.0 * fvNormal ) * fNDotL ) - fvLightDirection ); float fRDotV = max( 0.0, dot( fvReflection, fvViewDirection ) ); vec4 fvBaseColor = textureLod( colorSampler, NewCoord.xy,mipmap); vec4 fvTotalAmbient = fvAmbient * fvBaseColor; vec4 fvTotalDiffuse = fvDiffuse * fNDotL * fvBaseColor; vec4 fvTotalSpecular = fvSpecular * ( pow( fRDotV, fSpecularPower ) ); color = ( fvTotalAmbient + (fvTotalDiffuse + fvTotalSpecular) ); } The FS implements the displacement technique in TraceRay method, while always using mipmap level 0. Most of the code is from NVIDIA sample and another paper I found on the web, so I guess there cannot be much wrong in here. At the end it uses the modified UV coords for getting the displaced normal from the normal map and the color from the color map. I looking forward for some ideas. Thanks in advance! Edit: Here is the code loading the heightmap: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, mWidth, mHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, mImageData); glGenerateMipmap(GL_TEXTURE_2D); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); Maybe something wrong in here?

    Read the article

  • Cocos2d copied actions not responding?

    - by Stephen
    I am running an animation on 2 sprites like so: -(void) startFootballAnimation { CCAnimation* footballAnim = [CCAnimation animationWithFrame:@"Football" frameCount:60 delay:0.005f]; spiral = [CCAnimate actionWithAnimation:footballAnim]; CCRepeatForever* repeat = [CCRepeatForever actionWithAction:spiral]; [self runAction:repeat]; [secondFootball runAction:[[repeat copy] autorelease]]; } The problem I am having is I call this method: - (void) slowAnimation { [spiral setDuration:[spiral duration] + 0.01]; } and it only slows down the first sprites animation and not the second one. Do I need to do something different with copied actions to get them to react to the slowing of the animation?

    Read the article

  • Procedural Mesh: UV mapping

    - by Esa
    I made a procedural mesh and now I want to apply a texture to it. The problem is, I cannot get it to stick the way I want it to. The idea is to have the texture painted only once over the whole mesh, so that there is no repeating. How should I map the UV to make that happen? My mesh is a simple plane consisting of 56 triangles. I'd add pictures to clear things up but I cannot since my reputation is below 10 points. Any help is appreciated. EDIT(Kind people gave me up votes, thank you): Meet my mesh: And when textured(tried to repeat the texture): And my texture:

    Read the article

  • Box2D how to implement a camera?

    - by Romeo
    By now i have this Camera class. package GameObjects; import main.Main; import org.jbox2d.common.Vec2; public class Camera { public int x; public int y; public int sx; public int sy; public static final float PIXEL_TO_METER = 50f; private float yFlip = -1.0f; public Camera() { x = 0; y = 0; sx = x + Main.APPWIDTH; sy = y + Main.APPHEIGHT; } public Camera(int x, int y) { this.x = x; this.y = y; sx = x + Main.APPWIDTH; sy = y + Main.APPHEIGHT; } public void update() { sx = x + Main.APPWIDTH; sy = y + Main.APPHEIGHT; } public void moveCam(int mx, int my) { if(mx >= 0 && mx <= 80) { this.x -= 2; } else if(mx <= Main.APPWIDTH && mx >= Main.APPWIDTH - 80) { this.x += 2; } if(my >= 0 && my <= 80) { this.y += 2; } else if(my <= Main.APPHEIGHT && my >= Main.APPHEIGHT - 80) { this.y -= 2; } this.update(); } public float meterToPixel(float meter) { return meter * PIXEL_TO_METER; } public float pixelToMeter(float pixel) { return pixel / PIXEL_TO_METER; } public Vec2 screenToWorld(Vec2 screenV) { return new Vec2(screenV.x + this.x, yFlip * screenV.y + this.y); } public Vec2 worldToScreen(Vec2 worldV) { return new Vec2(worldV.x - this.x, yFlip * worldV.y - this.y); } } I need to know how to modify the screenToWorld and worldToScreen functions to include the PIXEL_TO_METER scaling.

    Read the article

  • Simulating smooth movement along a line after calculating a collision containing a restitution of zero in 2D

    - by Casey
    [for tl;dr see after listing] //...Code to determine shapes types involved in collision here... //...Rectangle-Line collision detected. if(_rbTest->GetCollisionShape()->Intersects(*_ground->GetCollisionShape())) { //Convert incoming shape to a line. a2de::Line l(*dynamic_cast<a2de::Line*>(_ground->GetCollisionShape())); //Get line's normal. a2de::Vector2D normal_vector(l.GetSlope().GetY(), -l.GetSlope().GetX()); a2de::Vector2D::Normalize(normal_vector); //Accumulate forces involved. a2de::Vector2D intermediate_forces; a2de::Vector2D normal_force = normal_vector * _rbTest->GetMass() * _world->GetGravityHandler()->GetGravityValue(); intermediate_forces += normal_force; //Calculate final velocity: See [1] double Ma = _rbTest->GetMass(); a2de::Vector2D Ua = _rbTest->GetVelocity(); double Mb = _ground->GetMass(); a2de::Vector2D Ub = _ground->GetVelocity(); double mCr = Mb * _ground->GetRestitution(); a2de::Vector2D collision_velocity( ((Ma * Ua) + (Mb * Ub) + ((mCr * Ub) - (mCr * Ua))) / (Ma + Mb)); //Calculate reflection vector: See [2] a2de::Vector2D reflect_velocity( -collision_velocity + 2 * (a2de::Vector2D::DotProduct(collision_velocity, normal_vector)) * normal_vector ); //Affect velocity to account for restitution of colliding bodies. reflect_velocity *= (_ground->GetRestitution() * _rbTest->GetRestitution()); _rbTest->SetVelocity(reflect_velocity); //THE ULTIMATE ISSUE STEMS FROM THE FOLLOWING LINE: //Move object away from collision one pixel to prevent constant collision. _rbTest->SetPosition(_rbTest->GetPosition() + normal_vector); _rbTest->ApplyImpulse(intermediate_forces); } Sources: (1) Wikipedia: Coefficient of Restitution: Speeds after impact (2) Wikipedia: Specular Reflection: Direction of reflection First, I have a system in place to account for friction (that is, a coefficient of friction) but is not used right now (in addition, it is zero, which should not affect the math anyway). I'll deal with that after I get this working. Anyway, when the restitution of either object involved in the collision is zero the object stops as required, but if movement along the same direction (again, irrespective of the friction value that isn't used) as the line is attempted the object moves as if slogging through knee deep snow. If I remove the line of code in question and the object is not push away one pixel the object barely moves at all. All because the object collides, is stopped, is pushed up, collides, is stopped...etc. OR collides, is stopped, collides, is stopped, etc... TL;DR How do I only account for a collision ONCE for restitution purposes (BONUS: but CONTINUALLY for frictional purposes, to be implemented later)

    Read the article

  • 2D Tile Based Collision Detection

    - by MrPlosion1243
    There are a lot of topics about this and it seems each one addresses a different problem, this topic does the same. I was looking into tile collision detection and found this where David Gouveia explains a great way to get around the person's problem by separating the two axis. So I implemented the solution and it all worked perfectly from all the testes I through at it. Then I implemented more advanced platforming physics and the collision detection broke down. Unfortunately I have not been able to get it to work again which is where you guys come in :)! I will present the code first: public void Update(GameTime gameTime) { if(Input.GetKeyDown(Keys.A)) { velocity.X -= moveAcceleration; } else if(Input.GetKeyDown(Keys.D)) { velocity.X += moveAcceleration; } if(Input.GetKeyDown(Keys.Space)) { if((onGround && isPressable) || (!onGround && airTime <= maxAirTime && isPressable)) { onGround = false; airTime += (float)gameTime.ElapsedGameTime.TotalSeconds; velocity.Y = initialJumpVelocity * (1.0f - (float)Math.Pow(airTime / maxAirTime, Math.PI)); } } else if(Input.GetKeyReleased(Keys.Space)) { isPressable = false; } if(onGround) { velocity.X *= groundDrag; velocity.Y = 0.0f; } else { velocity.X *= airDrag; velocity.Y += gravityAcceleration; } velocity.Y = MathHelper.Clamp(velocity.Y, -maxFallSpeed, maxFallSpeed); velocity.X = MathHelper.Clamp(velocity.X, -maxMoveSpeed, maxMoveSpeed); position += velocity * (float)gameTime.ElapsedGameTime.TotalSeconds; position = new Vector2((float)Math.Round(position.X), (float)Math.Round(position.Y)); if(Math.Round(velocity.X) != 0.0f) { HandleCollisions2(Direction.Horizontal); } if(Math.Round(velocity.Y) != 0.0f) { HandleCollisions2(Direction.Vertical); } } private void HandleCollisions2(Direction direction) { int topTile = (int)Math.Floor((float)Bounds.Top / Tile.PixelTileSize); int bottomTile = (int)Math.Ceiling((float)Bounds.Bottom / Tile.PixelTileSize) - 1; int leftTile = (int)Math.Floor((float)Bounds.Left / Tile.PixelTileSize); int rightTile = (int)Math.Ceiling((float)Bounds.Right / Tile.PixelTileSize) - 1; for(int x = leftTile; x <= rightTile; x++) { for(int y = topTile; y <= bottomTile; y++) { Rectangle tileBounds = new Rectangle(x * Tile.PixelTileSize, y * Tile.PixelTileSize, Tile.PixelTileSize, Tile.PixelTileSize); Vector2 depth; if(Tile.IsSolid(x, y) && Intersects(tileBounds, direction, out depth)) { if(direction == Direction.Horizontal) { position.X += depth.X; } else { onGround = true; isPressable = true; airTime = 0.0f; position.Y += depth.Y; } } } } } From the code you can see when velocity.X is not equal to zero the HandleCollisions() Method is called along the horizontal axis and likewise for the vertical axis. When velocity.X is not equal to zero and velocity.Y is equal to zero it works fine. When velocity.Y is not equal to zero and velocity.X is equal to zero everything also works fine. However when both axis are not equal to zero that's when it doesn't work and I don't know why. I basically teleport to the left side of a tile when both axis are not equal to zero and there is a air block next to me. Hopefully someone can see the problem with this because I sure don't as far as I'm aware nothing has even changed from what I'm doing to what the linked post's solution is doing. Thanks.

    Read the article

  • Can anyone explain step-by-step how the as3isolib depth-sorts isometric objects?

    - by Rob Evans
    The library manages to depth-sort correctly, even when using items of non-1x1 sizes. I took a look through the code but it's a big project to go through line by line! There are some questions about the process such as: How are the x, y, z values of each object defined? Are they the center points of the objects or something else? I noticed that the IBounds defines the bounds of the object. If you were to visualise a cuboid of 40, 40, 90 in size, where would each of the IBounds metrics be? I would like to know how as3isolib achieves this although I would also be happy with a generalised pseudo-code version. At present I have a system that works 90% of the time but in cases of objects that are along the same horizontal line, the depth is calculated as the same value. The depth calculation currently works like this: x = object horizontal center point y = object vertical center point originX and Y = the origin point relative to the object so if you want the origin to be the center, the value would be originX = 0.5, originY = 0.5. If you wanted the origin to be vertical center, horizontal far right of the object it would be originX = 1.0, originY = 0.5. The origin adjusts the position that the object is transformed from. AABB_width = The bounding box width. AABB_height = The bounding box height. depth = x + (AABB_width * originX) + y + (AABB_height * originY) - z; This generates the same depth for all objects along the same horizontal x.

    Read the article

  • Stop map from scrolling but let player still move?

    - by ChocoMan
    I have a basic method of scrolling around on a map (moving the map instead of the player), but at when the player gets to a certain proximity to the edge, how do you stop the map from scrolling, but still allow the player to move around until it is away from that proximity? I'm not looking for any code. Just a suggestion so that I can implement it myself. I can see it visually (creating 4 boxed intersecting boundaries for the player to enter), but not sure how to come about stopping and resuming the scrolling of the map.

    Read the article

  • Importing a windows project into android using cocos2d-x

    - by Ef Es
    What I am trying to do today is to import a full project to Android, but no tutorials are available for that that I have seen. My approach was to create a new android project, copy all the classes and resources in the folders and calling ./build_native.sh but I get an error because most of the files are not being included in the project. I tried opening the Android.mk and I can see why "LOCAL_SRC_FILES := AppDelegate.cpp \ HelloWorldScene.cpp" are the only files linked. Should I manually modify the make file or can it be automated by some way I don't know? Thank you. UPDATE: I manually added all files and headers to the make file and I get errors linking Box2D or cocosdenshion libraries.

    Read the article

  • Splitting Graph into distinct polygons in O(E) complexity

    - by Arthur Wulf White
    If you have seen my last question: trapped inside a Graph : Find paths along edges that do not cross any edges How do you split an entire graph into distinct shapes 'trapped' inside the graph(like the ones described in my last question) with good complexity? What I am doing now is iterating over all edges and then starting to traverse while always taking the rightmost turn. This does split the graph into distinct shapes. Then I eliminate all the excess shapes (that are repeats of previous shapes) and return the result. The complexity of this algorithm is O(E^2). I am wondering if I could do it in O(E) by removing edges I already traversed previously. My current implementation of that returns unexpected results.

    Read the article

< Previous Page | 510 511 512 513 514 515 516 517 518 519 520 521  | Next Page >