Search Results

Search found 5716 results on 229 pages for 'dual channel'.

Page 52/229 | < Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • Windows Broken after Deletion of HP_TOOLS partition

    - by beanland
    When I decided to install Ubuntu on my laptop as a dual-boot, I recognized that Windows 7 was using four separate partitions. I (yes, this was stupid) thought the HP_TOOLS partition was probably one I could get rid of, so I deleted it and installed Ubuntu side-by-side Windows using the installation wizard, but now Windows won't progress past the loading screen without the computer automatically restarting. I've had to use Ubuntu exclusively since then. I'm not sure how I can recover it. All of my files seem to still be there--I can mount the other partition and see them, use them, etc--but Windows 7 won't boot. I really have no idea what to do or what to try, or even if I'm at a salvageable point. here's a screenshot of GParted: This makes me suspicious that it wasn't necessarily the removal of my HP_TOOLS partition but the "unknown" status of that 992.50 KiB partition there, sda1. I'm assuming that's the recovery one? How can I get Windows bootable again? I'm sorry, but I'm so unfamiliar with this sort of thing I'm not quite sure where to start.

    Read the article

  • Understanding Netbook Partitions & UNR Installation

    - by Wesley
    Hi all, I have a Samsung N120 netbook (with upgraded 2GB RAM). I'm just looking at the Disk Management right now (in Windows XP) and I'm trying to understand what partition holds what. There is "Local Disk (C:)" which is 40GB, "RECOVERY" (no drive letter) which is 6GB and then "TEMP_PART01 (D:)" which is 103.05GB. XP is installed on Local Disk (C:) and I've only used this hard drive for all my files, etc. Recovery is recovery... probably not removable anyways. Now, what bugs me is the TEMP_PART01 (D:) partition, which contains quite a bit of random junk, such as EULA text documents, an "external installer", UI Wrapper Resource DLLs, a "VC_RED" Windows Installer Package and a few more files. I have no clue what any of it means, but I'm assuming that this was probably stuff that could have been on the Local Disk (C:), along with the WINDOWS, Program Files, and Docs and Settings folder. So, how should I go about this? Should I have kept all my data on D: and left all OS related files/folders on C:? Now, I want to install Ubuntu Netbook Remix. Question is, will this install within Windows, if I want to dual boot it? If not, would I partition D: into two small chunks, one on which I would install UNR? There are basically two questions in here, but it'd be great to get answers for both! Thanks in advance.

    Read the article

  • Ubuntu and Windows 8 shared partition gets corrupted

    - by Bruno-P
    I have a dual boot (Ubuntu 12.04 and Windows 8) system. Both systems have access to an NTFS "DATA" partition which contains all my images, documents, music and some application data like Chrome and Thunderbird Profiles which used by both OS. Everything was working fine in my Dual boot Ubuntu/Windows 7, but after updating to Windows 8 I am having a lot of troubles. First, sometimes, I add some files from Ubuntu into my DATA partition but they don't show up in Windows. Sometimes, I can't even use the DATA partition from Windows. When I try to save a file it gives an error "The directory or file is corrupted or unreadable". I need to run checkdisk to fix it but after some time, same error appears. Before upgrading to Windows 8 I also installed a new hard drive and copied the old data using clonezilla (full disk clone). Here is the log of my last chkdisk: Chkdsk was executed in read/write mode. Checking file system on D: Volume dismounted. All opened handles to this volume are now invalid. Volume label is DATA. CHKDSK is verifying files (stage 1 of 3)... Deleted corrupt attribute list entry with type code 128 in file 67963. Unable to find child frs 0x12a3f with sequence number 0x15. The attribute of type 0x80 and instance tag 0x2 in file 0x1097b has allocated length of 0x560000 instead of 0x427000. Deleted corrupt attribute list entry with type code 128 in file 67963. Unable to locate attribute with instance tag 0x2 and segment reference 0x1e00000001097b. The expected attribute type is 0x80. Deleting corrupt attribute record (128, "") from file record segment 67963. Attribute record of type 0x80 and instance tag 0x3 is cross linked starting at 0x2431b2 for possibly 0x20 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x3 in file 0x1791e is already in use. Deleting corrupt attribute record (128, "") from file record segment 96542. Attribute record of type 0x80 and instance tag 0x4 is cross linked starting at 0x6bc7 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x4 in file 0x17e83 is already in use. Deleting corrupt attribute record (128, "") from file record segment 97923. Attribute record of type 0x80 and instance tag 0x4 is cross linked starting at 0x1f7cec for possibly 0x5 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x4 in file 0x17eaf is already in use. Deleting corrupt attribute record (128, "") from file record segment 97967. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x441bd7f for possibly 0x9 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x32085 is already in use. Deleting corrupt attribute record (128, "") from file record segment 204933. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4457850 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x320be is already in use. Deleting corrupt attribute record (128, "") from file record segment 204990. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4859249 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3726b is already in use. Deleting corrupt attribute record (128, "") from file record segment 225899. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x485d309 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3726c is already in use. Deleting corrupt attribute record (128, "") from file record segment 225900. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x48a47de for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37286 is already in use. Deleting corrupt attribute record (128, "") from file record segment 225926. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x48ac80b for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37287 is already in use. Deleting corrupt attribute record (128, "") from file record segment 225927. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x48ae7ef for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37288 is already in use. Deleting corrupt attribute record (128, "") from file record segment 225928. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x48af7f8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3728a is already in use. Deleting corrupt attribute record (128, "") from file record segment 225930. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x48c39b6 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37292 is already in use. Deleting corrupt attribute record (128, "") from file record segment 225938. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x495d37a for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x372d7 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226007. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4d0bd38 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x372dc is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226012. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4c2d9bc for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x372ed is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226029. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4a4c1c3 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37354 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226132. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4a8e639 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37376 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226166. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4a8f6eb for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37379 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226169. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4ae1aa8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37391 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226193. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4b00d45 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x37396 is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226198. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4b02d50 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3739c is already in use. Deleting corrupt attribute record (128, "") from file record segment 226204. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4b3407a for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x373a8 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226216. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4bd8a1b for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x373db is already in use. Deleting corrupt attribute record (128, "") from file record segment 226267. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4bd9a28 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x373dd is already in use. Deleting corrupt attribute record (128, "") from file record segment 226269. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4c2fb24 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x373f3 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226291. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cb67e9 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37424 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226340. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cba829 for possibly 0x2 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37425 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226341. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cbe868 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37427 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226343. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cbf878 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37428 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226344. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cc58d8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3742a is already in use. Deleting corrupt attribute record (128, "") from file record segment 226346. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4ccc943 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3742b is already in use. Deleting corrupt attribute record (128, "") from file record segment 226347. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cd199b for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3742d is already in use. Deleting corrupt attribute record (128, "") from file record segment 226349. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cd29a8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3742f is already in use. Deleting corrupt attribute record (128, "") from file record segment 226351. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cd39b8 for possibly 0x2 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37430 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226352. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cd49c8 for possibly 0x2 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37432 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226354. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cd9a16 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37435 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226357. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cdca46 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37436 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226358. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4ce0a78 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37437 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226359. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4ce6ad9 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3743a is already in use. Deleting corrupt attribute record (128, "") from file record segment 226362. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cebb28 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3743b is already in use. Deleting corrupt attribute record (128, "") from file record segment 226363. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4ceeb67 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3743d is already in use. Deleting corrupt attribute record (128, "") from file record segment 226365. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cf4bc6 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x3743e is already in use. Deleting corrupt attribute record (128, "") from file record segment 226366. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cfbc3a for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37440 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226368. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4cfcc48 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37442 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226370. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4d02ca9 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37443 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226371. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4d06ce8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37444 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226372. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4d9a608 for possibly 0x2 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x37449 is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226377. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4d844ab for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x3744b is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226379. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4d6c32b for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x3744c is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226380. Attribute record of type 0xa0 and instance tag 0x5 is cross linked starting at 0x4d2af25 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0xa0 and instance tag 0x5 in file 0x3744e is already in use. Deleting corrupt attribute record (160, $I30) from file record segment 226382. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4d0fd78 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x37451 is already in use. Deleting corrupt attribute record (128, "") from file record segment 226385. Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x4d16ef8 for possibly 0x1 clusters. Some clusters occupied by attribute of type 0x8 Can anyone help? Thank you

    Read the article

  • WCF deadlock when using callback channel

    - by mafutrct
    This is probably a simple mistake, but I could not figure out what was wrong. I basically got a method like this: [ServiceBehavior ( ConcurrencyMode = ConcurrencyMode.Reentrant, InstanceContextMode = InstanceContextMode.PerSession, IncludeExceptionDetailInFaults = true) ] public class Impl : SomeContract { public string Foo() { _CallbackChannel.Blah(); return ""; } } Its interface is decorated: [ServiceContract ( Namespace = "http://MyServiceInterface", SessionMode = SessionMode.Required, CallbackContract = typeof (WcfCallbackContract)) ] public interface SomeContract { [OperationContract] string Foo (); } The service is hosted like this: ServiceHost host = new ServiceHost (typeof (Impl)); var binding = new NetTcpBinding (); var address = new Uri ("net.tcp://localhost:8000/"); host.AddServiceEndpoint ( typeof (SomeContract), binding, address); host.Open (); The client implements the callback interface and calls Foo. Foo runs, calls the callback method and returns. However, the client is still struck in the call to Foo and never returns. The client callback method is never run. I guess I made a design mistake somewhere. If needed, I can post more code. Any help is appreciated.

    Read the article

  • channel factory null on debug?

    - by Garrith
    When I try to invoke a GetData contract using wcf rest in wcf test client mode I get this message: The Address property on ChannelFactory.Endpoint was null. The ChannelFactory's Endpoint must have a valid Address specified. at System.ServiceModel.ChannelFactory.CreateEndpointAddress(ServiceEndpoint endpoint) at System.ServiceModel.ChannelFactory`1.CreateChannel() at System.ServiceModel.ClientBase`1.CreateChannel() at System.ServiceModel.ClientBase`1.CreateChannelInternal() at System.ServiceModel.ClientBase`1.get_Channel() at Service1Client.GetData(String value) This is the config file for the host: <system.serviceModel> <services> <service name="WcfService1.Service1" behaviorConfiguration="WcfService1.Service1Behavior"> <!-- Service Endpoints --> <endpoint address="http://localhost:26535/Service1.svc" binding="webHttpBinding" contract="WcfService1.IService1" behaviorConfiguration="webHttp" > <!-- Upon deployment, the following identity element should be removed or replaced to reflect the identity under which the deployed service runs. If removed, WCF will infer an appropriate identity automatically. --> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WcfService1.Service1Behavior"> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false"/> </behavior> </serviceBehaviors> <endpointBehaviors> <behavior name="webHttp"> <webHttp/> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> </configuration> Code: [ServiceContract(Namespace = "")] public interface IService1 { //[WebInvoke(Method = "POST", UriTemplate = "Data?value={value}")] [OperationContract] [WebGet(UriTemplate = "/{value}")] string GetData(string value); [OperationContract] CompositeType GetDataUsingDataContract(CompositeType composite); // TODO: Add your service operations here } public class Service1 : IService1 { public string GetData(string value) { return string.Format("You entered: {0}", value); }

    Read the article

  • Dealing with security on IPC remoting channel

    - by leppie
    Hi I am trying to run a service under a different user account from the application that will access the service via remoting. While under the same account everything is fine, but as soon as I use different accounts, I get an access denied error while trying to open the IPC port. Is there something I am missing, as I can't see from the MSDN docs what is supposed to be done. Thanks

    Read the article

  • Getting AveragePower and PeakPower for a Channel in AVAudioRecorder

    - by Biranchi
    Hi all, I am annoyed with this piece of code. I am trying to get the averagePowerForChannel and peakPowerForChannel while recording Audio, but every time i am getting it as 0.0 Below is my code for recording audio : NSMutableDictionary *recordSetting =[[NSDictionary alloc] initWithObjectsAndKeys:[NSNumber numberWithFloat: 22050.0], AVSampleRateKey, [NSNumber numberWithInt: kAudioFormatLinearPCM], AVFormatIDKey, [NSNumber numberWithInt: 1], AVNumberOfChannelsKey, [NSNumber numberWithInt: AVAudioQualityMax], AVEncoderAudioQualityKey, [NSNumber numberWithInt:32],AVLinearPCMBitDepthKey, [NSNumber numberWithBool:NO],AVLinearPCMIsBigEndianKey, [NSNumber numberWithBool:NO],AVLinearPCMIsFloatKey, nil]; recorder1 = [[AVAudioRecorder alloc] initWithURL:[NSURL fileURLWithPath:audioFilePath] settings:recordSetting error:&err]; recorder1.meteringEnabled = YES; recorder1.delegate=self; [recorder1 prepareToRecord]; [recorder1 record]; levelTimer = [NSTimer scheduledTimerWithTimeInterval: 0.3f target: self selector: @selector(levelTimerCallback:) userInfo: nil repeats: YES]; - (void)levelTimerCallback:(NSTimer *)timer { [recorder1 updateMeters]; NSLog(@"Peak Power : %f , %f", [recorder1 peakPowerForChannel:0], [recorder1 peakPowerForChannel:1]); NSLog(@"Average Power : %f , %f", [recorder1 averagePowerForChannel:0], [recorder1 averagePowerForChannel:1]); } What is the error in the code ???

    Read the article

  • How are interrupts handled by dual processor machines?

    - by jeffD
    I have an idea of how interrupts are handled by a dual core CPU. I was wondering about how interrupt handling is implemented on a board with more than one physical processor. Is any of the interrupt responsibility determined by the physical board's configuration? Each processor must be able to handle some types of interrupts, like disk I/O. Unless there is some circuitry to manage and dispatch interrupts to the appropriate processor? My guess is that the scheme must be processor neutral, so that any processor and core can run the interrupt handler. If a core is waiting on a disk read, will that core be the one to run the interrupt handler when the disk is ready?

    Read the article

  • Detect Alpha Channel with ImageMagick

    - by brad
    Scenario I would like to save images with alpha transparency as .png and images without alpha transparency as .jpg (even if their original format is .png or .gif). How can I detect whether or not an image has alpha transparency using ImageMagick?

    Read the article

  • How do you stream text to an IRC Channel

    - by Matt
    Hi, does anyone know how you go about streaming text to a IRC server? I have a game server, and i'd like to stream the chat to IRC. I can get the chat as a string within a C# program.. Anyone know how to do this? Or a good resource to look at? Cheers

    Read the article

  • Control over who can use audio output channel in XP

    - by Phil
    I have a need to turn off other audio sources when I plan to use the Text to Speech API. The other audio may be in another process. I have looked at the mixer control, but I really only have control of the output there. Is there another place in XP that I can control the output so only my app is able to be heard?

    Read the article

  • Simulink sim of rician channel ber process

    - by bob
    Hi, I'm learning simulink and I want to use the rician channle block from the communications blockset. I'm told I need to change the format format. Would anyone have some sample code where they used the rician channels in simulink to model a bit error rate process?

    Read the article

  • MySQL dual license behavior

    - by jromero
    Hi SO, I'm running a commercial(closed source) Web App development for the first time. Initially I considered MySQL the most feasible option for a DB, until I get quite confused about its dual license behavior. If I want a commercial application do I still can use the GPL version of MySQL or I must get a license? The same question in a different way: If I use MySQL's GPL version does that force me to license the whole app under GPL? Either case I would go with PostgreSQL, I just want to make really really sure about this. Even in SO I've seen related("duplicates") questions but never a clear answer... All other tools I'm gonna use to code the project are licensed under BSD or MIT. Just in case, the role of MySQL in the project is merely as relational DB to store persistent data and query it. I'd really appreciate if someone can clarify this for me. Regards, thanks in advanced.

    Read the article

  • Opengl: use a texture only to give alpha channel to a colored object

    - by Damian
    I'm new at OpenGL and I can't find out how to do this: I want to render a letter and be able to change it's color, so I have a texture with the letter on a transparent background. I managed to render it using this code: glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) But that renders the letter in black, as it's on the texture. How can I render it with the color setted with glColor4f?

    Read the article

  • My multithread program works slowly or appear deadlock on dual core machine, please help

    - by Shangping Guo
    I have a program with several threads, one thread will change a global when it exits itself and the other thread will repeatedly poll the global. No any protection on the globals. The program works fine on uni-processor. On dual core machine, it works for a while and then halt either on Sleep(0) or SuspendThread(). Would anyone be able to help me out on this? The code would be like this: Thread 1: do something... while(1) { ..... flag_thread1_running=false; SuspendThread(GetCurrentThread()); continue; } Thread 2 .... while(flag_thread1_running==false) Sleep(0); ....

    Read the article

  • ASP.NET MVC 3 embrace dynamic type - CSDN.NET - CSDN Software Development Channel

    - by user559071
    About a decade ago, Microsoft will all bet on the WebForms and static types. With the complete package from scattered to the continuous development, and now almost every page can be viewed as its own procedure. Subsequent years, the industry continued to move in another direction, love is better than separation package, better than the late binding early binding to the idea. This leads to two very interesting questions. The first is the problem of terminology. Consider the original Smalltalk MVC model, view and controller is not only tightly coupled together, and usually in pairs. Most of the framework is that Microsoft, including the classic VB, WinForms, WebForms, WPF and Silverlight, they both use the code behind file to store the controller logic. But said "MVC" usually refers to the view and controller are loosely coupled framework. This is especially true for the Web framework, HTML form submission mechanism allows any views submitted to any of the controller. Since this article was mainly talking about Web technologies, so we need to use the modern definition. The second question is "If you're Microsoft, how to change orbit without causing too much pressure to the developer?" So far, the answer is: new releases each year, until the developers meet up. ASP.NET MVC's first product was released last March. Released in March this year, ASP.NET MVC 2.0. 3.0 RC 2 is currently in phase, expected to be released next March. December 10, Microsoft released ASP.NET MVC 3.0 Release Candidate 2. RC 2 is built on top of Microsoft's commitment to the jQuery: The default project template into jQuery 1.4.4, jQuery Validation 1.7 and jQuery UI. Although people think that Microsoft will focus shifted away from server-side controls to be a joke, but the introduction of Microsoft's jQuery UI is that this is the real thing. For those worried about the scalability of the developers, there are many excellent control can replace the session state. With SessionState property, you can tell the controller session state is read-only, read-write, or can be completely ignored in the. This site is no single server, but if a server needs to access another server session state, then this approach can provide a great help. MVC 3 contains Razor view engine. By default, the engine will be encoded HTML output, so that we can easily output on the screen the text of the original. HTML injection attacks even without the risk of encoded text can not easily prevent the page rendering. For many C # developers in the end do what is most shocking that MVC 3 for the controller and view and embrace the dynamic type. ViewBag property will open a dynamic object, developers can run on top of the object to add attributes. In general, it is used to send the view from the controller non-mode data. Scott Guthrie provides state of the sample contains text (such as the current time) and used to assemble the list box entries. Asked Link: http://www.infoq.com/cn/news/2010/12/ASPNET-MVC-3-RC-2; jsessionid = 3561C3B7957F1FB97848950809AD9483

    Read the article

  • iPhone YouTube Channel App

    - by pki
    What would the steps be to creating an app that connected to YouTube's XML API. Here is my setup currently but it is not working. App Delegate creates object "YTXMLParser" App Delegate calls [parser prepAndPrase]; In Prep and Parse the app initiates a NSURLConnection The app downloads the XML Data using the NSURLConnection well appeneding to NSMutableData The app parses the data with NSXMLParser At the end of each "entry" the app adds the current dictionary to the class. At the beginning of each "entry" the app creates an instance of a dictionary. Here's where i'm stuck. How do I get this data back to my app delegate?

    Read the article

  • OpenCV (c++) multi channel element access

    - by Vic
    I'm trying to use the "new" 2.0 c++ version of OpenCV, but everything is else like in simple C version. I have some problem with changing the values in image. The image is CV_8UC3. for (int i=0; i<image.rows; i++) { for (int j=0; j<image.cols; j++) { if (someArray[i][j] == 0) { image.at<Vec3i>(i,j)[0] = 0; image.at<Vec3i>(i,j)[1] = 0; image.at<Vec3i>(i,j)[2] = 0; } } } It's not working. What am I doing wrong??? Thank you!

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How to get to the GRUB menu at boot-time, on a single-boot system (not dual-boot)?

    - by fred.bear
    This issue came up recently for me (and I've been prompted to lodge it as a specific question about it): My system is not dual-boot, I run a standard Ubuntu desktop system "on the metal" (I think running it in a VM is the same). Pressing "C" while booting does not cause the GRUB menu to appear (which I believe it does for a dual-boot system). How can I get the GRUB-menu to present itself on a single-boot system?

    Read the article

  • SQL SERVER The Difference between Dual Core vs. Core 2 Duo

    I have decided that I would not write on this subject until I have received a total of 25 questions on this subject. Here are a few questions from the list: Questions: What is the difference between Dual Core and Core 2 Duo? Which one is recommended for SQL Server: Core 2 Duo or Dual [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Point sample opacity/alpha in Adobe Photoshop?

    - by Josh
    I opened a PNG containing an alpha channel in Photoshop and wanted to get the opacity / alpha of a given point in the PNG file, so that I could match that opacity in a new photoshop layer. How can I do this? is there any way to get an alpha value at a point the way the color sample tool gives RGB values at a given point?

    Read the article

< Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >