Search Results

Search found 6089 results on 244 pages for 'double'.

Page 53/244 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >

  • Getting Frequency Components with FFT

    - by ruhig brauner
    so I was able to solv my last problem but i stubmled upon the next already. So I want to make a simple spectrogram but in oder to do so I want to understand how FFT-libaries work and what they actually calculate and return. (FFT and Signal Processing is the number 1 topic I will get into as soon as I have time but right now, I only have time for some programming exercises in the evening. ;) ) Here I just summarized the most important parts: int framesPerSecond; int samplesPerSecond; int samplesPerCycle; // right now i want to refresh the spectogram every DoubleFFT_1D fft; WAVReader audioIn; double audioL[], audioR[]; double fftL[], fftR[]; ..... framesPerSecond = 30; audioIn= new WAVReader("Strobe.wav"); int samplesPerSecond = (int)audioIn.GetSampleRate(); samplesPerCycle = (int)(audioIn.GetSampleRate()/framesPerSecond); audioL = new double[samplesPerCycle*2]; audioR = new double[samplesPerCycle*2]; fftL = new double[samplesPerCycle]; fftR = new double[samplesPerCycle]; for(int i = 0; i < samplesPerCycle; i++) { // don't even know why,... fftL[i] = 0; fftR[i] = 0; } fft = new DoubleFFT_1D(samplesPerCycle); ..... for(int i = 0; i < samplesPerCycle; i++) { audioIn.GetStereoSamples(temp); audioL[i]=temp[0]; audioR[i]=temp[1]; } fft.realForwardFull(audioL); //still stereo fft.realForwardFull(audioR); System.out.println("Check"); for(int i = 0; i < samplesPerCycle; i++) { //storing the magnitude in the fftL/R arrays fftL[i] = Math.sqrt(audioL[2*i]*audioL[2*i] + audioL[2*i+1]*audioL[2*i+1]); fftR[i] = Math.sqrt(audioR[2*i]*audioR[2*i] + audioR[2*i+1]*audioR[2*i+1]); } So the question is, if I want to know, what frequencys are in the sampled signal, how do I calculate them? (When I want to print the fftL / fftR arrays, I get some exponential formes at both ends of the array.) Thx :)

    Read the article

  • WPF: Trying to add a class to Window.Resources Again

    - by user3952846
    I did exactly the same thing, but still the same error is occurring: "The tag 'CenterToolTipConverter' does not exist in XML namespace 'clr-namespace:WpfApplication1;assembly=WpfApplication1'. Line 12 Position 10." CenterToolTipConverter.cs namespace WpfApplication1 { public class CenterToolTipConverter : IMultiValueConverter { public object Convert(object[] values, Type targetType, object parameter, CultureInfo culture) { if (values.FirstOrDefault(v => v == DependencyProperty.UnsetValue) != null) { return double.NaN; } double placementTargetWidth = (double)values[0]; double toolTipWidth = (double)values[1]; return (placementTargetWidth / 2.0) - (toolTipWidth / 2.0); } public object[] ConvertBack(object value, Type[] targetTypes, object parameter, CultureInfo culture) { throw new NotSupportedException(); } } } MainWindow.xaml <Window x:Class="WpfApplication1.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:WpfApplication1;assembly=WpfApplication1" Title="MainWindow" Height="350" Width="525"> <Window.Resources> <local:CenterToolTipConverter x:Key="myCenterToolTipConverter"/> </Window.Resources> </Window> What am I doing wrong? Thanks in advance!!!

    Read the article

  • function takes only half of the inputs

    - by gcc
    /*-> struct sam set_of_data[4] -<*/ int main (void) {int k=0; for(i=0;i<4;++i) { {char nm; double thelow,theupp; double numbers[200]; scanf("%c %lf %lf",&nm ,&thelow ,&theupp); for(k=0;scanf("%lf",&numbers[k])!=0;++k) ; set_of_data[i]=construct_struct(nm,thelow,theupp,numbers,k); } ; } .. /* helper function to construct data structure*/ sam_t construct_struct(char name,double thelow,double theupp,double *numbers,int k) { stored_name_t stn; stn.name=name; stn.the_lower_limit=thelow; stn.the_upper_limit=theupp; for(i=0 ; i<k && numbers[k]!='\n' && numbers[k]!='\0' ; ++i) stn.numbers[k]=numbers[k]; return stn; } these two funtion takes only half of the inputs(lines starting with D and B didnot be taken,why? inputs: C 3.25 18. 0.01 .01 .02 .04 .08 .02 .02 .05 .065 .08 .1 .13 .2 .05 .04 .04 .03 .01 .005 .0 A 0 7.5 .054 .031 .016 .008 .116 .124 .147 .155 .039 .023 .016 .008 .124 .062 .031 .016 .008 .008 .008 .006 D -1.5 0.5 .012 .025 .05 .1 .1 .1 .025 .012 0 0 0 .012 .025 .1 .2 .1 .05 .039 .025 .025 B 1 3 .117 .058 .029 .015 .007 .007 .007 .015 .022 .029 .036 .044 .051 .058 .066 .073 .080 .088 .095 .103

    Read the article

  • Is it possible to pass arithmatic operators to a method in java?

    - by user349611
    Right now I'm going to have to write a method that looks like this: public String Calculate(String Operator, Double Operand1, Double Operand2) { if (Operator.equals("+")) { return String.valueOf(Operand1 + Operand2); } else if (Operator.equals("-")) { return String.valueOf(Operand1 - Operand2); } else if (Operator.equals("*")) { return String.valueOf(Operand1 * Operand2); } else { return "error..."; } } It would be nice if I could write the code more like this: public String Calculate(String Operator, Double Operand1, Double Operand2) { return String.valueOf(Operand1 Operator Operand2); } So Operator would replace the Arithmetic Operators (+, -, *, /...) Does anyone know if something like this is possible in java?

    Read the article

  • C++ methods which take templated classes as argument.

    - by Nils
    I have a templated class Vector<class T, int N> Where T is the type of the components (double for example) and n the number of components (so N=3 for a 3D vector) Now I want to write a method like double findStepsize(Vector<double,2> v) {..} I want to do this also for three and higher dimensional vectors. Of course I could just introduce further methods for higher dimensions, but the methods would have a lot of redundant code, so I want a more generic solution. Is there a way to create a method which takes a templated class without further specializing it (in this case without specifying T or N)? Like double findStepsize(Vector<T,N> v) ?

    Read the article

  • Name hiding from inherited classes

    - by Mercerbearman
    I have the following sample code and I wanted to know the correct way to get access to the Pass method in the CBar class. Currently I have found 3 ways to get access to this method and they are as follows: Casting the object, ((CBar *) &foo)-Pass(1, 2, 3); Using this syntax, foo.CBar::Pass(1,2,3); Use the "using" syntax in the CFoo class declaration, using CBar::Pass. The following is an example of a simple project to test this capability. Foo.h #include "bar.h" class CFoo : public CBar { private: double m_a; double m_b; public: CFoo(void); ~CFoo(void); void Pass(double a, double b); }; Foo.cpp #include "Foo.h" CFoo::CFoo(void) { m_a = 0.0; m_b = 0.0; } CFoo::~CFoo(void) { } void CFoo::Pass(double a, double b) { m_a = a; m_b = b; } Bar.h class CBar { int m_x; int m_y; int m_z; public: CBar(void); ~CBar(void); void Pass(int x, int y, int z); }; Bar.cpp #include "Bar.h" CBar::CBar(void) { m_x = 0; m_y = 0; m_z = 0; } CBar::~CBar(void) { } void CBar::Pass(int x, int y, int z) { m_x = x; m_y = y; m_z = z; } And my main class DoStuff.cpp #include "DoStuff.h" #include "Foo.h" CDoStuff::CDoStuff(void) { } CDoStuff::~CDoStuff(void) { } int main() { CFoo foo, foo1, foo2; //This only gets to the Pass method in Foo. foo.Pass(2.5, 3.5); //Gets access to Pass method in Bar. foo1.CBar::Pass(5,10,15); //Can also case and access by location for the same result?? ((CBar *) &foo2)->Pass(100,200,300); return 0; } Are each of these options viable? Are some preferred? Are there pitfalls with using any one of the methods listed? I am especially curious about the foo.CBar::Pass(1,2,3) syntax. Thanks, B

    Read the article

  • Adding objects to the environment at timed intervals

    - by david
    I am using an ArrayList to handle objects and at each interval of 120 frames, I am adding a new object of the same type at a random location along the z-axis of 60. The problem is, it doesn't add just 1. It depends on how many are in the list. If I kill the Fox before the time interval when one is supposed to spawn comes, then no Fox will be spawned. If I don't kill any foxes, it grows exponentially. I only want one Fox to be added every 120 frames. This problem never happened before when I created new ones and added them to the environment. Any insights? Here is my code: /**** FOX CLASS ****/ import env3d.EnvObject; import java.util.ArrayList; public class Fox extends Creature { private int frame = 0; public Fox(double x, double y, double z) { super(x, y, z); // Must use the mutator as the fields have private access // in the parent class setTexture("models/fox/fox.png"); setModel("models/fox/fox.obj"); setScale(1.4); } public void move(ArrayList<Creature> creatures, ArrayList<Creature> dead_creatures, ArrayList<Creature> new_creatures) { frame++; setX(getX()-0.2); setRotateY(270); if (frame > 120) { Fox f = new Fox(60, 1, (int)(Math.random()*28)+1); new_creatures.add(f); frame = 0; } for (Creature c : creatures) { if (this.distance(c) < this.getScale()+c.getScale() && c instanceof Tux) { dead_creatures.add(c); } } for (Creature c : creatures) { if (c.getX() < 1 && c instanceof Fox) { dead_creatures.add(c); } } } } import env3d.Env; import java.util.ArrayList; import org.lwjgl.input.Keyboard; /** * A predator and prey simulation. Fox is the predator and Tux is the prey. */ public class Game { private Env env; private boolean finished; private ArrayList<Creature> creatures; private KingTux king; private Snowball ball; private int tuxcounter; private int kills; /** * Constructor for the Game class. It sets up the foxes and tuxes. */ public Game() { // we use a separate ArrayList to keep track of each animal. // our room is 50 x 50. creatures = new ArrayList<Creature>(); for (int i = 0; i < 10; i++) { creatures.add(new Tux((int)(Math.random()*10)+1, 1, (int)(Math.random()*28)+1)); } for (int i = 0; i < 1; i++) { creatures.add(new Fox(60, 1, (int)(Math.random()*28)+1)); } king = new KingTux(25, 1, 35); ball = new Snowball(-400, -400, -400); } /** * Play the game */ public void play() { finished = false; // Create the new environment. Must be done in the same // method as the game loop env = new Env(); // Make the room 50 x 50. env.setRoom(new Room()); // Add all the animals into to the environment for display for (Creature c : creatures) { env.addObject(c); } for (Creature c : creatures) { if (c instanceof Tux) { tuxcounter++; } } env.addObject(king); env.addObject(ball); // Sets up the camera env.setCameraXYZ(30, 50, 55); env.setCameraPitch(-63); // Turn off the default controls env.setDefaultControl(false); // A list to keep track of dead tuxes. ArrayList<Creature> dead_creatures = new ArrayList<Creature>(); ArrayList<Creature> new_creatures = new ArrayList<Creature>(); // The main game loop while (!finished) { if (env.getKey() == 1 || tuxcounter == 0) { finished = true; } env.setDisplayStr("Tuxes: " + tuxcounter, 15, 0); env.setDisplayStr("Kills: " + kills, 140, 0); processInput(); ball.move(); king.check(); // Move each fox and tux. for (Creature c : creatures) { c.move(creatures, dead_creatures, new_creatures); } for (Creature c : creatures) { if (c.distance(ball) < c.getScale()+ball.getScale() && c instanceof Fox) { dead_creatures.add(c); ball.setX(-400); ball.setY(-400); ball.setZ(-400); kills++; } } // Clean up of the dead tuxes. for (Creature c : dead_creatures) { if (c instanceof Tux) { tuxcounter--; } env.removeObject(c); creatures.remove(c); } for (Creature c : new_creatures) { creatures.add(c); env.addObject(c); } // we clear the ArrayList for the next loop. We could create a new one // every loop but that would be very inefficient. dead_creatures.clear(); new_creatures.clear(); // Update display env.advanceOneFrame(); } // Just a little clean up env.exit(); } private void processInput() { int keyDown = env.getKeyDown(); int key = env.getKey(); if (keyDown == 203) { king.setX(king.getX()-1); } else if (keyDown == 205) { king.setX(king.getX()+1); } if (ball.getX() <= -400 && key == Keyboard.KEY_S) { ball.setX(king.getX()); ball.setY(king.getY()); ball.setZ(king.getZ()); } } /** * Main method to launch the program. */ public static void main(String args[]) { (new Game()).play(); } } /**** CREATURE CLASS ****/ /* (Parent class to Tux, Fox, and KingTux) */ import env3d.EnvObject; import java.util.ArrayList; abstract public class Creature extends EnvObject { private int frame; private double rand; /** * Constructor for objects of class Creature */ public Creature(double x, double y, double z) { setX(x); setY(y); setZ(z); setScale(1); rand = Math.random(); } private void randomGenerator() { rand = Math.random(); } public void move(ArrayList<Creature> creatures, ArrayList<Creature> dead_creatures, ArrayList<Creature> new_creatures) { frame++; if (frame > 12) { randomGenerator(); frame = 0; } // if (rand < 0.25) { // setX(getX()+0.3); // setRotateY(90); // } else if (rand < 0.5) { // setX(getX()-0.3); // setRotateY(270); // } else if (rand < 0.75) { // setZ(getZ()+0.3); // setRotateY(0); // } else if (rand < 1) { // setZ(getZ()-0.3); // setRotateY(180); // } if (rand < 0.5) { setRotateY(getRotateY()-7); } else if (rand < 1) { setRotateY(getRotateY()+7); } setX(getX()+Math.sin(Math.toRadians(getRotateY()))*0.5); setZ(getZ()+Math.cos(Math.toRadians(getRotateY()))*0.5); if (getX() < getScale()) setX(getScale()); if (getX() > 50-getScale()) setX(50 - getScale()); if (getZ() < getScale()) setZ(getScale()); if (getZ() > 50-getScale()) setZ(50 - getScale()); // The move method now handles collision detection if (this instanceof Fox) { for (Creature c : creatures) { if (c.distance(this) < c.getScale()+this.getScale() && c instanceof Tux) { dead_creatures.add(c); } } } } } The rest of the classes are a bit trivial to this specific problem.

    Read the article

  • Why is syslog so much slower than file IO?

    - by ceving
    I wrote a simple test program to measure the performance of the syslog function. This are the results of my test system: (Debian 6.0.2 with Linux 2.6.32-5-amd64) Test Case Calls Payload Duration Thoughput [] [MB] [s] [MB/s] -------------------- ---------- ---------- ---------- ---------- syslog 200000 10.00 7.81 1.28 syslog %s 200000 10.00 9.94 1.01 write /dev/null 200000 10.00 0.03 343.93 printf %s 200000 10.00 0.13 76.29 The test program did 200000 system calls writing 50 Bytes of data during each call. Why is Syslog more than ten times slower than file IO? This is the program I used to perform the test: #include <fcntl.h> #include <stdio.h> #include <string.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <syslog.h> #include <unistd.h> const int iter = 200000; const char msg[] = "123456789 123456789 123456789 123456789 123456789"; struct timeval t0; struct timeval t1; void start () { gettimeofday (&t0, (void*)0); } void stop () { gettimeofday (&t1, (void*)0); } void report (char *action) { double dt = (double)t1.tv_sec - (double)t0.tv_sec + 1e-6 * ((double)t1.tv_usec - (double)t0.tv_usec); double mb = 1e-6 * sizeof (msg) * iter; if (action == NULL) printf ("Test Case Calls Payload Duration Thoughput \n" " [] [MB] [s] [MB/s] \n" "-------------------- ---------- ---------- ---------- ----------\n"); else { if (strlen (action) > 20) action[20] = 0; printf ("%-20s %-10d %-10.2f %-10.2f %-10.2f\n", action, iter, mb, dt, mb / dt); } } void test_syslog () { int i; openlog ("test_syslog", LOG_PID | LOG_NDELAY, LOG_LOCAL0); start (); for (i = 0; i < iter; i++) syslog (LOG_DEBUG, msg); stop (); closelog (); report ("syslog"); } void test_syslog_format () { int i; openlog ("test_syslog", LOG_PID | LOG_NDELAY, LOG_LOCAL0); start (); for (i = 0; i < iter; i++) syslog (LOG_DEBUG, "%s", msg); stop (); closelog (); report ("syslog %s"); } void test_write_devnull () { int i, fd; fd = open ("/dev/null", O_WRONLY); start (); for (i = 0; i < iter; i++) write (fd, msg, sizeof(msg)); stop (); close (fd); report ("write /dev/null"); } void test_printf () { int i; FILE *fp; fp = fopen ("/tmp/test_printf", "w"); start (); for (i = 0; i < iter; i++) fprintf (fp, "%s", msg); stop (); fclose (fp); report ("printf %s"); } int main (int argc, char **argv) { report (NULL); test_syslog (); test_syslog_format (); test_write_devnull (); test_printf (); }

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Converting System.DateTime to JD Edwards Date

    - by Christopher House
    As a follow up to my post the other day on converting a JD Edwards date to a .Net System.DateTime, here is some code to convert a System.DateTime to a JD Edwards date: public static double ToJdeDate(DateTime theDate) {   double jdeDate = 0d;   int dayInYear = theDate.DayOfYear;   int theYear = theDate.Year - 1900;   jdeDate = (theYear * 1000) + dayInYear;   return jdeDate; }

    Read the article

  • How to speed up this simple mysql query?

    - by Jim Thio
    The query is simple: SELECT TB.ID, TB.Latitude, TB.Longitude, 111151.29341326*SQRT(pow(-6.185-TB.Latitude,2)+pow(106.773-TB.Longitude,2)*cos(-6.185*0.017453292519943)*cos(TB.Latitude*0.017453292519943)) AS Distance FROM `tablebusiness` AS TB WHERE -6.2767668133836 < TB.Latitude AND TB.Latitude < -6.0932331866164 AND FoursquarePeopleCount >5 AND 106.68123318662 < TB.Longitude AND TB.Longitude <106.86476681338 ORDER BY Distance See, we just look at all business within a rectangle. 1.6 million rows. Within that small rectangle there are only 67,565 businesses. The structure of the table is 1 ID varchar(250) utf8_unicode_ci No None Change Change Drop Drop More Show more actions 2 Email varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 3 InBuildingAddress varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 4 Price int(10) Yes NULL Change Change Drop Drop More Show more actions 5 Street varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 6 Title varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 7 Website varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 8 Zip varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 9 Rating Star double Yes NULL Change Change Drop Drop More Show more actions 10 Rating Weight double Yes NULL Change Change Drop Drop More Show more actions 11 Latitude double Yes NULL Change Change Drop Drop More Show more actions 12 Longitude double Yes NULL Change Change Drop Drop More Show more actions 13 Building varchar(200) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 14 City varchar(100) utf8_unicode_ci No None Change Change Drop Drop More Show more actions 15 OpeningHour varchar(400) utf8_unicode_ci Yes NULL Change Change Drop Drop More Show more actions 16 TimeStamp timestamp on update CURRENT_TIMESTAMP No CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP Change Change Drop Drop More Show more actions 17 CountViews int(11) Yes NULL Change Change Drop Drop More Show more actions The indexes are: Edit Edit Drop Drop PRIMARY BTREE Yes No ID 1965990 A Edit Edit Drop Drop City BTREE No No City 131066 A Edit Edit Drop Drop Building BTREE No No Building 21 A YES Edit Edit Drop Drop OpeningHour BTREE No No OpeningHour (255) 21 A YES Edit Edit Drop Drop Email BTREE No No Email (255) 21 A YES Edit Edit Drop Drop InBuildingAddress BTREE No No InBuildingAddress (255) 21 A YES Edit Edit Drop Drop Price BTREE No No Price 21 A YES Edit Edit Drop Drop Street BTREE No No Street (255) 982995 A YES Edit Edit Drop Drop Title BTREE No No Title (255) 1965990 A YES Edit Edit Drop Drop Website BTREE No No Website (255) 491497 A YES Edit Edit Drop Drop Zip BTREE No No Zip (255) 178726 A YES Edit Edit Drop Drop Rating Star BTREE No No Rating Star 21 A YES Edit Edit Drop Drop Rating Weight BTREE No No Rating Weight 21 A YES Edit Edit Drop Drop Latitude BTREE No No Latitude 1965990 A YES Edit Edit Drop Drop Longitude BTREE No No Longitude 1965990 A YES The query took forever. I think there has to be something wrong there. Showing rows 0 - 29 ( 67,565 total, Query took 12.4767 sec)

    Read the article

  • Sliding collision response

    - by dbostream
    I have been reading plenty of tutorials about sliding collision responses yet I am not able to implement it properly in my project. What I want to do is make a puck slide along the rounded corner boards of a hockey rink. In my latest attempt the puck does slide along the boards but there are some strange velocity behaviors. First of all the puck slows down a lot pretty much right away and then it slides for awhile and stops before exiting the corner. Even if I double the speed I get a similar behavior and the puck does not make it out of the corner. I used some ideas from this document http://www.peroxide.dk/papers/collision/collision.pdf. This is what I have: Update method called from the game loop when it is time to update the puck (I removed some irrelevant parts). I use two states (current, previous) which are used to interpolate the position during rendering. public override void Update(double fixedTimeStep) { /* Acceleration is set to 0 for now. */ Acceleration.Zero(); PreviousState = CurrentState; _collisionRecursionDepth = 0; CurrentState.Position = SlidingCollision(CurrentState.Position, CurrentState.Velocity * fixedTimeStep + 0.5 * Acceleration * fixedTimeStep * fixedTimeStep); /* Should not this be affected by a sliding collision? and not only the position. */ CurrentState.Velocity = CurrentState.Velocity + Acceleration * fixedTimeStep; Heading = Vector2.NormalizeRet(CurrentState.Velocity); } private Vector2 SlidingCollision(Vector2 position, Vector2 velocity) { if(_collisionRecursionDepth > 5) return position; bool collisionFound = false; Vector2 futurePosition = position + velocity; Vector2 intersectionPoint = new Vector2(); Vector2 intersectionPointNormal = new Vector2(); /* I did not include the collision detection code, if a collision is detected the intersection point and normal in that point is returned. */ if(!collisionFound) return futurePosition; /* If no collision was detected it is safe to move to the future position. */ /* It is not exactly the intersection point, but slightly before. */ Vector2 newPosition = intersectionPoint; /* oldVelocity is set to the distance from the newPosition(intersection point) to the position it had moved to had it not collided. */ Vector2 oldVelocity = futurePosition - newPosition; /* Project the distance left to move along the intersection normal. */ Vector2 newVelocity = oldVelocity - intersectionPointNormal * oldVelocity.DotProduct(intersectionPointNormal); if(newVelocity.LengthSq() < 0.001) return newPosition; /* If almost no speed, no need to continue. */ _collisionRecursionDepth++; return SlidingCollision(newPosition, newVelocity); } What am I doing wrong with the velocity? I have been staring at this for very long so I have gone blind. I have tried different values of recursion depth but it does not seem to make it better. Let me know if you need more information. I appreciate any help. EDIT: A combination of Patrick Hughes' and teodron's answers solved the velocity problem (I think), thanks a lot! This is the new code: I decided to use a separate recursion method now too since I don't want to recalculate the acceleration in each recursion. public override void Update(double fixedTimeStep) { Acceleration.Zero();// = CalculateAcceleration(fixedTimeStep); PreviousState = new MovingEntityState(CurrentState.Position, CurrentState.Velocity); CurrentState = SlidingCollision(CurrentState, fixedTimeStep); Heading = Vector2.NormalizeRet(CurrentState.Velocity); } private MovingEntityState SlidingCollision(MovingEntityState state, double timeStep) { bool collisionFound = false; /* Calculate the next position given no detected collision. */ Vector2 futurePosition = state.Position + state.Velocity * timeStep; Vector2 intersectionPoint = new Vector2(); Vector2 intersectionPointNormal = new Vector2(); /* I did not include the collision detection code, if a collision is detected the intersection point and normal in that point is returned. */ /* If no collision was detected it is safe to move to the future position. */ if (!collisionFound) return new MovingEntityState(futurePosition, state.Velocity); /* Set new position to the intersection point (slightly before). */ Vector2 newPosition = intersectionPoint; /* Project the new velocity along the intersection normal. */ Vector2 newVelocity = state.Velocity - 1.90 * intersectionPointNormal * state.Velocity.DotProduct(intersectionPointNormal); /* Calculate the time of collision. */ double timeOfCollision = Math.Sqrt((newPosition - state.Position).LengthSq() / (futurePosition - state.Position).LengthSq()); /* Calculate new time step, remaining time of full step after the collision * current time step. */ double newTimeStep = timeStep * (1 - timeOfCollision); return SlidingCollision(new MovingEntityState(newPosition, newVelocity), newTimeStep); } Even though the code above seems to slide the puck correctly please have a look at it. I have a few questions, if I don't multiply by 1.90 in the newVelocity calculation it doesn't work (I get a stack overflow when the puck enters the corner because the timeStep decreases very slowly - a collision is found early in every recursion), why is that? what does 1.90 really do and why 1.90? Also I have a new problem, the puck does not move parallell to the short side after exiting the curve; to be more exact it moves outside the rink (I am not checking for any collisions with the short side at the moment). When I perform the collision detection I first check that the puck is in the correct quadrant. For example bottom-right corner is quadrant four i.e. circleCenter.X < puck.X && circleCenter.Y puck.Y is this a problem? or should the short side of the rink be the one to make the puck go parallell to it and not the last collision in the corner? EDIT2: This is the code I use for collision detection, maybe it has something to do with the fact that I can't make the puck slide (-1.0) but only reflect (-2.0): /* Point is the current position (not the predicted one) and quadrant is 4 for the bottom-right corner for example. */ if (GeometryHelper.PointInCircleQuadrant(circleCenter, circleRadius, state.Position, quadrant)) { /* The line is: from = state.Position, to = futurePosition. So a collision is detected when from is inside the circle and to is outside. */ if (GeometryHelper.LineCircleIntersection2d(state.Position, futurePosition, circleCenter, circleRadius, intersectionPoint, quadrant)) { collisionFound = true; /* Set the intersection point to slightly before the real intersection point (I read somewhere this was good to do because of floting point precision, not sure exactly how much though). */ intersectionPoint = intersectionPoint - Vector2.NormalizeRet(state.Velocity) * 0.001; /* Normal at the intersection point. */ intersectionPointNormal = Vector2.NormalizeRet(circleCenter - intersectionPoint) } } When I set the intersection point, if I for example use 0.1 instead of 0.001 the puck travels further before it gets stuck, but for all values I have tried (including 0 - the real intersection point) it gets stuck somewhere (but I necessarily not get a stack overflow). Can something in this part be the cause of my problem? I can see why I get the stack overflow when using -1.0 when calculating the new velocity vector; but not how to solve it. I traced the time steps used in the recursion (initial time step is always 1/60 ~ 0.01666): Recursion depth Time step next recursive call [Start recursion, time step ~ 0.016666] 0 0,000985806527246773 [No collision, stop recursion] [Start recursion, time step ~ 0.016666] 0 0,0149596704364629 1 0,0144883449376379 2 0,0143155612984837 3 0,014224925727213 4 0,0141673917461608 5 0,0141265435314026 6 0,0140953966184117 7 0,0140704653746625 ...and so on. As you can see the collision is detected early in every recursive call which means the next time step decreases very slowly thus the recursion depth gets very big - stack overflow.

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • Android, how important is deltaTime?

    - by iQue
    Im making a game that is getting pretty big and sometimes my thread has to skip a frame, so far I'm not using deltaTime for setting the speed of my different objects in the game because it's still not a big enough game for it to matter imo. But its getting bigger then I planned, so my question is, how important is delta Time? If I should use delta time there is a problem, since speedX and speedY are integers(they have to be for eclipse to let you make a rectangle of them), I cant add delta time very functionally as far as I understand, but might be wrong? Ive tried adding deltaTime to the code below, and sometimes my enemies just not move after spawn, they just stand there and run in the same place Will add an some code for how I set / use speed: public void update(int dx, int dy) { double theta = 180.0 / Math.PI * Math.atan2(-(y - controls.pointerPosition.y), controls.pointerPosition.x - x); x +=dx * Math.cos(Math.toRadians(theta)); y +=dy * Math.sin(Math.toRadians(theta)); currentFrame = ++currentFrame % BMP_COLUMNS; } public void draw(Canvas canvas) { int srcX = currentFrame * width; int srcY = 1 * height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bitmap, src, dst, null); } So if someone with some experience with this has any thoughts, please share. Thank you! Changed code: public void update(int dx, int dy, float delta) { double theta = 180.0 / Math.PI * Math.atan2(-(y - controls.pointerPosition.y), controls.pointerPosition.x - x); double speedX = delta * dx * Math.cos(Math.toRadians(theta)); double speedY = delta * dy * Math.sin(Math.toRadians(theta)); x += speedX; y += speedY; currentFrame = ++currentFrame % BMP_COLUMNS; } public void draw(Canvas canvas) { int srcX = currentFrame * width; int srcY = 1 * height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bitmap, src, dst, null); } with this code my enemies move like before, except they wont move to the right (wont increment x), all other directions work.

    Read the article

  • 2D Skeletal Animation Transformations

    - by Brad Zeis
    I have been trying to build a 2D skeletal animation system for a while, and I believe that I'm fairly close to finishing. Currently, I have the following data structures: struct Bone { Bone *parent; int child_count; Bone **children; double x, y; }; struct Vertex { double x, y; int bone_count; Bone **bones; double *weights; }; struct Mesh { int vertex_count; Vertex **vertices; Vertex **tex_coords; } Bone->x and Bone->y are the coordinates of the end point of the Bone. The starting point is given by (bone->parent->x, bone->parent->y) or (0, 0). Each entity in the game has a Mesh, and Mesh->vertices is used as the bounding area for the entity. Mesh->tex_coords are texture coordinates. In the entity's update function, the position of the Bone is used to change the coordinates of the Vertices that are bound to it. Currently what I have is: void Mesh_update(Mesh *mesh) { int i, j; double sx, sy; for (i = 0; i < vertex_count; i++) { if (mesh->vertices[i]->bone_count == 0) { continue; } sx, sy = 0; for (j = 0; j < mesh->vertices[i]->bone_count; j++) { sx += (/* ??? */) * mesh->vertices[i]->weights[j]; sy += (/* ??? */) * mesh->vertices[i]->weights[j]; } mesh->vertices[i]->x = sx; mesh->vertices[i]->y = sy; } } I think I have everything I need, I just don't know how to apply the transformations to the final mesh coordinates. What tranformations do I need here? Or is my approach just completely wrong?

    Read the article

  • How is precedence determined in C pointers?

    - by ankur.trapasiya
    I've come across two pointer declarations that I'm having trouble understanding. My understanding of precedence rules goes something like this: Operator Precedence Associativity (), [ ] 1 Left to Right *, identifier 2 Right to Left Data type 3 But even given this, I can't seem to figure out how to evaluate the following examples correctly: First example float * (* (*ptr)(int))(double **,char c) My evaluation: *(ptr) (int) *(*ptr)(int) *(*(*ptr)(int)) Then, double ** char c Second example unsigned **( * (*ptr) [5] ) (char const *,int *) *(ptr) [5] *(*ptr)[5] *(*(*ptr)[5]) **(*(*ptr)[5]) How should I read them?

    Read the article

  • Finding Z given X & Y coordinates on terrain?

    - by mrky
    I need to know what the most efficient way of finding Z given X & Y coordinates on terrain. My terrain is set up as a grid, each grid block consisting of two triangles, which may be flipped in any direction. I want to move game objects smoothly along the floor of the terrain without "stepping." I'm currently using the following method with unexpected results: double mapClass::getZ(double x, double y) { int vertexIndex = ((floor(y))*width*2)+((floor(x))*2); vec3ray ray = {glm::vec3(x, y, 2), glm::vec3(x, y, 0)}; vec3triangle tri1 = { glmFrom(vertices[vertexIndex].v1), glmFrom(vertices[vertexIndex].v2), glmFrom(vertices[vertexIndex].v3) }; vec3triangle tri2 = { glmFrom(vertices[vertexIndex+1].v1), glmFrom(vertices[vertexIndex+1].v2), glmFrom(vertices[vertexIndex+1].v3) }; glm::vec3 intersect; if (!intersectRayTriangle(tri1, ray, intersect)) { intersectRayTriangle(tri2, ray, intersect); } return intersect.z; } intersectRayTriangle() and glmFrom() are as follows: bool intersectRayTriangle(vec3triangle tri, vec3ray ray, glm::vec3 &worldIntersect) { glm::vec3 barycentricIntersect; if (glm::intersectLineTriangle(ray.origin, ray.direction, tri.p0, tri.p1, tri.p2, barycentricIntersect)) { // Convert barycentric to world coordinates double u, v, w; u = barycentricIntersect.x; v = barycentricIntersect.y; w = 1 - (u+v); worldIntersect.x = (u * tri.p0.x + v * tri.p1.x + w * tri.p2.x); worldIntersect.y = (u * tri.p0.y + v * tri.p1.y + w * tri.p2.y); worldIntersect.z = (u * tri.p0.z + v * tri.p1.z + w * tri.p2.z); return true; } else { return false; } } glm::vec3 glmFrom(s_point3f point) { return glm::vec3(point.x, point.y, point.z); } My convenience structures are defined as: struct s_point3f { GLfloat x, y, z; }; struct s_triangle3f { s_point3f v1, v2, v3; }; struct vec3ray { glm::vec3 origin, direction; }; struct vec3triangle { glm::vec3 p0, p1, p2; }; vertices is defined as: std::vector<s_triangle3f> vertices; Basically, I'm trying to get the intersect of a ray (which is positioned at the x, and y coordinates specified facing pointing downwards toward the terrain) and one of the two triangles on the grid. getZ() rarely returns anything but 0. Other times, the numbers it generates seem to be completely off. Am I taking the wrong approach? Can anyone see a problem with my code? Any help or critique is appreciated!

    Read the article

  • SQL SERVER Find Max Worker Count using DMV 32 Bit and 64 Bit

    During several recent training courses, I found it very interesting that Worker Thread is not quite known to everyone despite the fact that it is a very important feature. At some point in the discussion, one of the attendees mentioned that we can double the Worker Thread if we double the CPU (add the same [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What makes signed integers behave differently?

    - by 000
    In this example of x86_64 hex/disassembled code I see: 48B80000000000000000 mov rax, 0x0 Signed Byte 52 Unsigned Byte 52 Signed Short 14388 Unsigned Short 14388 Signed Int 943863860 Unsigned Int 943863860 Signed Int64 3472328296363079732 Unsigned Int64 3472328296363079732 Float 4.630555e-05 Double 1.39804332763832e-76 String 48B80000000000000000 which to me appears to have the same functionality as: 48C7C000000000 mov rax, 0x0 48C7C000000000 Signed Byte 52 Unsigned Byte 52 Signed Short 14388 Unsigned Short 14388 Signed Int 927152180 Unsigned Int 927152180 Signed Int64 3472328377950746676 Unsigned Int64 3472328377950746676 Float 1.163599e-05 Double 1.39806836023098e-76 String 48C7C000000000 How is the first example treated differently from the second example?

    Read the article

  • SQL SERVER – QUOTED_IDENTIFIER ON/OFF Explanation and Example – Question on Real World Usage

    - by Pinal Dave
    This is a follow up blog post of SQL SERVER – QUOTED_IDENTIFIER ON/OFF and ANSI_NULL ON/OFF Explanation. I wrote that blog six years ago and I had plans that I will write a follow up blog post of the same. Today, when I was going over my to-do list and I was surprised that I had an item there which was six years old and I never got to do that. In the earlier blog post I wrote about exploitation of the Quoted Identifier and ANSI Null. In this blog post we will see a quick example of Quoted Identifier. However, before we continue this blog post, let us see a refresh what both of Quoted Identifider do. QUOTED IDENTIFIER ON/OFF This option specifies the setting for use of double quotes. When this is on, double quotation mark is used as part of the SQL Server identifier (object name). This can be useful in situations in which identifiers are also SQL Server reserved words. In simple words when we have QUOTED IDENTIFIER ON, anything which is wrapped in double quotes becomes an object. E.g. -- The following will work SET QUOTED_IDENTIFIER ON GO CREATE DATABASE "Test1" GO -- The following will throw an error about Incorrect syntax near 'Test2'. SET QUOTED_IDENTIFIER OFF GO CREATE DATABASE "Test2" GO This feature is particularly helpful when we are working with reserved keywords in SQL Server. For example if you have to create a database with the name VARCHAR or INT or DATABASE you may want to put double quotes around your database name and turn on quoted identifiers to create a database with the such name. Personally, I do not think so anybody will ever create a database with the reserve keywords intentionally, as it will just lead to confusion. Here is another example to give you further clarity about how Quoted Idenifier setting works with SELECT statement. -- The following will throw an error about Invalid column name 'Column'. SET QUOTED_IDENTIFIER ON GO SELECT "Column" GO -- The following will work SET QUOTED_IDENTIFIER OFF GO SELECT "Column" GO Personally, I always use the following method to create database as it works irrespective of what is the quoted identifier’s status. It always creates objects with my desire name whenever I would like to create. CREATE DATABASE [Test3] I believe the future of the quoted identifier on or off is useful in the real world when we have script generated from another database where this setting was ON and we have to now execute the same script again in our environment again. Question to you - I personally have never used this feature as I mentioned earlier. I believe this feature is there to support the scripts which are generated in another SQL Database or generate the script for other database. Do you have a real world scenario where we need to turn on or off Quoted Identifiers. Click to Download Scripts Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • What if I can't make my unit test fail in "Red, Green, Refactor" of TDD?

    - by Joshua Harris
    So let's say that I have a test: @Test public void MoveY_MoveZero_DoesNotMove() { Point p = new Point(50.0, 50.0); p.MoveY(0.0); Assert.assertAreEqual(50.0, p.Y); } This test then causes me to create the class Point: public class Point { double X; double Y; public void MoveY(double yDisplace) { throw new NotYetImplementedException(); } } Ok. It fails. Good. Then I remove the exception and I get green. Great, but of course I need to test if it changes value. So I write a test that calls p.MoveY(10.0) and checks if p.Y is equal to 60.0. It fails, so then I change the function to look like so: public void MoveY(double yDisplace) { Y += yDisplace; } Great, now I have green again and I can move on. I've tested not moving and moving in the positive direction, so naturally I should test a negative value. The only problem with this test is that if I wrote the test correctly, then it doesn't fail at first. That means that I didn't fit the principle of "Red, Green, Refactor." Of course, This is a first-world problem of TDD, but getting a fail at first is helpful in that it shows that your test can fail. Otherwise this seemingly innocent test that is just passing for incorrect reasons could fail later because it was written wrong. That might not be a problem if it happened 5 minutes later, but what if it happens to the poor-sap that inheirited your code two years later. What he knows is that MoveY does not work with negative values because that is what the test is telling him. But, it really could work and just be a bug in the test. I don't think that would happen in this particular case because the code sample is so simple, but if it were a large complicated system that might not be the case. It seems crazy to say that I want to fail my tests, but that is an important step in TDD, for good reasons.

    Read the article

  • design a model for a system of dependent variables

    - by dbaseman
    I'm dealing with a modeling system (financial) that has dozens of variables. Some of the variables are independent, and function as inputs to the system; most of them are calculated from other variables (independent and calculated) in the system. What I'm looking for is a clean, elegant way to: define the function of each dependent variable in the system trigger a re-calculation, whenever a variable changes, of the variables that depend on it A naive way to do this would be to write a single class that implements INotifyPropertyChanged, and uses a massive case statement that lists out all the variable names x1, x2, ... xn on which others depend, and, whenever a variable xi changes, triggers a recalculation of each of that variable's dependencies. I feel that this naive approach is flawed, and that there must be a cleaner way. I started down the path of defining a CalculationManager<TModel> class, which would be used (in a simple example) something like as follows: public class Model : INotifyPropertyChanged { private CalculationManager<Model> _calculationManager = new CalculationManager<Model>(); // each setter triggers a "PropertyChanged" event public double? Height { get; set; } public double? Weight { get; set; } public double? BMI { get; set; } public Model() { _calculationManager.DefineDependency<double?>( forProperty: model => model.BMI, usingCalculation: (height, weight) => weight / Math.Pow(height, 2), withInputs: model => model.Height, model.Weight); } // INotifyPropertyChanged implementation here } I won't reproduce CalculationManager<TModel> here, but the basic idea is that it sets up a dependency map, listens for PropertyChanged events, and updates dependent properties as needed. I still feel that I'm missing something major here, and that this isn't the right approach: the (mis)use of INotifyPropertyChanged seems to me like a code smell the withInputs parameter is defined as params Expression<Func<TModel, T>>[] args, which means that the argument list of usingCalculation is not checked at compile time the argument list (weight, height) is redundantly defined in both usingCalculation and withInputs I am sure that this kind of system of dependent variables must be common in computational mathematics, physics, finance, and other fields. Does someone know of an established set of ideas that deal with what I'm grasping at here? Would this be a suitable application for a functional language like F#? Edit More context: The model currently exists in an Excel spreadsheet, and is being migrated to a C# application. It is run on-demand, and the variables can be modified by the user from the application's UI. Its purpose is to retrieve variables that the business is interested in, given current inputs from the markets, and model parameters set by the business.

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >