Search Results

Search found 32375 results on 1295 pages for 'dnn module development'.

Page 536/1295 | < Previous Page | 532 533 534 535 536 537 538 539 540 541 542 543  | Next Page >

  • Image 1 becomes image 2 with sliding effect from left to right?

    - by Paul
    I would like to show a second image appearing while a "door" is closing on my character. I've got my character in the middle of the screen and a door coming from the left. When the door passes my character, I would like to have this second image appearing little by little. So far, I've gotten by with fadingOut the character and then fadingIn my second image of the character at the same position when the door is completely closed, but I would like to have both of them at the same time. (the effect that image 1 becomes image 2 when the door is sliding from left to right). Would you know how to do this with Cocos2d? Here are the images : at first, the character is blue, and the door is coming from the left : Then, behind the black door, the character becomes red, but only behind this door, so it stays blue when the door is not on him, and will become completely red when the door passes the character : EDIT : with this code, the black door hides the red and blue rectangles : (And if i add each of my layers at a different depth, and only use GL_LESS, same thing) blue.position = ccp( size.width*0.5 , size.height/2 ); red.position = ccp( size.width*0.46 , size.height/2 ); black.position = ccp( size.width*0.1 , size.height/2 ); glEnable(GL_DEPTH_TEST); [batch addChild:red z:0]; [batch addChild:black z:2]; glDepthFunc(GL_GREATER); [batch addChild:blue z:1]; glDepthFunc(GL_LESS); id action1 = [CCMoveTo actionWithDuration:3 position:ccp(size.width,size.height/2)]; [black runAction: [CCSequence actions:action1, nil]];

    Read the article

  • Drawing 2D Grid in 3D View - Need help with method

    - by Deukalion
    I'm trying to draw a simple 2D grid for an editor, to able to navigate more clearly around the 3D space, but I can't render it: Grid2D class, creates a grid of a certain size at a location and should just draw lines. public class Grid2D : IShape { private VertexPositionColor[] _vertices; private Vector2 _size; private Vector3 _location; private int _faces; public Grid2D(Vector2 size, Vector3 location, Color color) { float x = 0, y = 0; if (size.X < 1f) { size.X = 1f; } if (size.Y < 1f) { size.Y = 1f; } _size = size; _location = location; List<VertexPositionColor> vertices = new List<VertexPositionColor>(); _faces = 0; for (y = -size.Y; y <= size.Y; y++) { vertices.Add(new VertexPositionColor(location + new Vector3(-size.X, y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(size.X, y, 0), color)); _faces++; } for (x = -size.X; x <= size.X; x++) { vertices.Add(new VertexPositionColor(location + new Vector3(x, -size.Y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(x, size.Y, 0), color)); _faces++; } _vertices = vertices.ToArray(); } public void Render(GraphicsDevice device) { device.DrawUserPrimitives<VertexPositionColor>(PrimitiveType.LineList, _vertices, 0, _faces); } } Like this: +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ Anyone knows what I'm doing wrong? If I add a Shape without texture, it's set automatically to VertexColorEnabled and TextureEnabled = false. This is how I render it: foreach (RenderObject render in _renderObjects) { render.Effect.Projection = projection; render.Effect.View = view; render.Effect.World = world; foreach (EffectPass pass in render.Effect.CurrentTechnique.Passes) { pass.Apply(); try { // Could be a Grid2D render.Shape.Render(_device); } catch { throw; } } } Exception is thrown: The current vertex shader declaration does not include all the elements required by the current Vertex Shader. Normal0 is missing. Simply put, I can't figure out how to draw a few lines. I want to draw them one at a time and I guess that's the problem I haven't figured out, and even when I tried rendering vertices[i], vertices[i+1] and primitiveCount = 1, vertices = 2, and so on it didn't work either. Any suggestions?

    Read the article

  • Finding furthermost point in game world

    - by user13414
    I am attempting to find the furthermost point in my game world given the player's current location and a normalized direction vector in screen space. My current algorithm is: convert player world location to screen space multiply the direction vector by a large number (2000) and add it to the player's screen location to get the distant screen location convert the distant screen location to world space create a line running from the player's world location to the distant world location loop over the bounding "walls" (of which there are always 4) of my game world check whether the wall and the line intersect if so, where they intersect is the furthermost point of my game world in the direction of the vector Here it is, more or less, in code: public Vector2 GetFurthermostWorldPoint(Vector2 directionVector) { var screenLocation = entity.WorldPointToScreen(entity.Location); var distantScreenLocation = screenLocation + (directionVector * 2000); var distantWorldLocation = entity.ScreenPointToWorld(distantScreenLocation); var line = new Line(entity.Center, distantWorldLocation); float intersectionDistance; Vector2 intersectionPoint; foreach (var boundingWall in entity.Level.BoundingWalls) { if (boundingWall.Intersects(line, out intersectionDistance, out intersectionPoint)) { return intersectionPoint; } } Debug.Assert(false, "No intersection found!"); return Vector2.Zero; } Now this works, for some definition of "works". I've found that the further out my distant screen location is, the less chance it has of working. When digging into the reasons why, I noticed that calls to Viewport.Unproject could result in wildly varying return values for points that are "far away". I wrote this stupid little "test" to try and understand what was going on: [Fact] public void wtf() { var screenPositions = new Vector2[] { new Vector2(400, 240), new Vector2(400, -2000), }; var viewport = new Viewport(0, 0, 800, 480); var projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, viewport.Width / viewport.Height, 1, 200000); var viewMatrix = Matrix.CreateLookAt(new Vector3(400, 630, 600), new Vector3(400, 345, 0), new Vector3(0, 0, 1)); var worldMatrix = Matrix.Identity; foreach (var screenPosition in screenPositions) { var nearPoint = viewport.Unproject(new Vector3(screenPosition, 0), projectionMatrix, viewMatrix, worldMatrix); var farPoint = viewport.Unproject(new Vector3(screenPosition, 1), projectionMatrix, viewMatrix, worldMatrix); Console.WriteLine("For screen position {0}:", screenPosition); Console.WriteLine(" Projected Near Point = {0}", nearPoint.TruncateZ()); Console.WriteLine(" Projected Far Point = {0}", farPoint.TruncateZ()); Console.WriteLine(); } } The output I get on the console is: For screen position {X:400 Y:240}: Projected Near Point = {X:400 Y:629.571 Z:599.0967} Projected Far Point = {X:392.9302 Y:-83074.98 Z:-175627.9} For screen position {X:400 Y:-2000}: Projected Near Point = {X:400 Y:626.079 Z:600.7554} Projected Far Point = {X:390.2068 Y:-767438.6 Z:148564.2} My question is really twofold: what am I doing wrong with the unprojection such that it varies so wildly and, thus, does not allow me to determine the corresponding world point for my distant screen point? is there a better way altogether to determine the furthermost point in world space given a current world space location, and a directional vector in screen space?

    Read the article

  • OpenGL setup on Windows

    - by kevin james
    I have been trying to use OpenGL for two days now. First on Mac, then on Windows. The problem with Mac is that it doesn't support the newer versions of OpenGL. I ran a tutorial that actually did get some things working, but it only works in XCode (i.e., I can't create a new file, paste in the same code, and get it to work). Because of these issues, I moved to Windows. My Windows 7 has OpenGL 4.3, which is the same that is used in alot of other tutorials. However, not one of these tutorials gives any instruction on how to set it up for the first time. I have come across some vague posts saying that some libraries need to be linked. But WHAT libraries, and HOW do I link them? Please help. I am pretty desperate to set this up as this project is due for work soon. I have actually used OpenGL before at my university, but the computers already had everything set up. The project itself is very easy, but setting up OpenGL is not something I know how to do.

    Read the article

  • LWJGL Java 2D collision when lagging

    - by user1990950
    I'm using a tile based collision, but when the game is lagging (the lag isn't the problem) the collision fails and the player falls through tiles. This is the movement/collision detection code of my Player class: gravity.y = gspeed; speed.y+=gravity.y; position.set(position.x + direction.x * speed.x * deltaSeconds, position.y + direction.y * speed.y * deltaSeconds); for (int i = (int) Math.round(position.x / 32) - 2 * t; i < (int) Math.round(position.x / 32) + 3 * t; i++) { for (int j = (int) Math.round(position.y / 32); j < (int) Math.round((position.y + height + 64) / 32); j++) { checkCollision(i, j, deltaSeconds); } } public void checkCollision(int i, int j, float deltaSeconds) { bbox.setBounds((int) position.x, (int) position.y, (int) width, (int) height); Tile t = null; t = Map.getTile(i, j); if (t != null) { if (t.isSolid()) { if (t.getTop().intersects(bbox)) { if (position.y + height < t.y * 32 + 32) { if (speed.y >= 0) { position.y = t.y * 32 - height; speed.y = 0; gravity.y = 0; jumpState = 0; } } } if (t.getBottom().intersects(bbox)) { if (position.y < t.y * 32 + 32) { position.y = t.y * 32 + 32; speed.y = 0; } } else { if (t.getLeft().intersects(bbox)) { if (position.x + width > t.x * 32) { position.x = t.x * 32 - width; speed.x = 0; } } if (t.getRight().intersects(bbox)) { if (position.x < t.x * 32 + 32) { position.x = t.x * 32 + 32; speed.x = 0; } } } } } } Is it possible to fix my code, if yes how? Or is it possible to tell if the game is lagging?

    Read the article

  • Glitch-free cross-fades in HTML5

    - by Alexander Gladysh
    In my HTML5 canvas game, I need to cross-fade two sprites which have some glow around them. (Glow is backed into sprites.) Initially, the first sprite is visible. During the cross-fade the first sprite should vanish, and be replaced with the second one. How exactly the cross-fade is done — does not matter, as long as it is smooth and there are no visual glitches. I've tried two techniques: During the cross-fade I simultaneously interpolate alpha of the first sprite from 1.0 to 0.0, and alpha of the second sprite — from 0.0 to 1.0. With this technique I can see background in the middle of the cross-fade. That's because both sprites are semi-transparent most of the time. During the cross-fade I first interpolate alpha of the second sprite from 0.0 to 1.0 (first sprite alpha is at 1.0), and then interpolate alpha of the first sprite from 1.0 to 0.0. With this technique background is not seen, but the glow around sprites flashes during the cross-fide — when both sprites are near the full visibility. In non-HTML5 game I'd use shaders to do cross-fade separately in RGB and alpha channels. Is there a trick to do the cross-fade I need in HTML5 without visual glitches?

    Read the article

  • What should I worry about when changing OpenGL origin to upper left of screen?

    - by derivative
    For self education, I'm writing a 2D platformer engine in C++ using SDL / OpenGL. I initially began with pure SDL using the tutorials on sdltutorials.com and lazyfoo.net, but I'm now rendering in an OpenGL context (specifically immediate mode but I'm learning about VAOs/VBOs) and using SDL for interface, audio, etc. SDL uses a coordinate system with the origin in the upper left of the screen and the positive y-axis pointing down. It's easy to set up my orthographic projection in OpenGL to mirror this. I know that texture coordinates are a right-hand system with values from 0 to 1 -- flipping the texture vertically before rendering (well, flip the file before loading) yields textures that render correctly... which is fine if I'm drawing the entire texture, but ultimately I'll be using tilesets and can imagine problems. What should I be concerned about in terms of rendering when I do this? If anybody has any advice or they've done this themselves and can point out future pitfalls, that would be great, but really any thoughts would be appreciated.

    Read the article

  • About online game servers and how to handle data

    - by TreantBG
    So my question isn't about what technology to use or how to do this or that, but a more general question. I'm currently developing a action third person shooter. With elements of RPG - weapon,armor upgrades and items. Players will be able to create new games or join old ones. So my question is how to create the game server that players will play in. I have two ideas on my mind. The player who made the game is the server. All data passes trough him and he send this data to the server updating the database of the players with their XP points kills/deaths score and other. Or my host machine is the server, the player who made the game just will open new instance on my host and will be like client. And all players send their input data to the host, the host updates the game and send response back to client for any new changes like where is the enemy and other. And if i choose option 1 is there a chance the host to change the game content and manipulate the game results? (I think there is but i'm not sure) And if i choose option 2 isn't that raising the response time and potentially the game lag? or maybe there is another option?

    Read the article

  • Any ideas on reducing lag in terrain generation?

    - by l5p4ngl312
    Ok so here's the deal. I've written an isometric engine that generates terrain based on camera values using 2D perlin noise. I planned on doing 3D but first I need to work out the lag issues I'm having. I will try to explain how I am doing this so that maybe someone can spot where I am going wrong. I know it should not be this laggy. There is the abstract class Block which right now just contains render(). BlockGrass, etc. extend this class and each has code in the render function to create a textured quad at the given position. Then there is the class Chunk which has the function Generate() and setBlocksInArea(). Generate uses 2D perlin noise to make a height map and stores the heights in a 2D array. It stores the positions of each block it generates in blockarray[x][y][z]. The chunks are 8x8x128. In the main game class there is a 3D array called blocksInArea. The blocks in this array are what gets rendered. When a chunk generates, it adds its blocks to this array at the correct index. It is like this so chunks can be saved to the hard drive (even though they aren't yet) but there can still be optimization with the rendering that you wouldn't have if you rendered each chunk separately. Here's where the laggy part comes in: When the camera moves to a new chunk, a row of chunks generates on the end of the axis that the camera moved on. But it still has to move the other chunks up/down in the blocksInArea (render) array. It does this by calculating the new position in the array and doing the Chunk.setBlocksInArea(): for(int x = 0; x < 8; x++){ for(int y = 0; y < 8; y++){ nx = x+(coordX - camCoordX)*8 ny = y+(coordY - camCoordY)*8 for(int z = 0; z < height[x][y]; z++){ blockarray[x][y][z] = Game.blocksInArea[nx][ny][z]; } } } My reasoning was that this would be much faster than doing the perlin noise all over again, but there are still little spikes of lag when you move in between chunks. Edit: Would it be possible to create a 3 dimensional array list so that shifting of chunks within the array would not be neccessary?

    Read the article

  • Show path of a body of where it should go after linear impulse is applied

    - by Farooq Arshed
    I am making a game with Andengine and Box2D. I have a dynamic body and I apply linear impulse on the body to move it around when the user have touched the screen. Now I want to show the path where the body will go when the user have touched. If you have played Angry Birds or Basket Ball Shoot or any other which have projectile motion with a path shown you will get my point. I want to show the white dots which are shown in those games.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Smooth animation on a persistently refreshing canvas

    - by Neurofluxation
    Yo everyone! I have been working on an Isometric Tile Game Engine in HTML5/Canvas for a little while now and I have a complete working game. Earlier today I looked back over my code and thought: "hmm, let's try to get this animated smoothly..." And since then, that is all I have tried to do. The problem I would like the character to actually "slide" from tile to tile - but the canvas redrawing doesn't allow this - does anyone have any ideas....? Code and fiddle below... Fiddle with it! http://jsfiddle.net/neuroflux/n7VAu/ <html> <head> <title>tileEngine - Isometric</title> <style type="text/css"> * { margin: 0px; padding: 0px; font-family: arial, helvetica, sans-serif; font-size: 12px; cursor: default; } </style> <script type="text/javascript"> var map = Array( //land [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]], [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]] ); var tileDict = Array("http://www.wikiword.co.uk/release-candidate/canvas/tileEngine/land.png"); var charDict = Array("http://www.wikiword.co.uk/release-candidate/canvas/tileEngine/mario.png"); var objectDict = Array("http://www.wikiword.co.uk/release-candidate/canvas/tileEngine/rock.png"); //last is one more var objectImg = new Array(); var charImg = new Array(); var tileImg = new Array(); var loaded = 0; var loadTimer; var ymouse; var xmouse; var eventUpdate = 0; var playerX = 0; var playerY = 0; function loadImg(){ //preload images and calculate the total loading time for(var i=0;i<tileDict.length;i++){ tileImg[i] = new Image(); tileImg[i].src = tileDict[i]; tileImg[i].onload = function(){ loaded++; } } i = 0; for(var i=0;i<charDict.length;i++){ charImg[i] = new Image(); charImg[i].src = charDict[i]; charImg[i].onload = function(){ loaded++; } } i = 0; for(var i=0;i<objectDict.length;i++){ objectImg[i] = new Image(); objectImg[i].src = objectDict[i]; objectImg[i].onload = function(){ loaded++; } } } function checkKeycode(event) { //key pressed var keycode; if(event == null) { keyCode = window.event.keyCode; } else { keyCode = event.keyCode; } switch(keyCode) { case 38: //left if(!map[playerX-1][playerY][1] > 0){ playerX--; } break; case 40: //right if(!map[playerX+1][playerY][1] > 0){ playerX++; } break; case 39: //up if(!map[playerX][playerY-1][1] > 0){ playerY--; } break; case 37: //down if(!map[playerX][playerY+1][1] > 0){ playerY++; } break; default: break; } } function loadAll(){ //load the game if(loaded == tileDict.length + charDict.length + objectDict.length){ clearInterval(loadTimer); loadTimer = setInterval(gameUpdate,100); } } function drawMap(){ //draw the map (in intervals) var tileH = 25; var tileW = 50; mapX = 80; mapY = 10; for(i=0;i<map.length;i++){ for(j=0;j<map[i].length;j++){ var drawTile= map[i][j][0]; var xpos = (i-j)*tileH + mapX*4.5; var ypos = (i+j)*tileH/2+ mapY*3.0; ctx.drawImage(tileImg[drawTile],xpos,ypos); if(i == playerX && j == playerY){ you = ctx.drawImage(charImg[0],xpos,ypos-(charImg[0].height/2)); } } } } function init(){ //initialise the main functions and even handlers ctx = document.getElementById('main').getContext('2d'); loadImg(); loadTimer = setInterval(loadAll,10); document.onkeydown = checkKeycode; } function gameUpdate() { //update the game, clear canvas etc ctx.clearRect(0,0,904,460); ctx.fillStyle = "rgba(255, 255, 255, 1.0)"; //assign color drawMap(); } </script> </head> <body align="center" style="text-align: center;" onload="init()"> <canvas id="main" width="904" height="465"> <h1 style="color: white; font-size: 24px;">I'll be damned, there be no HTML5 &amp; canvas support on this 'ere electronic machine!<sub>This game, jus' plain ol' won't work!</sub></h1> </canvas> </body> </html>

    Read the article

  • Building View Matrix in Direct3D11

    - by Balls
    Am I doing it right? I converted this. m_ViewMatrix = XMMatrixLookAtLH(XMLoadFloat3(&m_Position), lookAtVector, upVector); to this one. XMVECTOR vz = XMVector3Normalize( lookAtVector - XMLoadFloat3(&m_Position) ); XMVECTOR vx = XMVector3Normalize( XMVector3Cross( upVector, vz ) ); XMVECTOR vy = XMVector3Cross( vz, vx ); m_ViewMatrix.r[0] = vx; m_ViewMatrix.r[1] = vy; m_ViewMatrix.r[2] = vz; m_ViewMatrix.r[3] = XMLoadFloat3(&m_Position); m_ViewMatrix.r[0].m128_f32[3] = 0.0f; m_ViewMatrix.r[1].m128_f32[3] = 0.0f; m_ViewMatrix.r[2].m128_f32[3] = 0.0f; m_ViewMatrix.r[3].m128_f32[3] = 1.0f; m_ViewMatrix = XMMatrixInverse( &XMMatrixDeterminant(m_ViewMatrix), m_ViewMatrix ); Everything looks fine when I run it. Another question is, I saw on this site(http://webglfactory.blogspot.com/2011/06/how-to-create-view-matrix.html) that he subtracted lookat from position in his vector vz. I tried it but gave me wrong view matrix. Can anyone check my code. I'm studying linear algebra right now. Sucks my course doesn't have one. Thank you, Balls

    Read the article

  • Getting to math applications gradually

    - by den-javamaniac
    I'm currently getting a formal degree related to computation, in particular my current focus is numerical programming, scientific computing and machine learning. I'd love to apply that knowledge in game dev and expand it with statistics, probability theory, and graph theory (probably even linear algebra). The question is: which spheres of gamedev are filled with such math stuff, is it possible to advance in those without being a part of a group of people and how to get to it gradually? P.S.: I've got experience with commercial java dev and am getting my hands on C/C++ at the moment, however, I'm opened to go ahead and try Unity3D and etc.

    Read the article

  • Drawing a texture at the end of a trace (crosshair?) UDK

    - by Dave Voyles
    I'm trying to draw a crosshair at the end of my trace. If my crosshair does not hit a pawn or static mesh (ex, just a skybox) then the crosshair stays locked on a certain point at that actor - I want to say its origin. Ex: Run across a pawn, then it turns yellow and stays on that pawn. If it runs across the skybox, then it stays at one point on the box. Weird? How can I get my crosshair to stay consistent? I've included two images for reference, to help illustrate. Note: The wrench is actually my crosshair. The "X" is just a debug crosshair. Ignore that. /// Image 1 /// /// Image 2 /// /*************************************************************************** * Draws the crosshair ***************************************************************************/ function bool CheckCrosshairOnFriendly() { local float CrosshairSize; local vector HitLocation, HitNormal, StartTrace, EndTrace, ScreenPos; local actor HitActor; local MyWeapon W; local Pawn MyPawnOwner; /** Sets the PawnOwner */ MyPawnOwner = Pawn(PlayerOwner.ViewTarget); /** Sets the Weapon */ W = MyWeapon(MyPawnOwner.Weapon); /** If we don't have an owner, then get out of the function */ if ( MyPawnOwner == None ) { return false; } /** If we have a weapon... */ if ( W != None) { /** Values for the trace */ StartTrace = W.InstantFireStartTrace(); EndTrace = StartTrace + W.MaxRange() * vector(PlayerOwner.Rotation); HitActor = MyPawnOwner.Trace(HitLocation, HitNormal, EndTrace, StartTrace, true, vect(0,0,0),, TRACEFLAG_Bullet); DrawDebugLine(StartTrace, EndTrace, 100,100,100,); /** Projection for the crosshair to convert 3d coords into 2d */ ScreenPos = Canvas.Project(HitLocation); /** If we haven't hit any actors... */ if ( Pawn(HitActor) == None ) { HitActor = (HitActor == None) ? None : Pawn(HitActor.Base); } } /** If our trace hits a pawn... */ if ((Pawn(HitActor) == None)) { /** Draws the crosshair for no one - Grey*/ CrosshairSize = 28 * (Canvas.ClipY / 768) * (Canvas.ClipX /1024); Canvas.SetDrawColor(100,100,128,255); Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f), ScreenPos.Y -(CrosshairSize * 0.5f)); Canvas.DrawTile(class'UTHUD'.default.AltHudTexture, CrosshairSize, CrosshairSize, 600, 262, 28, 27); return false; } /** Draws the crosshair for friendlies - Yellow */ CrosshairSize = 28 * (Canvas.ClipY / 768) * (Canvas.ClipX /1024); Canvas.SetDrawColor(255,255,128,255); Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f), ScreenPos.Y -(CrosshairSize * 0.5f)); Canvas.DrawTile(class'UTHUD'.default.AltHudTexture, CrosshairSize, CrosshairSize, 600, 262, 28, 27); return true; }

    Read the article

  • MMORPG game balancing

    - by Gary Paluk
    I've seen a couple of examples of some game balancing techniques in books yet they are not comprehensive and not particularly aimed at MMORPGs but I'm looking for practical examples of game balancing techniques for MMORPGs. I am interested to know if anyone has documented the techniques used in popular games with proven success in this area. Ideally, any resource would cover most common types of stats and include layman mathematical models or techniques used to balance game mechanics found in advanced MMORPGs (I know it's a cliché, but WoW style) Any help would be great!

    Read the article

  • Circle collision detection and Vector math: HELP?

    - by Griffin
    Hey so i'm currently going through the wildbunny blog to learn about collision detection, but i'm a bit confused on how the vectors he's talking about come into play QUOTED BLOG: p = ||A-B|| – (r1+r2) The two spheres are penetrating by distance p. We would also like the penetration vector so that we can correct the penetration once we discover it. This is the vector that moves both circles to the point where they just touch, correcting the penetration. Importantly it is not only just a vector that does this, it is the only vector which corrects the penetration by moving the minimum amount. This is important because we only want to correct the error, not introduce more by moving too much when we correct, or too little. N = (A-B) / ||A-B|| P = N*p Here we have calculated the normalised vector N between the two centres and the penetration vector P by multiplying our unit direction by the penetration distance. Ok so i understand that p is the distance each circle is penetrating each other, but i don't get what exactly N and P is. it seems to me N is just the coordinates of the 3rd point of the right trianlge formed by point A and B (A-B) then being divided by the hypotenuse of that triangle or distance between A and B (||A-B||) Whats the significance of this? Also, what is the penetration vector used for? It seems to me like a movement that one of the circles would perform to get un-penetrated.

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • Xna, after mouse click cpu usage goes 100%

    - by kosnkov
    Hi i have following code and it is enough just if i click on blue window then cpu goes to 100% for like at least one minute even with my i7 4 cores. I just check even with empty project and is the same !!! public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; private Texture2D cursorTex; private Vector2 cursorPos; GraphicsDevice device; float xPosition; float yPosition; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } protected override void Initialize() { Viewport vp = GraphicsDevice.Viewport; xPosition = vp.X + (vp.Width / 2); yPosition = vp.Y + (vp.Height / 2); device = graphics.GraphicsDevice; base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); cursorTex = Content.Load<Texture2D>("strzalka"); } protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); spriteBatch.Draw(cursorTex, cursorPos, Color.White); spriteBatch.End(); base.Draw(gameTime); } }

    Read the article

  • How to optimise mesh data

    - by Wardy
    So i have some procedurally generated mesh data and i want to reduce it down to its minimum number of verts. In case it matters this is a unity project. Working on the basis of a simple example, lets assume a typical flat surface of points 2 by 3. The point / vertex at [1,1] is used in many triangles. I've generated mesh for a voxel type engine that adds verts to a list based on face visiblility and now I want to remove all the duplicates. Can anyone come up with an efficient way of doing this because what i have is sooo bad its not even funny (and i don't even think it's logically correct) ... private void Optimize() { Vector3 v; Vector3 v2; for (int i = 0; i < Vertices.Count; i++) { v = Vertices[i]; for (int j = i+1; j < Vertices.Count; j++) { v2 = Vertices[j]; if (v.x == v2.x && v.y == v2.y && v.z == v2.z) { for (int ind = 0; ind < Indices.Count; ind++) { if (Indices[ind] == j) { Indices[ind] = i; } else if (Indices[ind] > j && Indices[ind] > 0) Indices[ind]--; } Vertices.RemoveAt(j); Uvs.RemoveAt(j); Normals.RemoveAt(j); } } } } EDIT: Ok i managed to get this (code sample above updated) to render an "optimised" set of verts but the UV data is all wrong now, which would make sense because i'm basically just removing any UV Vector that represents a UV coord for a removed vert and not actually considering what I need to do to "fix the tri" so to speak. The code now seemingly does work but its quite time consuming, still looking to further optimise.

    Read the article

  • Avoid double compression of resources

    - by user1095108
    I am using .pngs for my textures and am using a virtual file system in a .zip file for my game project. This means my textures are compressed and decompressed twice. What are the solutions to this double compression problem? One solution I've heard about is to use .tgas for textures, but it seems ages ago, since I've heard that. Another solution is to implement decompression on the GPU and, since that is fast, forget about the overhead.

    Read the article

  • How can I use WebGL to create a tile-based multi-layer scrolling platform game?

    - by Nicholas Hill
    I've found WebGL (based on OpenGL) to be a fiendish and unforgiving framework for those learning to write HTML5-based games. Despite the presence of many examples on how to get started, I'm really struggling to understand how I could simply load a bunch of images and render them to a canvas quickly using WebGL. My specific scenario involves trying to render a map using a bespoke but simple multi-layered tile engine, where each value in a three dimensional array points to the image to use for that location in the rendered image. Think "Sonic the Hedgehog" via tilesets, tiles, maps, layers, sprites etc. Can anyone enlighten me: 1) How can I load an image that I can use as a texture in WebGL? 2) How can I dynamically select an image at run time and draw it at any co-ordinate, that I also select at run time?

    Read the article

  • Adding 'swerve' to a direction

    - by Skoder
    Hey. I'm not much of a maths expert, so this is probably quite straight forward. I was playing a soccer flash game where you take free kicks. You provide Power, Swerve and Direction. I'm reading up on vectors and such so I can use the direction and power information to shoot the ball with the correct velocity. What I don't understand is how the 'Swerve' information is used. What formula connects the Swerve information with the Direction and Power? (This is all in 2D) Thanks for any advice.

    Read the article

  • When mapping the surface of a sphere with tiles, how might you deal with polar distortion?

    - by clweeks
    It's easy to deal with the way locations interact on a clean Cartesian grid. It's just vanilla math. And you can kind of ignore the geometry of the sphere's surface for a bunch of it if you want to just truncate the poles or something. But I keep coming up with ideas for games where the polar space matters. Geo-coded ARGs and global roguelikes and stuff. I want square(ish?) locations -- reasonably representable by square tiles of the same size across the globe, anyway. This has to be a solved problem, right? What are the solutions? ETA: At the equator -- and assuming that your square locations are reasonably small, it's close enough to true that you can get away with having one square in the rows north and south of the most equatorial row. And you could probably get away with that by just hand-waving the difference up to like 45-degrees or so. But eventually, you need to have fewer squares in a pole-ward circumferential row. If I reduce the length of the row by one and offset the squares by 1/2 then they're just like hexes and it's relatively easy to do the coding to keep track of the connections. But as you get pole-ward, it gets more and more extreme. Projecting the surface of the world onto the surface of a cube is tempting. But I figured there must be more elegant solutions already in use. If I did the cube thing (not dissecting it further through geodesy) Are there any pros and cons related to placing the pole at the center of a face or at the vertex of three sides?

    Read the article

  • How do I design a game framework for fast reaction to user input?

    - by Miro
    I've played some games at cca 30 fps and some of them had low reaction time - cca 0.1sec. I hadn't knew why. Now when I'm designing my framework for crossplatform game, I know why. Probably they've been preparing new frame during rendering the previous. RENDER 1 | RENDER 2 | RENDER 3 | RENDER 4 PREPARE 2 | PREPARE 3 | PREPARE 4 | PREPARE 5 I see first frame when second frame is being rendered and third frame being prepared. If I react in that time to 1st frame it will result in forth frame. So it takes 3/FPS seconds to appear results. In 30 fps it would be 100ms, what is quite bad. So i'm wondering what should I design my framework to response to user interaction quickly?

    Read the article

< Previous Page | 532 533 534 535 536 537 538 539 540 541 542 543  | Next Page >