Search Results

Search found 2515 results on 101 pages for 'opengl es2'.

Page 54/101 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • Per-vertex animation with VBOs: Stream each frame or use index offset per frame?

    - by charstar
    Scenario Meshes are animated using either skeletons (skinned animation) or some form of morph targets (i.e. per-vertex key frames). However, in either case, the animations are known in full at load-time, that is, there is no physics, IK solving, or any other form of in-game pose solving. The number of character actions (animations) will be limited but rich (hand-animated). There may be multiple characters using a each mesh and its animations simultaneously in-game (they will be at different poses/keyframes at the same time). Assume color and texture coordinate buffers are static. Goal To leverage the richness of well vetted animation tools such as Blender to do the heavy lifting for a small but rich set of animations. I am aware of additive pose blending like that from Naughty Dog and similar techniques but I would prefer to expend a little RAM/VRAM to avoid implementing a thesis-ready pose solver. I would also like to avoid implementing a key-frame + interpolation curve solver (reinventing Blender vertex groups and IPOs). Current Considerations Much like a non-shader-powered pose solver, create a VBO for each character and copy vertex and normal data to each VBO on each frame (VBO in STREAMING). Create one VBO for each animation where each frame (interleaved vertex and normal data) is concatenated onto the VBO. Then each character simply has a buffer pointer offset based on its current animation frame (e.g. pointer offset = (numVertices+numNormals)*frameNumber). (VBO in STATIC) Known Trade-Offs In 1 above: Each VBO would be small but there would be many VBOs and therefore lots of buffer binding and vertex copying each frame. Both client and pipeline intensive. In 2 above: There would be few VBOs therefore insignificant buffer binding and no vertex data getting jammed down the pipe each frame, but each VBO would be quite large. Are there any pitfalls to number 2 (aside from finite memory)? Are there other methods that I am missing?

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Square game map rendered as sphere

    - by Roflha
    For a hobby project of mine I have created a finite voxel world (similar to Minecraft), but as I said, mine is finite. When you reach the edge of it, you are sent to the other side. That is all working fine along with rendering the far side of the map, but I want to be able to render this grid as a sphere. Looking down from above, the world is a square. I basically want to be able to represent a portion of that square as a sphere, as if you were looking at a planet. Right now I am experimenting with taking a circular section of the map, and rendering that, but it look to flat (no curvature around the edges). My question then, is what would be the best way to add some curvature to the edges of a 2d circle to make it look like a hemisphere. However, I am not overly attached to this implementation so if somebody has some other idea for representing the square as a planet, I am all ears.

    Read the article

  • Generating triangles from a square grid

    - by vivi
    I have a 2D square grid of values representing terrain elevations, and I want to generate triangles from that grid to make a 3D view of the terrain. My first thought was to split each square diagonally into 2 triangles, however the split diagonal can clearly be seen, especially from the top : [Sorry, as a new user I can't post images, please see here : imgur] Is there a recommended way to generate triangles to remove/reduce this effect ?

    Read the article

  • samplerCubeShadow and texture offset

    - by Irbis
    I use sampler2DShadow when accessing a single shadow map. I create PCF in this way: result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,-1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,-1)); result = result * 0.25; For a cube map I use samplerCubeShadow: result = texture(ShadowCubeSampler, vec4(normalize(position), depth)); How to adopt above PCF when accessing a cube map ?

    Read the article

  • Sorting objects before rendering

    - by dreta
    I'm trying to implement a scene graph and in all the articles i've come across there is talk about object sorting. So you'd sort your objects by "material" for example. Now untill i sat down and started implementing it, i kind of took this for granted, because it made sense. But now i'm wondering what does sorting actually change? In my engine, i have a manager for UBOs, i use those to store data that'll be shared between programs, at the moment that only involves time, camera and projection matrices and lights (i'm not worrying about managing which lights affect which objects ATM). Now for each model i have to change the model to world matrix uniform, no sorting is going to change that. So is the jump from changing this matrix to also setting a material for each object that bad? I vaguely remember reading somewhere that each time you change something in the pipeline, it has to get flushed and that can cause performance issues. But for each drawing call i'm setting up a model to world matrix anyway, so what sense does it make to ever be concerned about this? BTW is there any information about whether changing a uniform and calling glBufferSubData is more (or less) expensive.

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • LWJGL - Mixing 2D and 3D

    - by nathan
    I'm trying to mix 2D and 3D using LWJGL. I have wrote 2D little method that allow me to easily switch between 2D and 3D. protected static void make2D() { glEnable(GL_BLEND); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); glOrtho(0.0f, SCREEN_WIDTH, SCREEN_HEIGHT, 0.0f, 0.0f, 1.0f); GL11.glMatrixMode(GL11.GL_MODELVIEW); GL11.glLoadIdentity(); } protected static void make3D() { glDisable(GL_BLEND); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); // Reset The Projection Matrix GLU.gluPerspective(45.0f, ((float) SCREEN_WIDTH / (float) SCREEN_HEIGHT), 0.1f, 100.0f); // Calculate The Aspect Ratio Of The Window GL11.glMatrixMode(GL11.GL_MODELVIEW); glLoadIdentity(); } The in my rendering code i would do something like: make2D(); //draw 2D stuffs here make3D(); //draw 3D stuffs here What i'm trying to do is to draw a 3D shape (in my case a quad) and i 2D image. I found this example and i took the code from TextureLoader, Texture and Sprite to load and render a 2D image. Here is how i load the image. TextureLoader loader = new TextureLoader(); Sprite s = new Sprite(loader, "player.png") And how i render it: make2D(); s.draw(0, 0); It works great. Here is how i render my quad: glTranslatef(0.0f, 0.0f, 30.0f); glScalef(12.0f, 9.0f, 1.0f); DrawUtils.drawQuad(); Once again, no problem, the quad is properly rendered. DrawUtils is a simple class i wrote containing utility method to draw primitives shapes. Now my problem is when i want to mix both of the above, loading/rendering the 2D image, rendering the quad. When i try to load my 2D image with the following: s = new Sprite(loader, "player.png); My quad is not rendered anymore (i'm not even trying to render the 2D image at this point). Only the fact of creating the texture create the issue. After looking a bit at the code of Sprite and TextureLoader i found that the problem appears after the call of the glTexImage2d. In the TextureLoader class: glTexImage2D(target, 0, dstPixelFormat, get2Fold(bufferedImage.getWidth()), get2Fold(bufferedImage.getHeight()), 0, srcPixelFormat, GL_UNSIGNED_BYTE, textureBuffer); Commenting this like make the problem disappear. My question is then why? Is there anything special to do after calling this function to do 3D? Does this function alter the render part, the projection matrix?

    Read the article

  • Game has noticeable frame drops but when through a profiler it always runs smooth

    - by felipedrl
    I'm trying to optimize my PC game but I can find the bottleneck since every time I run it through a profiler (gDEBugger) it runs smooths. When running outside gDEBugger I get these annoying hiccups. It's not just the graphics, the sound also gets choppy. The drops are inconsistent across runs, i.e, sometimes I run the same scenario and get no drops at all, sometimes I get a few drops, and others the game is consistently slow. The only constant is: when running through gDEBugger I ALWAYS get a smooth run. I'm suspecting something outside my game is interfering and causing these drops, but what in the hell does gDEBugger do that nullifies these drops? A higher process priority? Any ideas? Thanks in advance.

    Read the article

  • Texture artifacts on iPad

    - by MrDatabase
    I'm porting an iPhone game to the iPad. When I move textures "quickly" (5.0 pixels every update at a rate of 60 Hz) I start to see little "artifacts" or remnants of where the texture used to be. I'm not sure if I know the correct terminology for this... imagine a texture at some location on the screen... then next to it is the same texture but faded a bit... then the same texture again just faded a bit more. I'm using CADisplayLink to drive my update loop if that helps. Also I didn't see this issue on the 3G or the iPhone 4. Any ideas? Cheers!

    Read the article

  • Drawing texture does not work anymore with a small amount of triangles

    - by Paul
    When i draw lines, the vertices are well connected. But when i draw the texture inside the triangles, it only works with i<4 in the for loop, otherwise with i<5 for example, there is a EXC_BAD_ACCESS message, at @synthesize textureImage = _textureImage. I don't understand why. (The generatePolygons method seems to work fine as i tried to draw lines with many vertices as in the second image below. And textureImage remains the same for i<4 or i<5 : it's a 512px square image). Here are the images : What i want to achieve is to put the red points and connect them to the y-axis (the green points) and color the area (the green triangles) : If i only draw lines, it works fine : Then with a texture color, it works for i<4 in the loop (the red points in my first image, plus the fifth one to connect the last y) : But then, if i set i<5, the debug tool says EXC_BAD_ACCESS at the synthesize of _textureImage. Here is my code : I set a texture color in HelloWordLayer.mm with : CCSprite *textureImage = [self spriteWithColor:color3 textureSize:512]; _terrain.textureImage = textureImage; Then in the class Terrain, i create the vertices and put the texture in the draw method : @implementation Terrain @synthesize textureImage = _textureImage; //EXC_BAD_ACCESS for i<5 - (void)generatePath2{ CGSize winSize = [CCDirector sharedDirector].winSize; float x = 40; float y = 0; for(int i = 0; i < kMaxKeyPoints+1; ++i) { _hillKeyPoints[i] = CGPointMake(x, y); x = 150 + (random() % (int) 30); y += 30; } } -(void)generatePolygons{ _nPolyVertices = 0; float x1 = 0; float y1 = 0; int keyPoints = 0; for (int i=0; i<4; i++){ /* HERE : 4 = OK / 5 = crash */ //V0: at (0,0) _polyVertices[_nPolyVertices] = CGPointMake(x1, y1); _polyTexCoords[_nPolyVertices++] = CGPointMake(x1, y1); //V1: to the first "point" _polyVertices[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices++] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); keyPoints++; //from point at index 0 to 1 //V2, same y as point n°2: _polyVertices[_nPolyVertices] = CGPointMake(0, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices++] = CGPointMake(0, _hillKeyPoints[keyPoints].y); //V1 again _polyVertices[_nPolyVertices] = _polyVertices[_nPolyVertices-2]; _polyTexCoords[_nPolyVertices++] = _polyVertices[_nPolyVertices-2]; //V2 again _polyVertices[_nPolyVertices] = _polyVertices[_nPolyVertices-2]; _polyTexCoords[_nPolyVertices++] = _polyVertices[_nPolyVertices-2]; //V3 = same x,y as point at index 1 _polyVertices[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); y1 = _polyVertices[_nPolyVertices].y; _nPolyVertices++; } } - (id)init { if ((self = [super init])) { [self generatePath2]; [self generatePolygons]; } return self; } - (void) draw { //glDisable(GL_TEXTURE_2D); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glBindTexture(GL_TEXTURE_2D, _textureImage.texture.name); glColor4f(1, 1, 1, 1); glVertexPointer(2, GL_FLOAT, 0, _polyVertices); glTexCoordPointer(2, GL_FLOAT, 0, _polyTexCoords); glDrawArrays(GL_TRIANGLE_STRIP, 0, (GLsizei)_nPolyVertices); glColor4f(1, 1, 1, 1); for(int i = 1; i < 40; ++i) { ccDrawLine(_polyVertices[i-1], _polyVertices[i]); } // restore default GL states glEnable(GL_TEXTURE_2D); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); } Do you see anything wrong in this code? Thanks for your help

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Projecting onto different size screens by cropping

    - by Jason
    Hi, I am building a phone application which will display a shape on screen. The shape should look the same on different screen sizes. I. Decided the best way to do this is to show more of the background on larger screen keeping the shapes proportion the same on all screens. My problem is I am not sure how to achieve this, I can query the screen size at runtime and calculate how different it is from the six is designed for but I am not sure what to do with this value. What kind of projection should I use for my orthographic matrix an hour will I display more on larger screens and not loose information on smaller screens? Thanks, Jason.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • Triple buffering causes input lag?

    - by user782220
    Consider some time in between two vsyncs. Suppose the first display buffer is being used to display the current image, and suppose the game was really fast and computed and rendered the next image to the second display buffer and the next one after that to the third display buffer. That is the rendering to the second and third display buffer happens so fast that it occurs before the next vsync. Suppose input from the user comes in now. What you would like is for the results of the input to show up on the next vsync or (probably more typical) the vsync after that. However, with the third display buffer already rendered the input can only effect the image after that. Meaning the input will only take effect at best 3 vsyncs later. I wish i had an image to show the exact timings of what I mean.

    Read the article

  • Directional and orientation problem

    - by Ahmed Saleh
    I have drawn 5 tentacles which are shown in red. I have drew those tentacles on a 2D Circle, and positioned them on 5 vertices of the that circle. BTW, The circle is never be drawn, I have used it to simplify the problem. Now I wanted to attached that circle with tentacles underneath the jellyfish. There is a problem with the current code but I don't know what is it. You can see that the circle is parallel to the base of the jelly fish. I want it to be shifted so that it be inside the jelly fish. but I don't know how. I tried to multiply the direction vector to extend it but that didn't work. // One tentacle is constructed from nodes // Get the direction of the first tentacle's node 0 to node 39 of that tentacle; Vec3f dir = m_tentacle[0]->geNodesPos()[0] - m_tentacle[0]->geNodesPos()[39]; // Draw the circle with tentacles on it Vec3f pos = m_SpherePos; drawCircle(pos,dir,30,m_tentacle.size()); for (int i=0; i<m_tentacle.size(); i++) { m_tentacle[i]->Draw(); } // Draw the jelly fish, and orient it on the 2D Circle gl::pushMatrices(); Quatf q; // assign quaternion to rotate the jelly fish around the tentacles q.set(Vec3f(0,-1,0),Vec3f(dir.x,dir.y,dir.z)); // tanslate it to the position of the whole creature per every frame gl::translate(m_SpherePos.x,m_SpherePos.y,m_SpherePos.z); gl::rotate(q); // draw the jelly fish at center 0,0,0 drawHemiSphere(Vec3f(0,0,0),m_iRadius,90); gl::popMatrices();

    Read the article

  • How can I get my meshes to work with Bullet Physics?

    - by Molmasepic
    The problem is that I'm trying to use my meshes with Bullet Physics for the collision part of my game. When I attempted doing this method with my GLM(model loading library by nate robins) model, I get a segmentation fault in the debug, so I figured that it doesnt like the coordinate variables of the model. If i use blender to export my model as a collision file, what type of file should I use? I have heard of a .bullet exporter, but i dont know hot to integrate this python script into my Blender 2.5 program.

    Read the article

  • fragment shader directional light positioning with camera

    - by meWantToLearn
    Im trying to set up directional lighting in the fragment shader. So the direction of my light moves with the camera position. #version 150 core uniform sampler2D diffuseTex; uniform vec4 lightColour; uniform vec3 lightDirection; vec3 LNorm = normalize(lightDirection); vec3 normal = normalize(IN.normal); vec3 calColour = lightColour[i].rgb * intensity; gl_FragColor = vec4(diffuse.rbg * calColour, diffuse.a); It lights the entire scene.

    Read the article

  • PNG file loading error in ImageMagick

    - by khanhhh89
    I'm trying to understand the tutorial 16 at http://ogldev.atspace.co.uk, which requires the image processing library ImageMagick. But when I run the tutorial, I encountered an following error: freeglut: failed to change scree settings Error loading textures 'test.png': no decode delegates for this image format 'C:/../appdata/magick-6024a_cIJcw90t-j'@error/constitute.c/ReadImage/552 I searched for google and found that my ImageMagick library do not have PNG Delegaes, but when I checked for the information of ImageMagick, it sees PNG in its delegate lists. Command line: convert -configure Result: LIB_VERSION 0x687 DELEGATES: bzlib, freetype, jpeg, jp2, lcms, png, tiff, x11, xml, wmf, zlib Could you explain to me this error, thanks so much!

    Read the article

  • ssao implementation

    - by Irbis
    I try to implement a ssao based on this tutorial: link I use a deferred rendering and world coordinates for shading calculations. When saving gbuffer a vertex shader output looks like this: worldPosition = vec3(ModelMatrix * vec4(inPosition, 1.0)); normal = normalize(normalModelMatrix * inNormal); gl_Position = ProjectionMatrix * ViewMatrix * ModelMatrix * vec4(inPosition, 1.0); Next for a ssao calculations I render a scene as a full screen quad and I save an occlusion parameter in a texture. (Vertex positions in the world space: link Normals in the world space: link) SSAO implementation: subroutine (RenderPassType) void ssao() { vec2 texCoord = CalcTexCoord(); vec3 worldPos = texture(texture0, texCoord).xyz; vec3 normal = normalize(texture(texture1, texCoord).xyz); vec2 noiseScale = vec2(screenSize.x / 4, screenSize.y / 4); vec3 rvec = texture(texture2, texCoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); mat3 tbn = mat3(tangent, bitangent, normal); float occlusion = 0.0; float radius = 4.0; for (int i = 0; i < kernelSize; ++i) { vec3 pix = tbn * kernel[i]; pix = pix * radius + worldPos; vec4 offset = vec4(pix, 1.0); offset = ProjectionMatrix * ViewMatrix * offset; offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; float sample_depth = texture(texture0, offset.xy).z; float range_check = abs(worldPos.z - sample_depth) < radius ? 1.0 : 0.0; occlusion += (sample_depth <= pix.z ? 1.0 : 0.0); } outputColor = vec4(occlusion, occlusion, occlusion, 1); } That code gives following results: camera looking towards -z world space: link camera looking towards +z world space: link I wonder if it is possible to use world coordinates in the above code ? When I move camera I get different results because world space positions don't change. Can I treat worldPos.z as a linear depth ? What should I change to get a correct results ? I except the white areas in place of occlusion, so the ground should has the white areas only near to the object.

    Read the article

  • Bad texture on model with different GPU

    - by Pacha
    I have some kind of distortion on the texture of my 3D model. It works perfectly well on an AMD GPU, but when testing on a integrated Intel HD graphics card it has a weird issue. I don't have a problem with the rest of my entities as they are not scaled. The models with the problems are scaled, as my engine supports different sizes for the platforms. I am using Ogre3D as rendering engine, and GLSL as shader language. Vertex shader: #version 120 varying vec2 UV; void main() { UV = gl_MultiTexCoord0; gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } Fragment shader: #version 120 varying vec2 UV; uniform sampler2D diffuseMap; void main(void) { gl_FragColor = texture(diffuseMap, UV); } Screenshot (the error is on the right and left side, the top and bottom part are rendered perfectly well):

    Read the article

  • How should I organize my matrices in a 3D game engine?

    - by Need4Sleep
    I'm working with a group of people from around the world to create a game engine (and hopefully a game with it) within the next upcoming years. My first task is to write a camera class for the engine to use in order to add cameras to the scene, with position and follow points. The problem I have is with using matrices for transformations in the class, should I keep matrices separate to each class? Such as have the model matrix in the model class, camera matrix in the camera class, or have all matrices placed in one class/chuck? I could see pros and cons for each method, but I wanted to hear some input form a more professional standpoint.

    Read the article

  • Efficiently rendering to 3D texture

    - by TravisG
    I have an existing depth texture and some other color textures, and want to process the information in them by rendering to a 3D texture (based on the depth contained in the depth texture, i.e. a point at (x/y) in the depth texture will be rendered to (x/y/texture(depth,uv)) in the 3D texture). Simply doing one manual draw call for each slice of the 3D texture (via glFramebufferTextureLayer) is terribly slow, since I don't know beforehand to what slice of the 3D texture a given texel from one of the color textures or the depth texture belongs. This means the entire process is effectively for each slice for each texel in depth texture process color textures and render to slice So I have to sample the depth texture completely per each slice, and I also have to go through the processing (at least until to discard;) for all texels in it. It would be much faster if I could rearrange the process to for each texel in depth texture figure out what slice it should end up in process color textures and render to slice Is this possible? If so, how? What I'm actually trying to do: the color textures contain lighting information (as seen from light view, it's a reflective shadow map). I want to accumulate that information in the 3D texture and then later use it to light the scene. More specifically I'm trying to implement Cryteks Light Propagation Volumes algorithm.

    Read the article

  • Creating a voxel world with 3D arrays using threads

    - by Sean M.
    I am making a voxel game (a bit like Minecraft) in C++(11), and I've come across an issue with creating a world efficiently. In my program, I have a World class, which holds a 3D array of Region class pointers. When I initialize the world, I give it a width, height, and depth so it knows how large of a world to create. Each Region is split up into a 32x32x32 area of blocks, so as you may guess, it takes a while to initialize the world once the world gets to be above 8x4x8 Regions. In order to alleviate this issue, I thought that using threads to generate different levels of the world concurrently would make it go faster. Having not used threads much before this, and being still relatively new to C++, I'm not entirely sure how to go about implementing one thread per level (level being a xz plane with a height of 1), when there is a variable number of levels. I tried this: for(int i = 0; i < height; i++) { std::thread th(std::bind(&World::load, this, width, height, depth)); th.join(); } Where load() just loads all Regions at height "height". But that executes the threads one at a time (which makes sense, looking back), and that of course takes as long as generating all Regions in one loop. I then tried: std::thread t1(std::bind(&World::load, this, w, h1, h2 - 1, d)); std::thread t2(std::bind(&World::load, this, w, h2, h3 - 1, d)); std::thread t3(std::bind(&World::load, this, w, h3, h4 - 1, d)); std::thread t4(std::bind(&World::load, this, w, h4, h - 1, d)); t1.join(); t2.join(); t3.join(); t4.join(); This works in that the world loads about 3-3.5 times faster, but this forces the height to be a multiple of 4, and it also gives the same exact VAO object to every single Region, which need individual VAOs in order to render properly. The VAO of each Region is set in the constructor, so I'm assuming that somehow the VAO number is not thread safe or something (again, unfamiliar with threads). So basically, my question is two one-part: How to I implement a variable number of threads that all execute at the same time, and force the main thread to wait for them using join() without stopping the other threads? How do I make the VAO objects thread safe, so when a bunch of Regions are being created at the same time across multiple threads, they don't all get the exact same VAO? Turns out it has to do with GL contexts not working across multiple threads. I moved the VAO/VBO creation back to the main thread. Fixed! Here is the code for block.h/.cpp, region.h/.cpp, and CVBObject.h/.cpp which controls VBOs and VAOs, in case you need it. If you need to see anything else just ask. EDIT: Also, I'd prefer not to have answers that are like "you should have used boost". I'm trying to do this without boost to get used to threads before moving onto other libraries.

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >