Search Results

Search found 29201 results on 1169 pages for 'game development'.

Page 546/1169 | < Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >

  • DX9 Deferred Rendering, GBuffer displays as clear color only

    - by Fire31
    I'm trying to implement Catalin Zima's Deferred Renderer in a very lightweight c++ DirectX 9 app (only renders a skydome and a model), at this moment I'm trying to render the gbuffer, but I'm having a problem, the screen shows only the clear color, no matter how much I move the camera around. However, removing all the render target operations lets the app render the scene normally, even if the models are being applied the renderGBuffer effect. Any ideas of what I'm doing wrong?

    Read the article

  • Speed up lighting in deferred shading

    - by kochol
    I implemented a simple deferred shading renderer. I use 3 G-Buffer for storing position (R32F), normal (G16R16F) and albedo (ARGB8). I use sphere map algorithm to store normals in world space. Currently I use inverse of view * projection matrix to calculate the position of each pixel from stored depth value. First I want to avoid per pixel matrix multiplication for calculating the position. Is there another way to store and calculate position in G-Buffer without the need of matrix multiplication Store the normal in view space Every lighting in my engine is in world space and I want do the lighting in view space to speed up my lighting pass. I want an optimized lighting pass for my deferred engine.

    Read the article

  • Collision detection code style

    - by Marian Ivanov
    Not only there are two useful broad-phase algorithms and a lot of useful narrowphase algorithms, there are also multiple code styles. Arrays vs. calling Make an array of broadphase checks, then filter them with narrowphase checks, then resolve them. function resolveCollisions(thingyStructure * a,thingyStructure * b,int index){ possibleCollisions = getPossibleCollisions(b,a->get(index)); for(i=0; i<possibleCollitionsNumber; i++){ if(narrowphase(possibleCollisions[i],a[index])) { collisions->push(possibleCollisions[i]); }; }; for(i=0; i<collitionsNumber; i++){ //CODE FOR RESOLUTION }; }; Make the broadphase call the narrowphase, and the narrowphase call the resolution function resolveCollisions(thingyStructure * a,thingyStructure * b,int index){ broadphase(b,a->get(index)); }; function broadphase(thingy * with, thingy * what){ while(blah){ //blahcode narrowphase(what,collidingThing); }; }; Events vs. in-the-loop Fire an event. This abstracts the check away, but it's trickier to make an equal interaction. a[index] -> collisionEvent(eventdata); //much later int collisionEvent(eventdata){ //resolution gets here } Resolve the collision inside the loop. This glues narrowphase and resolution into one layer. if(narrowphase(possibleCollisions[i],a[index])) { //CODE GOES HERE }; The questions are: Which of the first two is better, and how am I supposed to make a zero-sum Newtonian interaction under B1.

    Read the article

  • Camera Collision inside the room model

    - by sanddy
    I am having a problem in Calculating the camera collision for my Room model which consists of sofa, tables and other models. The users shall be moving the camera front, back, rotating so i need to make sure that the camera does not collide with any of the models with in the room. I have treated all my models inside the room by BoundingBox[] and the camera by BoundingSphere. So, far i have implemented collision by looking into the tutorial from http://www.toymaker.info/Games/XNA/html/xna_model_collisions.html which was great. But, I guess the problem lies in the Transformation part. I debugged and found some points to be at Vector(-XXX,-XXX,-XXX) where X is digit. Also i found my radius of some models where too large(in thousand, i just looked into its radius value before converting to BoundingBox). Do I need to scale the model for collision??? Below are my code:- On My LoadContent(): Matrix[] transforms = new Matrix[myModel.Bones.Count]; myModel.CopyAbsoluteBoneTransformsTo(transforms); int index = 0; box = new List<BoundingBox>(); BoundingBox worldModel = Utility.CalculateBoundingBox(myModel); foreach (ModelMesh mesh in myModel.Meshes) { Vector3[] obb = new Vector3[8]; worldModel.GetCorners(obb); Vector3[] asdf = (Vector3[])obb.Clone(); Vector3.Transform(obb, ref transforms[mesh.ParentBone.Index], obb); BoundingBox worldBox = BoundingBox.CreateFromPoints(obb); box.Add(worldBox); index++; } On CameraPosition Update: BoundingSphere bs = new BoundingSphere(this.cameraPos, 5.0f); if (RoomWalkthrough.Utility.CheckCollision(bs, bb)) { // Do Something } Please Help.

    Read the article

  • Deferred Rendering With Diffuse,Specular, and Normal maps

    - by John
    I have been reading up on deferred rendering and I am trying to implement a renderer using the Sponza atrium model, which can be found here, as my sandbox.Note I am also using OpenGL 3.3 and GLSL. I am loading the model from a Wavefront OBJ file using Assimp. I extract all geometry information including tangents and bitangents. For all the aiMaterials,I extract the following information which essentially comes from the sponza.mtl file. Ambient/Diffuse/Specular/Emissive Reflectivity Coefficients(Ka,Kd,Ks,Ke) Shininess Diffuse Map Specular Map Normal Map I understand that I must render vertex attributes such as position ,normals,texture coordinates to textures as well as depth for the second render pass. A lot of resources mention putting colour information into a g-buffer in the initial render pass but do you not require the diffuse,specular and normal maps and therefore lights to determine the fragment colour? I know that doesnt make since sense because lighting should be done in the second render pass. In terms of normal mapping, do you essentially just pass the tangent,bitangents, and normals into g-buffers and then construct the tangent matrix and apply it to the sampled normal from the normal map. Ultimately, I would like to know how to incorporate this material information into my deferred renderer.

    Read the article

  • Absorbtion 2d image effect

    - by Ed.
    I want to create a specyfic 2d image effect. It consists in modifying a sprite so it looks like it is being zoomed to a point or "absorbed" by that point. I'm not really sure what is the technical name of this effect so I cannot explain it correctly. Here you can see a video of what I'm talking about, it is the effect when the character absorbs the three glyphs. http://www.youtube.com/watch?v=PIo-GddsMcU&t=4m45s What is the name of this effect? How can I implement it with XNA for 2D textures/sprites?

    Read the article

  • Render full-screen gradient or texture

    - by Filip Skakun
    What's the simplest way to fill the background of the screen with a gradient or a texture in Direct3D 10/11? I'm building a Windows 8 metro app in which the camera never moves and I render some content in D3D, but I need to fill the background with something else than a solid color. Do I need to figure out the size and position of a rectangle and position it in 3D space or can I have some simpler solution? I don't care about depth at all, I don't use any depth buffer since all my content is sorted back to front, so I could just start by drawing to the background.

    Read the article

  • Question about component based design: handling objects interaction

    - by Milo
    I'm not sure how exactly objects do things to other objects in a component based design. Say I have an Obj class. I do: Obj obj; obj.add(new Position()); obj.add(new Physics()); How could I then have another object not only move the ball but have those physics applied. I'm not looking for implementation details but rather abstractly how objects communicate. In an entity based design, you might just have: obj1.emitForceOn(obj2,5.0,0.0,0.0); Any article or explanation to get a better grasp on a component driven design and how to do basic things would be really helpful.

    Read the article

  • Mapping dynamic buffers in Direct3D11 in Windows Store apps

    - by Donnie
    I'm trying to make instanced geometry in Direct3D11, and the ID3D11DeviceContext1->Map() call is failing with the very helpful error of "Invalid Parameter" when I'm attempting to update the instance buffer. The buffer is declared as a member variable: Microsoft::WRL::ComPtr<ID3D11Buffer> m_instanceBuffer; Then I create it (which succeeds): D3D11_BUFFER_DESC instanceDesc; ZeroMemory(&instanceDesc, sizeof(D3D11_BUFFER_DESC)); instanceDesc.Usage = D3D11_USAGE_DYNAMIC; instanceDesc.ByteWidth = sizeof(InstanceData) * MAX_INSTANCE_COUNT; instanceDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; instanceDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; instanceDesc.MiscFlags = 0; instanceDesc.StructureByteStride = 0; DX::ThrowIfFailed(d3dDevice->CreateBuffer(&instanceDesc, NULL, &m_instanceBuffer)); However, when I try to map it: D3D11_MAPPED_SUBRESOURCE inst; DX::ThrowIfFailed(d3dContext->Map(m_instanceBuffer.Get(), 0, D3D11_MAP_WRITE, 0, &inst)); The map call fails with E_INVALIDARG. Nothing is NULL incorrectly, and this being one of my first D3D apps I'm currently stumped on what to do next to track it down. I'm thinking I must be creating the buffer incorrectly, but I can't see how. Any input would be appreciated.

    Read the article

  • My frustum culling is culling from the wrong point

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] /= length; m_Planes[side][1] /= length; m_Planes[side][2] /= length; m_Planes[side][3] /= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } What am i doing wrong?

    Read the article

  • Why don't Normal maps in tangent space have a single blue color?

    - by seahorse
    Normal maps are predominantly blue in color because the z component maps to Blue and since normals point out of the surface in the z direction we see Blue as the predominant component. If the above is true then why are normal maps just of one color i.e. blue and they should not be having any other shades(not even shades of blue) Since by definition tangent space is perpendicular to normal at any point we should have the normal always pointing in the Z (Blue direction) with no X(Red component) and Y(Green component). Thus the normal map(since it is a "normal map") should have had color of normals which is just the Blue(Z =Blue compoennt = 1, R=0, G=0) and the normal map should have been of only Blue color with no shades in between. But even then normal maps are not so, and they have gradients of shades in them, why is this so?

    Read the article

  • Arbitrary projection matrix from 6 arbitrary frustum planes

    - by Doub
    A projection matrix represent a tranformation from the camera view space to the rendering system clip space. In other words, it defines the transormation between a 6-sided frustum to the clip cube. The glOrtho and glFrustum use only 6 parameter to define such a projection, but impose several constraints on the frustum that will get projected to the clip cube: the near and far planes are parallel, the left and right planes intersect on a vertical line, and the top and bottom planes intersect on a horizontal lines, both lines being parallel to the near and far planes. I'd like to lift these restrictions. So, from the definition of the 6 frustum side planes (in whatever representation you see fit), how can I compute a general projection matrix?

    Read the article

  • How to have operations with character/items in binary with concrete operations?

    - by Piperoman
    I have the next problem. A item can have a lot of states: NORMAL = 0000000 DRY = 0000001 HOT = 0000010 BURNING = 0000100 WET = 0001000 COLD = 0010000 FROZEN = 0100000 POISONED= 1000000 A item can have some states at same time but not all of them Is impossible to be dry and wet at same time. If you COLD a WET item, it turns into FROZEN. If you HOT a WET item, it turns into NORMAL A item can be BURNING and POISON Etc. I have tried to set binary flags to states, and use AND to combine different states, checking before if it is possible or not to do it, or change to another status. Does there exist a concrete approach to solve this problem efficiently without having an interminable switch that checks every state with every new state? It is relatively easy to check 2 different states, but if there exists a third state it is not trivial to do.

    Read the article

  • Correct use of VAO's in OpenGL ES2 for iOS?

    - by sak
    I'm migrating to OpenGL ES2 for one of my iOS projects, and I'm having trouble to get any geometry to render successfully. Here's where I'm setting up the VAO rendering: void bindVAO(int vertexCount, struct Vertex* vertexData, GLushort* indexData, GLuint* vaoId, GLuint* indexId){ //generate the VAO & bind glGenVertexArraysOES(1, vaoId); glBindVertexArrayOES(*vaoId); GLuint positionBufferId; //generate the VBO & bind glGenBuffers(1, &positionBufferId); glBindBuffer(GL_ARRAY_BUFFER, positionBufferId); //populate the buffer data glBufferData(GL_ARRAY_BUFFER, vertexCount, vertexData, GL_STATIC_DRAW); //size of verte position GLsizei posTypeSize = sizeof(kPositionVertexType); glVertexAttribPointer(kVertexPositionAttributeLocation, kVertexSize, kPositionVertexTypeEnum, GL_FALSE, sizeof(struct Vertex), (void*)offsetof(struct Vertex, position)); glEnableVertexAttribArray(kVertexPositionAttributeLocation); //create & bind index information glGenBuffers(1, indexId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexCount, indexData, GL_STATIC_DRAW); //restore default state glBindVertexArrayOES(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); } And here's the rendering step: //bind the frame buffer for drawing glBindFramebuffer(GL_FRAMEBUFFER, outputFrameBuffer); glClear(GL_COLOR_BUFFER_BIT); //use the shader program glUseProgram(program); glClearColor(0.4, 0.5, 0.6, 0.5); float aspect = fabsf(320.0 / 480.0); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.0f); GLKMatrix4 mvpMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); //glUniformMatrix4fv(projectionMatrixUniformLocation, 1, GL_FALSE, projectionMatrix.m); glUniformMatrix4fv(modelViewMatrixUniformLocation, 1, GL_FALSE, mvpMatrix.m); glBindVertexArrayOES(vaoId); glDrawElements(GL_TRIANGLE_FAN, kVertexCount, GL_FLOAT, &indexId); //bind the color buffer glBindRenderbuffer(GL_RENDERBUFFER, colorRenderBuffer); [context presentRenderbuffer:GL_RENDERBUFFER]; The screen is rendering the color passed to glClearColor correctly, but not the shape passed into bindVAO. Is my VAO being built correctly? Thanks!

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Creating a curved mesh on inside of sphere based on texture image coordinates

    - by user5025
    In Blender, I have created a sphere with a panoramic texture on the inside. I have also manually created a plane mesh (curved to match the size of the sphere) that sits on the inside wall where I can draw a different texture. This is great, but I really want to reduce the manual labor, and do some of this work in a script -- like having a variable for the panoramic image, and coordinates of the area in the photograph that I want to replace with a new mesh. The hardest part of doing this is going to be creating a curved mesh in code that can sit on the inside wall of a sphere. Can anyone point me in the right direction?

    Read the article

  • Isometric algorithm producing tiles in wrong draw order

    - by David
    I've been toying with isometric and I just cant get the tiles to be in the right order. I'm probably missing something obvious and I just can't see it. Even at the risk of looking stupid, here's my code: for (int i = 0; i < Tile.MapSize; i++) { for (int j = 0; j < Tile.MapSize; j++) { spriteBatch.Draw( Tile.TileSetTexture, new Rectangle( (-j * Tile.TileWidth / 2) + (i * Tile.TileWidth / 2), (i * (Tile.TileHeight - 9) / 2) - (-j * (Tile.TileHeight - 9) / 2), Tile.TileWidth, Tile.TileHeight), Tile.GetSourceRectangle(tileID), Color.White, 0.0f, new Vector2(-350, -60), SpriteEffects.None, 1.0f); } } And here's what I end up with: messed up map Yep, bit of an issue. If anyone could help, I'd appreciate it.

    Read the article

  • How to translate along Z axis in OpenTK

    - by JeremyJAlpha
    I am playing around with an OpenGL sample application I downloaded for Xamarin-Android. The sample application produces a rotating colored cube I would simply like to edit it so that the rotating cube is translated along the Z axis and disappears into the distance. I modified the code by: adding an cumulative variable to store my Z distance, adding GL.Enable(All.DepthBufferBit) - unsure if I put it in the right place, adding GL.Translate(0.0f, 0.0f, Depth) - before the rotate functions, Result: cube rotates a couple of times then disappears, it seems to be getting clipped out of the frustum. So my question is what is the correct way to use and initialize the Z buffer and get the cube to travel along the Z axis? I am sure I am missing some function calls but am unsure of what they are and where to put them. I apologise in advance as this is very basic stuff but am still learning :P, I would appreciate it if anyone could show me the best way to get the cube to still rotate but to also move along the Z axis. I have commented all my modifications in the code: // This gets called when the drawing surface is ready protected override void OnLoad (EventArgs e) { // this call is optional, and meant to raise delegates // in case any are registered base.OnLoad (e); // UpdateFrame and RenderFrame are called // by the render loop. This is takes effect // when we use 'Run ()', like below UpdateFrame += delegate (object sender, FrameEventArgs args) { // Rotate at a constant speed for (int i = 0; i < 3; i ++) rot [i] += (float) (rateOfRotationPS [i] * args.Time); }; RenderFrame += delegate { RenderCube (); }; GL.Enable(All.DepthBufferBit); //Added by Noob GL.Enable(All.CullFace); GL.ShadeModel(All.Smooth); GL.Hint(All.PerspectiveCorrectionHint, All.Nicest); // Run the render loop Run (30); } void RenderCube () { GL.Viewport(0, 0, viewportWidth, viewportHeight); GL.MatrixMode (All.Projection); GL.LoadIdentity (); if ( viewportWidth > viewportHeight ) { GL.Ortho(-1.5f, 1.5f, 1.0f, -1.0f, -1.0f, 1.0f); } else { GL.Ortho(-1.0f, 1.0f, -1.5f, 1.5f, -1.0f, 1.0f); } GL.MatrixMode (All.Modelview); GL.LoadIdentity (); Depth -= 0.02f; //Added by Noob GL.Translate(0.0f,0.0f,Depth); //Added by Noob GL.Rotate (rot[0], 1.0f, 0.0f, 0.0f); GL.Rotate (rot[1], 0.0f, 1.0f, 0.0f); GL.Rotate (rot[2], 0.0f, 1.0f, 0.0f); GL.ClearColor (0, 0, 0, 1.0f); GL.Clear (ClearBufferMask.ColorBufferBit); GL.VertexPointer(3, All.Float, 0, cube); GL.EnableClientState (All.VertexArray); GL.ColorPointer (4, All.Float, 0, cubeColors); GL.EnableClientState (All.ColorArray); GL.DrawElements(All.Triangles, 36, All.UnsignedByte, triangles); SwapBuffers (); }

    Read the article

  • Moving a body in a specific direction using XNA with Farseer Physics

    - by Code Assasssin
    I have a custom polygon attached to a body, which looks like this: What I am trying to accomplish is getting the body to move according to wherever the tip of the body is. So far this is what I've tried: if (ks.IsKeyDown(Keys.Up)) { body.ApplyForce(new Vector2(0, -20),body.GetLocalPoint(new Vector2(0,0))); } if (ks.IsKeyDown(Keys.Left)) { body.ApplyTorque(-500); } if (ks.IsKeyDown(Keys.Right)) { body.ApplyTorque(500); } The body rotates fine - but when I try making the body accelerate according to the tip of the body - assuming I have specified the tip correctly(I am pretty sure I haven't), it just spins around, as if I have applied Torque to it. Can anyone point me in the right direction of how to fix this problem?

    Read the article

  • What is UVIndex and how do I use it on OpenGL?

    - by Delta
    I am a noob in OpenGL ES 2.0 (for WebGL) and I'm trying to draw a simple model I've made with a 3D tool and exported to .fbx format. I've been able to draw some models that only have: A vertex buffer, a index buffer for the vertices, a normal buffer and a texture coordinate buffer, but this model now has a "UVIndex" and I'm not sure where am I supposed to put this UVIndex. My code looks like this: GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.VertexBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vPosition"],3,GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.NormalBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vNormal"], 3, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.TexCoordBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["TexCoord"], 2, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ELEMENT_ARRAY_BUFFER, this.Model.House.IndexBuffer); GL.bindTexture(GL.TEXTURE_2D, this.Texture.HTex1); GL.activeTexture(GL.TEXTURE0); GL.drawElements(GL.TRIANGLES, this.Model.House.IndexBuffer.Length, GL.UNSIGNED_SHORT, 0); But my model renders totally incorrect and I think it has to do with the fact that I am ignoring this "UVIndex" in the .fbx file, since I've never drawn any model that uses this UVIndex I really have no clue on what to do with it. This is the json file containing the model's data: http://pastebin.com/raw.php?i=G294TVmz

    Read the article

  • Importing FBX with multiple meshes in UDK

    - by andresp
    I need to import into UDK a several amount of FBX models (representing buildings) which are composed by various submeshes (walls, windows, roof...). I need to keep the individual meshes (can't use the merge option) but I also need to work with the building as a whole. Do you know if this is possible? How? Also, is there a way to keep the textures assignment for the FBX models after importing them to Unreal? Doing the process manually (importing model, importing texture, assign to the material, assign the material to each mesh and submesh) for 100 or 200 models (to import an entire city from City Engine), isn't viable.

    Read the article

  • Implementing top view physics using box2D

    - by humbleBee
    How can top view physics games be done in box2D? One idea I have is to set the linear velocity of an object manually or to alter the linear and angular damping as my object moves over different surfaces. For example if my object is over a wet surface it'll have less linear damping and if it is over rough surface it'll have more damping. And to see if my object has fallen over an edge I'll try to use an AABB and check if its still inside or manually see if object.x > boundary.x etc. Is there any better way?

    Read the article

  • Finding direction of travel in a world with wrapped edges

    - by crazy
    I need to find the shortest distance direction from one point in my 2D world to another point where the edges are wrapped (like asteroids etc). I know how to find the shortest distance but am struggling to find which direction it's in. The shortest distance is given by: int rows = MapY; int cols = MapX; int d1 = abs(S.Y - T.Y); int d2 = abs(S.X - T.X); int dr = min(d1, rows-d1); int dc = min(d2, cols-d2); double dist = sqrt((double)(dr*dr + dc*dc)); Example of the world : : T : :--------------:--------- : : : S : : : : : : T : : : :--------------: In the diagram the edges are shown with : and -. I've shown a wrapped repeat of the world at the top right too. I want to find the direction in degrees from S to T. So the shortest distance is to the top right repeat of T. but how do I calculate the direction in degreed from S to the repeated T in the top right? I know the positions of both S and T but I suppose I need to find the position of the repeated T however there more than 1. The worlds coordinates system starts at 0,0 at the top left and 0 degrees for the direction could start at West. It seems like this shouldn’t be too hard but I haven’t been able to work out a solution. I hope somone can help? Any websites would be appreciated.

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • Lock mouse in center of screen, and still use to move camera Unity

    - by Flotolk
    I am making a program from 1st person point of view. I would like the camera to be moved using the mouse, preferably using simple code, like from XNA var center = this.Window.ClientBounds; MouseState newState = Mouse.GetState(); if (Keyboard.GetState().IsKeyUp(Keys.Escape)) { Mouse.SetPosition((int)center.X, (int)center.Y); camera.Rotation -= (newState.X - center.X) * 0.005f; camera.UpDown += (newState.Y - center.Y) * 0.005f; } Is there any code that lets me do this in Unity, since Unity does not support XNA, I need a new library to use, and a new way to collect this input. this is also a little tougher, since I want one object to go up and down based on if you move it the mouse up and down, and another object to be the one turning left and right. I am also very concerned about clamping the mouse to the center of the screen, since you will be selecting items, and it is easiest to have a simple cross-hairs in the center of the screen for this purpose. Here is the code I am using to move right now: using UnityEngine; using System.Collections; [AddComponentMenu("Camera-Control/Mouse Look")] public class MouseLook : MonoBehaviour { public enum RotationAxes { MouseXAndY = 0, MouseX = 1, MouseY = 2 } public RotationAxes axes = RotationAxes.MouseXAndY; public float sensitivityX = 15F; public float sensitivityY = 15F; public float minimumX = -360F; public float maximumX = 360F; public float minimumY = -60F; public float maximumY = 60F; float rotationY = 0F; void Update () { if (axes == RotationAxes.MouseXAndY) { float rotationX = transform.localEulerAngles.y + Input.GetAxis("Mouse X") * sensitivityX; rotationY += Input.GetAxis("Mouse Y") * sensitivityY; rotationY = Mathf.Clamp (rotationY, minimumY, maximumY); transform.localEulerAngles = new Vector3(-rotationY, rotationX, 0); } else if (axes == RotationAxes.MouseX) { transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityX, 0); } else { rotationY += Input.GetAxis("Mouse Y") * sensitivityY; rotationY = Mathf.Clamp (rotationY, minimumY, maximumY); transform.localEulerAngles = new Vector3(-rotationY, transform.localEulerAngles.y, 0); } while (Input.GetKeyDown(KeyCode.Space) == true) { Screen.lockCursor = true; } } void Start () { // Make the rigid body not change rotation if (GetComponent<Rigidbody>()) GetComponent<Rigidbody>().freezeRotation = true; } } This code does everything except lock the mouse to the center of the screen. Screen.lockCursor = true; does not work though, since then the camera no longer moves, and the cursor does not allow you to click anything else either.

    Read the article

< Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >