Search Results

Search found 3678 results on 148 pages for 'constructor chaining'.

Page 55/148 | < Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >

  • WPF Login Verification Using Active Directory

    - by psheriff
    Back in October of 2009 I created a WPF login screen (Figure 1) that just showed how to create the layout for a login screen. That one sample is probably the most downloaded sample we have. So in this blog post, I thought I would update that screen and also hook it up to show how to authenticate your user against Active Directory. Figure 1: Original WPF Login Screen I have updated not only the code behind for this login screen, but also the look and feel as shown in Figure 2. Figure 2: An Updated WPF Login Screen The UI To create the UI for this login screen you can refer to my October of 2009 blog post to see how to create the borderless window. You can then look at the sample code to see how I created the linear gradient brush for the background. There are just a few differences in this screen compared to the old version. First, I changed the key image and instead of using words for the Cancel and Login buttons, I used some icons. Secondly I added a text box to hold the Domain name that you wish to authenticate against. This text box is automatically filled in if you are connected to a network. In the Window_Loaded event procedure of the winLogin window you can retrieve the user’s domain name from the Environment.UserDomainName property. For example: txtDomain.Text = Environment.UserDomainName The ADHelper Class Instead of coding the call to authenticate the user directly in the login screen I created an ADHelper class. This will make it easier if you want to add additional AD calls in the future. The ADHelper class contains just one method at this time called AuthenticateUser. This method authenticates a user name and password against the specified domain. The login screen will gather the credentials from the user such as their user name and password, and also the domain name to authenticate against. To use this ADHelper class you will need to add a reference to the System.DirectoryServices.dll in .NET. The AuthenticateUser Method In order to authenticate a user against your Active Directory you will need to supply a valid LDAP path string to the constructor of the DirectoryEntry class. The LDAP path string will be in the format LDAP://DomainName. You will also pass in the user name and password to the constructor of the DirectoryEntry class as well. With a DirectoryEntry object populated with this LDAP path string, the user name and password you will now pass this object to the constructor of a DirectorySearcher object. You then perform the FindOne method on the DirectorySearcher object. If the DirectorySearcher object returns a SearchResult then the credentials supplied are valid. If the credentials are not valid on the Active Directory then an exception is thrown. C#public bool AuthenticateUser(string domainName, string userName,  string password){  bool ret = false;   try  {    DirectoryEntry de = new DirectoryEntry("LDAP://" + domainName,                                           userName, password);    DirectorySearcher dsearch = new DirectorySearcher(de);    SearchResult results = null;     results = dsearch.FindOne();     ret = true;  }  catch  {    ret = false;  }   return ret;} Visual Basic Public Function AuthenticateUser(ByVal domainName As String, _ ByVal userName As String, ByVal password As String) As Boolean  Dim ret As Boolean = False   Try    Dim de As New DirectoryEntry("LDAP://" & domainName, _                                 userName, password)    Dim dsearch As New DirectorySearcher(de)    Dim results As SearchResult = Nothing     results = dsearch.FindOne()     ret = True  Catch    ret = False  End Try   Return retEnd Function In the Click event procedure under the Login button you will find the following code that will validate the credentials that the user types into the login window. C#private void btnLogin_Click(object sender, RoutedEventArgs e){  ADHelper ad = new ADHelper();   if(ad.AuthenticateUser(txtDomain.Text,         txtUserName.Text, txtPassword.Password))    DialogResult = true;  else    MessageBox.Show("Unable to Authenticate Using the                      Supplied Credentials");} Visual BasicPrivate Sub btnLogin_Click(ByVal sender As Object, _ ByVal e As RoutedEventArgs)  Dim ad As New ADHelper()   If ad.AuthenticateUser(txtDomain.Text, txtUserName.Text, _                         txtPassword.Password) Then    DialogResult = True  Else    MessageBox.Show("Unable to Authenticate Using the                      Supplied Credentials")  End IfEnd Sub Displaying the Login Screen At some point when your application launches, you will need to display your login screen modally. Below is the code that you would call to display the login form (named winLogin in my sample application). This code is called from the main application form, and thus the owner of the login screen is set to “this”. You then call the ShowDialog method on the login screen to have this form displayed modally. After the user clicks on one of the two buttons you need to check to see what the DialogResult property was set to. The DialogResult property is a nullable type and thus you first need to check to see if the value has been set. C# private void DisplayLoginScreen(){  winLogin win = new winLogin();   win.Owner = this;  win.ShowDialog();  if (win.DialogResult.HasValue && win.DialogResult.Value)    MessageBox.Show("User Logged In");  else    this.Close();} Visual Basic Private Sub DisplayLoginScreen()  Dim win As New winLogin()   win.Owner = Me  win.ShowDialog()  If win.DialogResult.HasValue And win.DialogResult.Value Then    MessageBox.Show("User Logged In")  Else    Me.Close()  End IfEnd Sub Summary Creating a nice looking login screen is fairly simple to do in WPF. Using the Active Directory services from a WPF application should make your desktop programming task easier as you do not need to create your own user authentication system. I hope this article gave you some ideas on how to create a login screen in WPF. NOTE: You can download the complete sample code for this blog entry at my website: http://www.pdsa.com/downloads. Click on Tips & Tricks, then select 'WPF Login Verification Using Active Directory' from the drop down list. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **We frequently offer a FREE gift for readers of my blog. Visit http://www.pdsa.com/Event/Blog for your FREE gift!

    Read the article

  • Windows Phone 7 : Dragging and flicking UI controls

    - by TechTwaddle
    Who would want to flick and drag UI controls!? There might not be many use cases but I think some concepts here are worthy of a post. So we will create a simple silverlight application for windows phone 7, containing a canvas element on which we’ll place a button control and an image and then, as the title says, drag and flick the controls. Here’s Mainpage.xaml, <Grid x:Name="LayoutRoot" Background="Transparent">   <Grid.RowDefinitions>     <RowDefinition Height="Auto"/>     <RowDefinition Height="*"/>   </Grid.RowDefinitions>     <!--TitlePanel contains the name of the application and page title-->   <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">     <TextBlock x:Name="ApplicationTitle" Text="KINETICS" Style="{StaticResource PhoneTextNormalStyle}"/>     <TextBlock x:Name="PageTitle" Text="drag and flick" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>   </StackPanel>     <!--ContentPanel - place additional content here-->   <Grid x:Name="ContentPanel" Grid.Row="1" >     <Canvas x:Name="MainCanvas" HorizontalAlignment="Stretch" VerticalAlignment="Stretch">       <Canvas.Background>         <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">           <GradientStop Offset="0" Color="Black"/>           <GradientStop Offset="1.5" Color="BlanchedAlmond"/>         </LinearGradientBrush>       </Canvas.Background>     </Canvas>   </Grid> </Grid> the second row in the main grid contains a canvas element, MainCanvas, with its horizontal and vertical alignment set to stretch so that it occupies the entire grid. The canvas background is a linear gradient brush starting with Black and ending with BlanchedAlmond. We’ll add the button and image control to this canvas at run time. Moving to Mainpage.xaml.cs the Mainpage class contains the following members, public partial class MainPage : PhoneApplicationPage {     Button FlickButton;     Image FlickImage;       FrameworkElement ElemToMove = null;     double ElemVelX, ElemVelY;       const double SPEED_FACTOR = 60;       DispatcherTimer timer; FlickButton and FlickImage are the controls that we’ll add to the canvas. ElemToMove, ElemVelX and ElemVelY will be used by the timer callback to move the ui control. SPEED_FACTOR is used to scale the velocities of ui controls. Here’s the Mainpage constructor, // Constructor public MainPage() {     InitializeComponent();       AddButtonToCanvas();       AddImageToCanvas();       timer = new DispatcherTimer();     timer.Interval = TimeSpan.FromMilliseconds(35);     timer.Tick += new EventHandler(OnTimerTick); } We’ll look at those AddButton and AddImage functions in a moment. The constructor initializes a timer which fires every 35 milliseconds, this timer will be started after the flick gesture completes with some inertia. Back to AddButton and AddImage functions, void AddButtonToCanvas() {     LinearGradientBrush brush;     GradientStop stop1, stop2;       Random rand = new Random(DateTime.Now.Millisecond);       FlickButton = new Button();     FlickButton.Content = "";     FlickButton.Width = 100;     FlickButton.Height = 100;       brush = new LinearGradientBrush();     brush.StartPoint = new Point(0, 0);     brush.EndPoint = new Point(0, 1);       stop1 = new GradientStop();     stop1.Offset = 0;     stop1.Color = Colors.White;       stop2 = new GradientStop();     stop2.Offset = 1;     stop2.Color = (Application.Current.Resources["PhoneAccentBrush"] as SolidColorBrush).Color;       brush.GradientStops.Add(stop1);     brush.GradientStops.Add(stop2);       FlickButton.Background = brush;       Canvas.SetTop(FlickButton, rand.Next(0, 400));     Canvas.SetLeft(FlickButton, rand.Next(0, 200));       MainCanvas.Children.Add(FlickButton);       //subscribe to events     FlickButton.ManipulationDelta += new EventHandler<ManipulationDeltaEventArgs>(OnManipulationDelta);     FlickButton.ManipulationCompleted += new EventHandler<ManipulationCompletedEventArgs>(OnManipulationCompleted); } this function is basically glorifying a simple task. After creating the button and setting its height and width, its background is set to a linear gradient brush. The direction of the gradient is from top towards bottom and notice that the second stop color is the PhoneAccentColor, which changes along with the theme of the device. The line,     stop2.Color = (Application.Current.Resources["PhoneAccentBrush"] as SolidColorBrush).Color; does the magic of extracting the PhoneAccentBrush from application’s resources, getting its color and assigning it to the gradient stop. AddImage function is straight forward in comparison, void AddImageToCanvas() {     Random rand = new Random(DateTime.Now.Millisecond);       FlickImage = new Image();     FlickImage.Source = new BitmapImage(new Uri("/images/Marble.png", UriKind.Relative));       Canvas.SetTop(FlickImage, rand.Next(0, 400));     Canvas.SetLeft(FlickImage, rand.Next(0, 200));       MainCanvas.Children.Add(FlickImage);       //subscribe to events     FlickImage.ManipulationDelta += new EventHandler<ManipulationDeltaEventArgs>(OnManipulationDelta);     FlickImage.ManipulationCompleted += new EventHandler<ManipulationCompletedEventArgs>(OnManipulationCompleted); } The ManipulationDelta and ManipulationCompleted handlers are same for both the button and the image. OnManipulationDelta() should look familiar, a similar implementation was used in the previous post, void OnManipulationDelta(object sender, ManipulationDeltaEventArgs args) {     FrameworkElement Elem = sender as FrameworkElement;       double Left = Canvas.GetLeft(Elem);     double Top = Canvas.GetTop(Elem);       Left += args.DeltaManipulation.Translation.X;     Top += args.DeltaManipulation.Translation.Y;       //check for bounds     if (Left < 0)     {         Left = 0;     }     else if (Left > (MainCanvas.ActualWidth - Elem.ActualWidth))     {         Left = MainCanvas.ActualWidth - Elem.ActualWidth;     }       if (Top < 0)     {         Top = 0;     }     else if (Top > (MainCanvas.ActualHeight - Elem.ActualHeight))     {         Top = MainCanvas.ActualHeight - Elem.ActualHeight;     }       Canvas.SetLeft(Elem, Left);     Canvas.SetTop(Elem, Top); } all it does is calculate the control’s position, check for bounds and then set the top and left of the control. OnManipulationCompleted() is more interesting because here we need to check if the gesture completed with any inertia and if it did, start the timer and continue to move the ui control until it comes to a halt slowly, void OnManipulationCompleted(object sender, ManipulationCompletedEventArgs args) {     FrameworkElement Elem = sender as FrameworkElement;       if (args.IsInertial)     {         ElemToMove = Elem;           Debug.WriteLine("Linear VelX:{0:0.00}  VelY:{1:0.00}", args.FinalVelocities.LinearVelocity.X,             args.FinalVelocities.LinearVelocity.Y);           ElemVelX = args.FinalVelocities.LinearVelocity.X / SPEED_FACTOR;         ElemVelY = args.FinalVelocities.LinearVelocity.Y / SPEED_FACTOR;           timer.Start();     } } ManipulationCompletedEventArgs contains a member, IsInertial, which is set to true if the manipulation was completed with some inertia. args.FinalVelocities.LinearVelocity.X and .Y will contain the velocities along the X and Y axis. We need to scale down these values so they can be used to increment the ui control’s position sensibly. A reference to the ui control is stored in ElemToMove and the velocities are stored as well, these will be used in the timer callback to access the ui control. And finally, we start the timer. The timer callback function is as follows, void OnTimerTick(object sender, EventArgs e) {     if (null != ElemToMove)     {         double Left, Top;         Left = Canvas.GetLeft(ElemToMove);         Top = Canvas.GetTop(ElemToMove);           Left += ElemVelX;         Top += ElemVelY;           //check for bounds         if (Left < 0)         {             Left = 0;             ElemVelX *= -1;         }         else if (Left > (MainCanvas.ActualWidth - ElemToMove.ActualWidth))         {             Left = MainCanvas.ActualWidth - ElemToMove.ActualWidth;             ElemVelX *= -1;         }           if (Top < 0)         {             Top = 0;             ElemVelY *= -1;         }         else if (Top > (MainCanvas.ActualHeight - ElemToMove.ActualHeight))         {             Top = MainCanvas.ActualHeight - ElemToMove.ActualHeight;             ElemVelY *= -1;         }           Canvas.SetLeft(ElemToMove, Left);         Canvas.SetTop(ElemToMove, Top);           //reduce x,y velocities gradually         ElemVelX *= 0.9;         ElemVelY *= 0.9;           //when velocities become too low, break         if (Math.Abs(ElemVelX) < 1.0 && Math.Abs(ElemVelY) < 1.0)         {             timer.Stop();             ElemToMove = null;         }     } } if ElemToMove is not null, we get the top and left values of the control and increment the values with their X and Y velocities. Check for bounds, and if the control goes out of bounds we reverse its velocity. Towards the end, the velocities are reduced by 10% every time the timer callback is called, and if the velocities reach too low values the timer is stopped and ElemToMove is made null. Here’s a short video of the program, the video is a little dodgy because my display driver refuses to run the animations smoothly. The flicks aren’t always recognised but the program should run well on an actual device (or a pc with better configuration), You can download the source code from here: ButtonDragAndFlick.zip

    Read the article

  • Conway's Game of Life - C++ and Qt

    - by Jeff Bridge
    I've done all of the layouts and have most of the code written even. But, I'm stuck in two places. 1) I'm not quite sure how to set up the timer. Am I using it correctly in the gridwindow class? And, am I used the timer functions/signals/slots correctly with the other gridwindow functions. 2) In GridWindow's timerFired() function, I'm having trouble checking/creating the vector-vectors. I wrote out in the comments in that function exactly what I am trying to do. Any help would be much appreciated. main.cpp // Main file for running the grid window application. #include <QApplication> #include "gridwindow.h" //#include "timerwindow.h" #include <stdexcept> #include <string> #include <fstream> #include <sstream> #include <iostream> void Welcome(); // Welcome Function - Prints upon running program; outputs program name, student name/id, class section. void Rules(); // Rules Function: Prints the rules for Conway's Game of Life. using namespace std; // A simple main method to create the window class and then pop it up on the screen. int main(int argc, char *argv[]) { Welcome(); // Calls Welcome function to print student/assignment info. Rules(); // Prints Conway's Game Rules. QApplication app(argc, argv); // Creates the overall windowed application. int rows = 25, cols = 35; //The number of rows & columns in the game grid. GridWindow widget(NULL,rows,cols); // Creates the actual window (for the grid). widget.show(); // Shows the window on the screen. return app.exec(); // Goes into visual loop; starts executing GUI. } // Welcome Function: Prints my name/id, my class number, the assignment, and the program name. void Welcome() { cout << endl; cout << "-------------------------------------------------------------------------------------------------" << endl; cout << "Name/ID - Gabe Audick #7681539807" << endl; cout << "Class/Assignment - CSCI-102 Disccusion 29915: Homework Assignment #4" << endl; cout << "-------------------------------------------------------------------------------------------------" << endl << endl; } // Rules Function: Prints the rules for Conway's Game of Life. void Rules() { cout << "Welcome to Conway's Game of Life." << endl; cout << "Game Rules:" << endl; cout << "\t 1) Any living cell with fewer than two living neighbours dies, as if caused by underpopulation." << endl; cout << "\t 2) Any live cell with more than three live neighbours dies, as if by overcrowding." << endl; cout << "\t 3) Any live cell with two or three live neighbours lives on to the next generation." << endl; cout << "\t 4) Any dead cell with exactly three live neighbours becomes a live cell." << endl << endl; cout << "Enjoy." << endl << endl; } gridcell.h // A header file for a class representing a single cell in a grid of cells. #ifndef GRIDCELL_H_ #define GRIDCELL_H_ #include <QPalette> #include <QColor> #include <QPushButton> #include <Qt> #include <QWidget> #include <QFrame> #include <QHBoxLayout> #include <iostream> // An enum representing the two different states a cell can have. enum CellType { DEAD, // DEAD = Dead Cell. --> Color = White. LIVE // LIVE = Living Cell. ---> Color = White. }; /* Class: GridCell. A class representing a single cell in a grid. Each cell is implemented as a QT QFrame that contains a single QPushButton. The button is sized so that it takes up the entire frame. Each cell also keeps track of what type of cell it is based on the CellType enum. */ class GridCell : public QFrame { Q_OBJECT // Macro allowing us to have signals & slots on this object. private: QPushButton* button; // The button inside the cell that gives its clickability. CellType type; // The type of cell (DEAD or LIVE.) public slots: void handleClick(); // Callback for handling a click on the current cell. void setType(CellType type); // Cell type mutator. Calls the "redrawCell" function. signals: void typeChanged(CellType type); // Signal to notify listeners when the cell type has changed. public: GridCell(QWidget *parent = NULL); // Constructor for creating a cell. Takes parent widget or default parent to NULL. virtual ~GridCell(); // Destructor. void redrawCell(); // Redraws cell: Sets new type/color. CellType getType() const; //Simple getter for the cell type. private: Qt::GlobalColor getColorForCellType(); // Helper method. Returns color that cell should be based from its value. }; #endif gridcell.cpp #include <iostream> #include "gridcell.h" #include "utility.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } gridwindow.h // A header file for a QT window that holds a grid of cells. #ifndef GRIDWINDOW_H_ #define GRIDWINDOW_H_ #include <vector> #include <QWidget> #include <QTimer> #include <QGridLayout> #include <QLabel> #include <QApplication> #include "gridcell.h" /* class GridWindow: This is the class representing the whole window that comes up when this program runs. It contains a header section with a title, a middle section of MxN cells and a bottom section with buttons. */ class GridWindow : public QWidget { Q_OBJECT // Macro to allow this object to have signals & slots. private: std::vector<std::vector<GridCell*> > cells; // A 2D vector containing pointers to all the cells in the grid. QLabel *title; // A pointer to the Title text on the window. QTimer *timer; // Creates timer object. public slots: void handleClear(); // Handler function for clicking the Clear button. void handleStart(); // Handler function for clicking the Start button. void handlePause(); // Handler function for clicking the Pause button. void timerFired(); // Method called whenever timer fires. public: GridWindow(QWidget *parent = NULL,int rows=3,int cols=3); // Constructor. virtual ~GridWindow(); // Destructor. std::vector<std::vector<GridCell*> >& getCells(); // Accessor for the array of grid cells. private: QHBoxLayout* setupHeader(); // Helper function to construct the GUI header. QGridLayout* setupGrid(int rows,int cols); // Helper function to constructor the GUI's grid. QHBoxLayout* setupButtonRow(); // Helper function to setup the row of buttons at the bottom. }; #endif gridwindow.cpp #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); buttonRow->addWidget(clearButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { this->timer->stop(); // Stops the timer. delete this->timer; // Deletes timer. } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } void GridWindow::timerFired() { // I'm not sure how to write this code. // I want to take the original vector-vector, and also make a new, empty vector-vector of the same size. // I would then go through the code below with the original vector, and apply the rules to the new vector-vector. // Finally, I would make the new vector-vecotr the original vector-vector. (That would be one step in the simulation.) cout << cells[1][2]; /* for (unsigned int m = 0; m < original.size(); m++) { for (unsigned int n = 0; n < original.at(m).size(); n++) { unsigned int neighbors = 0; //Begin counting number of neighbors. if (original[m-1][n-1].getType() == LIVE) // If a cell next to [i][j] is LIVE, add one to the neighbor count. neighbors += 1; if (original[m-1][n].getType() == LIVE) neighbors += 1; if (original[m-1][n+1].getType() == LIVE) neighbors += 1; if (original[m][n-1].getType() == LIVE) neighbors += 1; if (original[m][n+1].getType() == LIVE) neighbors += 1; if (original[m+1][n-1].getType() == LIVE) neighbors += 1; if (original[m+1][n].getType() == LIVE) neighbors += 1; if (original[m+1][n+1].getType() == LIVE) neighbors += 1; if (original[m][n].getType() == LIVE && neighbors < 2) // Apply game rules to cells: Create new, updated grid with the roundtwo vector. roundtwo[m][n].setType(LIVE); else if (original[m][n].getType() == LIVE && neighbors > 3) roundtwo[m][n].setType(DEAD); else if (original[m][n].getType() == LIVE && (neighbors == 2 || neighbors == 3)) roundtwo[m][n].setType(LIVE); else if (original[m][n].getType() == DEAD && neighbors == 3) roundtwo[m][n].setType(LIVE); } }*/ }

    Read the article

  • concurrency::accelerator_view

    - by Daniel Moth
    Overview We saw previously that accelerator represents a target for our C++ AMP computation or memory allocation and that there is a notion of a default accelerator. We ended that post by introducing how one can obtain accelerator_view objects from an accelerator object through the accelerator class's default_view property and the create_view method. The accelerator_view objects can be thought of as handles to an accelerator. You can also construct an accelerator_view given another accelerator_view (through the copy constructor or the assignment operator overload). Speaking of operator overloading, you can also compare (for equality and inequality) two accelerator_view objects between them to determine if they refer to the same underlying accelerator. We'll see later that when we use concurrency::array objects, the allocation of data takes place on an accelerator at array construction time, so there is a constructor overload that accepts an accelerator_view object. We'll also see later that a new concurrency::parallel_for_each function overload can take an accelerator_view object, so it knows on what target to execute the computation (represented by a lambda that the parallel_for_each also accepts). Beyond normal usage, accelerator_view is a quality of service concept that offers isolation to multiple "consumers" of an accelerator. If in your code you are accessing the accelerator from multiple threads (or, in general, from different parts of your app), then you'll want to create separate accelerator_view objects for each thread. flush, wait, and queuing_mode When you create an accelerator_view via the create_view method of the accelerator, you pass in an option of immediate or deferred, which are the two members of the queuing_mode enum. At any point you can access this value from the queuing_mode property of the accelerator_view. When the queuing_mode value is immediate (which is the default), any commands sent to the device such as kernel invocations and data transfers (e.g. parallel_for_each and copy, as we'll see in future posts), will get submitted as soon as the runtime sees fit (that is the definition of immediate). When the value of queuing_mode is deferred, the commands will be batched up. To send all buffered commands to the device for execution, there is a non-blocking flush method that you can call. If you wish to block until all the commands have been sent, there is a wait method you can call. Deferring is a more advanced scenario aimed at performance gains when you are submitting many device commands and you want to avoid the tiny overhead of flushing/submitting each command separately. Querying information Just like accelerator, accelerator_view exposes the is_debug and version properties. In fact, you can always access the accelerator object from the accelerator property on the accelerator_view class to access the accelerator interface we looked at previously. Interop with D3D (aka DX) In a later post I'll show an example of an app that uses C++ AMP to compute data that is used in pixel shaders. In those scenarios, you can benefit by integrating C++ AMP into your graphics pipeline and one of the building blocks for that is being able to use the same device context from both the compute kernel and the other shaders. You can do that by going from accelerator_view to device context (and vice versa), through part of our interop API in amp.h: *get_device, create_accelerator_view. More on those in a later post. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • MvcExtensions - ActionFilter

    - by kazimanzurrashid
    One of the thing that people often complains is dependency injection in Action Filters. Since the standard way of applying action filters is to either decorate the Controller or the Action methods, there is no way you can inject dependencies in the action filter constructors. There are quite a few posts on this subject, which shows the property injection with a custom action invoker, but all of them suffers from the same small bug (you will find the BuildUp is called more than once if the filter implements multiple interface e.g. both IActionFilter and IResultFilter). The MvcExtensions supports both property injection as well as fluent filter configuration api. There are a number of benefits of this fluent filter configuration api over the regular attribute based filter decoration. You can pass your dependencies in the constructor rather than property. Lets say, you want to create an action filter which will update the User Last Activity Date, you can create a filter like the following: public class UpdateUserLastActivityAttribute : FilterAttribute, IResultFilter { public UpdateUserLastActivityAttribute(IUserService userService) { Check.Argument.IsNotNull(userService, "userService"); UserService = userService; } public IUserService UserService { get; private set; } public void OnResultExecuting(ResultExecutingContext filterContext) { // Do nothing, just sleep. } public void OnResultExecuted(ResultExecutedContext filterContext) { Check.Argument.IsNotNull(filterContext, "filterContext"); string userName = filterContext.HttpContext.User.Identity.IsAuthenticated ? filterContext.HttpContext.User.Identity.Name : null; if (!string.IsNullOrEmpty(userName)) { UserService.UpdateLastActivity(userName); } } } As you can see, it is nothing different than a regular filter except that we are passing the dependency in the constructor. Next, we have to configure this filter for which Controller/Action methods will execute: public class ConfigureFilters : ConfigureFiltersBase { protected override void Configure(IFilterRegistry registry) { registry.Register<HomeController, UpdateUserLastActivityAttribute>(); } } You can register more than one filter for the same Controller/Action Methods: registry.Register<HomeController, UpdateUserLastActivityAttribute, CompressAttribute>(); You can register the filters for a specific Action method instead of the whole controller: registry.Register<HomeController, UpdateUserLastActivityAttribute, CompressAttribute>(c => c.Index()); You can even set various properties of the filter: registry.Register<ControlPanelController, CustomAuthorizeAttribute>( attribute => { attribute.AllowedRole = Role.Administrator; }); The Fluent Filter registration also reduces the number of base controllers in your application. It is very common that we create a base controller and decorate it with action filters and then we create concrete controller(s) so that the base controllers action filters are also executed in the concrete controller. You can do the  same with a single line statement with the fluent filter registration: Registering the Filters for All Controllers: registry.Register<ElmahHandleErrorAttribute>(new TypeCatalogBuilder().Add(GetType().Assembly).Include(type => typeof(Controller).IsAssignableFrom(type))); Registering Filters for selected Controllers: registry.Register<ElmahHandleErrorAttribute>(new TypeCatalogBuilder().Add(GetType().Assembly).Include(type => typeof(Controller).IsAssignableFrom(type) && (type.Name.StartsWith("Home") || type.Name.StartsWith("Post")))); You can also use the built-in filters in the fluent registration, for example: registry.Register<HomeController, OutputCacheAttribute>(attribute => { attribute.Duration = 60; }); With the fluent filter configuration you can even apply filters to controllers that source code is not available to you (may be the controller is a part of a third part component). That’s it for today, in the next post we will discuss about the Model binding support in MvcExtensions. So stay tuned.

    Read the article

  • ArchBeat Link-o-Rama for 2012-07-10

    - by Bob Rhubart
    Free Event Today: Virtual Developer Day: Oracle Fusion Development This free event—another in the ongoing series of OTN Virtual Developer Days—focuses on Oracle Fusion development, and features three session tracks plus hands-on labs. Agenda and session abstracts are available now so you can be ready for the live event when it kicks off today, July 10, 9am to 1pm PST / 12pm to 4pm EST / 1pm to 5pm BRT. Podcast: The Role of the Cloud Architect - Part 1/3 In part one of this three-part conversation, cloud architects Ron Batra (AT&T) and James Baty (Oracle) talk about how cloud computing is driving the supply-chaining of IT and the "democratization of the activity of architecture." Middleware and Cloud Computing Book | Tom Laszewski Cloud migration expert Tom Laszewski describes Middleware and Cloud Computing by Frank Munz as "one of only a couple books that really discuss AWS and Oracle in depth." Cloud computing moves from fad to foundation | David Linthicum "When enterprises make cloud computing work, they view the application of the technology as a trade secret of sorts, so there are no press releases or white papers," says David Linthicum. "Indeed, if you see one presentation around a successful cloud computing case study, you can bet you're not hearing about 100 more." Oracle Real-Time Decisions: Combined Likelihood Models | Lukas Vermeer Lukas Vermeer concludes his extensive series of posts on decision models with a look "an advanced approach to amalgamate models, taking us to a whole new level of predictive modeling and analytical insights; combination models predicting likelihoods using multiple child models." Running Oracle BPM 11g PS5 Worklist Task Flow and Human Task Form on Non-SOA Domain | Andrejus Baranovskis "With a standard setup, both the BPM worklist application and the Human task form run on the same SOA domain, where the BPM process is running," says Oracle ACE Director Andrejus Baranovskis. "While this work fine, this is not what we want in the development, test and production environment." BAM design pointers | Kavitha Srinivasan "When using EMS (Enterprise Message Source) as a BAM feed, the best practice is to use one EMS to write to one Data Object," says Oracle Fusion Middleware A-Team blogger Kavitha Srinivasan. "There is a possibility of collisions and duplicates when multiple EMS write to the same row of a DO at the same time." Changes in SOA Human Task Flow (Run-Time) for Fusion Applications | Jack Desai Oracle Fusion Middleware A-Team blogger Jack Desai shares a troubleshooting tip. Thought for the Day "A program which perfectly meets a lousy specification is a lousy program." — Cem Kaner Source: SoftwareQuotes.com

    Read the article

  • Abstracting entity caching in XNA

    - by Grofit
    I am in a situation where I am writing a framework in XNA and there will be quite a lot of static (ish) content which wont render that often. Now I am trying to take the same sort of approach I would use when doing non game development, where I don't even think about caching until I have finished my application and realise there is a performance problem and then implement a layer of caching over whatever needs it, but wrap it up so nothing is aware its happening. However in XNA the way we would usually cache would be drawing our objects to a texture and invalidating after a change occurs. So if you assume an interface like so: public interface IGameComponent { void Update(TimeSpan elapsedTime); void Render(GraphicsDevice graphicsDevice); } public class ContainerComponent : IGameComponent { public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it } public void Render(GraphicsDevice graphicsDevice) { foreach(var component in ChildComponents) { // draw every component } } } Then I was under the assumption that we just draw everything directly to the screen, then when performance becomes an issue we just add a new implementation of the above like so: public class CacheableContainerComponent : IGameComponent { private Texture2D cachedOutput; private bool hasChanged; public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it // set hasChanged to true if required } public void Render(GraphicsDevice graphicsDevice) { if(hasChanged) { CacheComponents(graphicsDevice); } // Draw cached output } private void CacheComponents(GraphicsDevice graphicsDevice) { // Clean up existing cache if needed var cachedOutput = new RenderTarget2D(...); graphicsDevice.SetRenderTarget(renderTarget); foreach(var component in ChildComponents) { // draw every component } graphicsDevice.SetRenderTarget(null); } } Now in this example you could inherit, but your Update may become a bit tricky then without changing your base class to alert you if you had changed, but it is up to each scenario to choose if its inheritance/implementation or composition. Also the above implementation will re-cache within the rendering cycle, which may cause performance stutters but its just an example of the scenario... Ignoring those facts as you can see that in this example you could use a cache-able component or a non cache-able one, the rest of the framework needs not know. The problem here is that if lets say this component is drawn mid way through the game rendering, other items will already be within the default drawing buffer, so me doing this would discard them, unless I set it to be persisted, which I hear is a big no no on the Xbox. So is there a way to have my cake and eat it here? One simple solution to this is make an ICacheable interface which exposes a cache method, but then to make any use of this interface you would need the rest of the framework to be cache aware, and check if it can cache, and to then do so. Which then means you are polluting and changing your main implementations to account for and deal with this cache... I am also employing Dependency Injection for alot of high level components so these new cache-able objects would be spat out from that, meaning no where in the actual game would they know they are caching... if that makes sense. Just incase anyone asked how I expected to keep it cache aware when I would need to new up a cachable entity.

    Read the article

  • Export all SSIS packages from msdb using Powershell

    - by jamiet
    Have you ever wanted to dump all the SSIS packages stored in msdb out to files? Of course you have, who wouldn’t? Right? Well, at least one person does because this was the subject of a thread (save all ssis packages to file) on the SSIS forum earlier today. Some of you may have already figured out a way of doing this but for those that haven’t here is a nifty little script that will do it for you and it uses our favourite jack-of-all tools … Powershell!! Imagine I have the following package folder structure on my Integration Services server (i.e. in [msdb]): There are two packages in there called “20110111 Chaining Expression components” & “Package”, I want to export those two packages into a folder structure that mirrors that in [msdb]. Here is the Powershell script that will do that:Param($SQLInstance = "localhost") #####Add all the SQL goodies (including Invoke-Sqlcmd)##### add-pssnapin sqlserverprovidersnapin100 -ErrorAction SilentlyContinue add-pssnapin sqlservercmdletsnapin100 -ErrorAction SilentlyContinue cls $Packages = Invoke-Sqlcmd -MaxCharLength 10000000 -ServerInstance $SQLInstance -Query "WITH cte AS ( SELECT cast(foldername as varchar(max)) as folderpath, folderid FROM msdb..sysssispackagefolders WHERE parentfolderid = '00000000-0000-0000-0000-000000000000' UNION ALL SELECT cast(c.folderpath + '\' + f.foldername as varchar(max)), f.folderid FROM msdb..sysssispackagefolders f INNER JOIN cte c ON c.folderid = f.parentfolderid ) SELECT c.folderpath,p.name,CAST(CAST(packagedata AS VARBINARY(MAX)) AS VARCHAR(MAX)) as pkg FROM cte c INNER JOIN msdb..sysssispackages p ON c.folderid = p.folderid WHERE c.folderpath NOT LIKE 'Data Collector%'" Foreach ($pkg in $Packages) { $pkgName = $Pkg.name $folderPath = $Pkg.folderpath $fullfolderPath = "c:\temp\$folderPath\" if(!(test-path -path $fullfolderPath)) { mkdir $fullfolderPath | Out-Null } $pkg.pkg | Out-File -Force -encoding ascii -FilePath "$fullfolderPath\$pkgName.dtsx" } To run it simply change the “localhost” parameter of the server you want to connect to either by editing the script or passing it in when the script is executed. It will create the folder structure in C:\Temp (which you can also easily change if you so wish – just edit the script accordingly). Here’s the folder structure that it created for me: Notice how it is a mirror of the folder structure in [msdb]. Hope this is useful! @Jamiet UPDATE: THis post prompted Chad Miller to write a post describing his Powershell add-in that utilises a SSIS API to do exporting of packages. Go take a read here: http://sev17.com/2011/02/importing-and-exporting-ssis-packages-using-powershell/

    Read the article

  • How do I use setFilmSize in panda3d to achieve the correct view?

    - by lhk
    I'm working with Panda3d and recently switched my game to isometric rendering. I moved the virtual camera accordingly and set an orthographic lens. Then I implemented the classes "Map" and "Canvas". A canvas is a dynamically generated mesh: a flat quad. I'm using it to render the ingame graphics. Since the game itself is still set in a 3d coordinate system I'm planning to rely on these canvases to draw sprites. I could have named this class "Tile" but as I'd like to use it for non-tile sketches (enemies, environment) as well I thought canvas would describe it's function better. Map does exactly what it's name suggests. Its constructor receives the number of rows and columns and then creates a standard isometric map. It uses the canvas class for tiles. I'm planning to write a map importer that reads a file to create maps on the fly. Here's the canvas implementation: class Canvas: def __init__(self, texture, vertical=False, width=1,height=1): # create the mesh format=GeomVertexFormat.getV3t2() format = GeomVertexFormat.registerFormat(format) vdata=GeomVertexData("node-vertices", format, Geom.UHStatic) vertex = GeomVertexWriter(vdata, 'vertex') texcoord = GeomVertexWriter(vdata, 'texcoord') # add the vertices for a flat quad vertex.addData3f(1, 0, 0) texcoord.addData2f(1, 0) vertex.addData3f(1, 1, 0) texcoord.addData2f(1, 1) vertex.addData3f(0, 1, 0) texcoord.addData2f(0, 1) vertex.addData3f(0, 0, 0) texcoord.addData2f(0, 0) prim = GeomTriangles(Geom.UHStatic) prim.addVertices(0, 1, 2) prim.addVertices(2, 3, 0) self.geom = Geom(vdata) self.geom.addPrimitive(prim) self.node = GeomNode('node') self.node.addGeom(self.geom) # this is the handle for the canvas self.nodePath=NodePath(self.node) self.nodePath.setSx(width) self.nodePath.setSy(height) if vertical: self.nodePath.setP(90) # the most important part: "Drawing" the image self.texture=loader.loadTexture(""+texture+".png") self.nodePath.setTexture(self.texture) Now the code for the Map class class Map: def __init__(self,rows,columns,size): self.grid=[] for i in range(rows): self.grid.append([]) for j in range(columns): # create a canvas for the tile. For testing the texture is preset tile=Canvas(texture="../assets/textures/flat_concrete",width=size,height=size) x=(i-1)*size y=(j-1)*size # set the tile up for rendering tile.nodePath.reparentTo(render) tile.nodePath.setX(x) tile.nodePath.setY(y) # and store it for later access self.grid[i].append(tile) And finally the usage def loadMap(self): self.map=Map(10, 10, 1) this function is called within the constructor of the World class. The instantiation of world is the entry point to the execution. The code is pretty straightforward and runs good. Sadly the output is not as expected: Please note: The problem is not the white rectangle, it's my player object. The problem is that although the map should have equal width and height it's stretched weirdly. With orthographic rendering I expected the map to be a perfect square. What did I do wrong ? UPDATE: I've changed the viewport. This is how I set up the orthographic camera: lens = OrthographicLens() lens.setFilmSize(40, 20) base.cam.node().setLens(lens) You can change the "aspect" by modifying the parameters of setFilmSize. I don't know exactly how they are related to window size and screen resolution but after testing a little the values above seem to work for me. Now everything is rendered correctly as long as I don't resize the window. Every change of the window's size as well as switching to fullscreen destroys the correct rendering. I know that implementing a listener for resize events is not in the scope of this question. However I wonder why I need to make the Film's height two times bigger than its width. My window is quadratic ! Can you tell me how to find out correct setting for the FilmSize ? UPDATE 2: I can imagine that it's hard to envision the behaviour of the game. At first glance the obvious solution is to pass the window's width and height in pixels to setFilmSize. There are two problems with that approach. The parameters for setFilmSize are ingame units. You'll get a way to big view if you pass the pixel size For some strange reason the image is distorted if you pass equal values for width and height. Here's the output for setFilmSize(800,800) You'll have to stress your eyes but you'll see what I mean

    Read the article

  • Export all SSIS packages from msdb using Powershell

    - by jamiet
    Have you ever wanted to dump all the SSIS packages stored in msdb out to files? Of course you have, who wouldn’t? Right? Well, at least one person does because this was the subject of a thread (save all ssis packages to file) on the SSIS forum earlier today. Some of you may have already figured out a way of doing this but for those that haven’t here is a nifty little script that will do it for you and it uses our favourite jack-of-all tools … Powershell!!   Imagine I have the following package folder structure on my Integration Services server (i.e. in [msdb]): There are two packages in there called “20110111 Chaining Expression components” & “Package”, I want to export those two packages into a folder structure that mirrors that in [msdb]. Here is the Powershell script that will do that:   Param($SQLInstance = "localhost") #####Add all the SQL goodies (including Invoke-Sqlcmd)##### add-pssnapin sqlserverprovidersnapin100 -ErrorAction SilentlyContinue add-pssnapin sqlservercmdletsnapin100 -ErrorAction SilentlyContinue cls $Packages = Invoke-Sqlcmd -MaxCharLength 10000000 -ServerInstance $SQLInstance -Query "WITH cte AS ( SELECT cast(foldername as varchar(max)) as folderpath, folderid FROM msdb..sysssispackagefolders WHERE parentfolderid = '00000000-0000-0000-0000-000000000000' UNION ALL SELECT cast(c.folderpath + '\' + f.foldername as varchar(max)), f.folderid FROM msdb..sysssispackagefolders f INNER JOIN cte c ON c.folderid = f.parentfolderid ) SELECT c.folderpath,p.name,CAST(CAST(packagedata AS VARBINARY(MAX)) AS VARCHAR(MAX)) as pkg FROM cte c INNER JOIN msdb..sysssispackages p ON c.folderid = p.folderid WHERE c.folderpath NOT LIKE 'Data Collector%'" Foreach ($pkg in $Packages) { $pkgName = $Pkg.name $folderPath = $Pkg.folderpath $fullfolderPath = "c:\temp\$folderPath\" if(!(test-path -path $fullfolderPath)) { mkdir $fullfolderPath | Out-Null } $pkg.pkg | Out-File -Force -encoding ascii -FilePath "$fullfolderPath\$pkgName.dtsx" }   To run it simply change the “localhost” parameter of the server you want to connect to either by editing the script or passing it in when the script is executed. It will create the folder structure in C:\Temp (which you can also easily change if you so wish – just edit the script accordingly). Here’s the folder structure that it created for me: Notice how it is a mirror of the folder structure in [msdb]. Hope this is useful! @Jamiet

    Read the article

  • How to layout class definition when inheriting from multiple interfaces

    - by gabr
    Given two interface definitions ... IOmniWorkItem = interface ['{3CE2762F-B7A3-4490-BF22-2109C042EAD1}'] function GetData: TOmniValue; function GetResult: TOmniValue; function GetUniqueID: int64; procedure SetResult(const value: TOmniValue); // procedure Cancel; function DetachException: Exception; function FatalException: Exception; function IsCanceled: boolean; function IsExceptional: boolean; property Data: TOmniValue read GetData; property Result: TOmniValue read GetResult write SetResult; property UniqueID: int64 read GetUniqueID; end; IOmniWorkItemEx = interface ['{3B48D012-CF1C-4B47-A4A0-3072A9067A3E}'] function GetOnWorkItemDone: TOmniWorkItemDoneDelegate; function GetOnWorkItemDone_Asy: TOmniWorkItemDoneDelegate; procedure SetOnWorkItemDone(const Value: TOmniWorkItemDoneDelegate); procedure SetOnWorkItemDone_Asy(const Value: TOmniWorkItemDoneDelegate); // property OnWorkItemDone: TOmniWorkItemDoneDelegate read GetOnWorkItemDone write SetOnWorkItemDone; property OnWorkItemDone_Asy: TOmniWorkItemDoneDelegate read GetOnWorkItemDone_Asy write SetOnWorkItemDone_Asy; end; ... what are your ideas of laying out class declaration that inherits from both of them? My current idea (but I don't know if I'm happy with it): TOmniWorkItem = class(TInterfacedObject, IOmniWorkItem, IOmniWorkItemEx) strict private FData : TOmniValue; FOnWorkItemDone : TOmniWorkItemDoneDelegate; FOnWorkItemDone_Asy: TOmniWorkItemDoneDelegate; FResult : TOmniValue; FUniqueID : int64; strict protected procedure FreeException; protected //IOmniWorkItem function GetData: TOmniValue; function GetResult: TOmniValue; function GetUniqueID: int64; procedure SetResult(const value: TOmniValue); protected //IOmniWorkItemEx function GetOnWorkItemDone: TOmniWorkItemDoneDelegate; function GetOnWorkItemDone_Asy: TOmniWorkItemDoneDelegate; procedure SetOnWorkItemDone(const Value: TOmniWorkItemDoneDelegate); procedure SetOnWorkItemDone_Asy(const Value: TOmniWorkItemDoneDelegate); public constructor Create(const data: TOmniValue; uniqueID: int64); destructor Destroy; override; public //IOmniWorkItem procedure Cancel; function DetachException: Exception; function FatalException: Exception; function IsCanceled: boolean; function IsExceptional: boolean; property Data: TOmniValue read GetData; property Result: TOmniValue read GetResult write SetResult; property UniqueID: int64 read GetUniqueID; public //IOmniWorkItemEx property OnWorkItemDone: TOmniWorkItemDoneDelegate read GetOnWorkItemDone write SetOnWorkItemDone; property OnWorkItemDone_Asy: TOmniWorkItemDoneDelegate read GetOnWorkItemDone_Asy write SetOnWorkItemDone_Asy; end; As noted in answers, composition is a good approach for this example but I'm not sure it applies in all cases. Sometimes I'm using multiple inheritance just to split read and write access to some property into public (typically read-only) and private (typically write-only) part. Does composition still apply here? I'm not really sure as I would have to move the property in question out from the main class and I'm not sure that's the correct way to do it. Example: // public part of the interface interface IOmniWorkItemConfig = interface function OnExecute(const aTask: TOmniBackgroundWorkerDelegate): IOmniWorkItemConfig; function OnRequestDone(const aTask: TOmniWorkItemDoneDelegate): IOmniWorkItemConfig; function OnRequestDone_Asy(const aTask: TOmniWorkItemDoneDelegate): IOmniWorkItemConfig; end; // private part of the interface IOmniWorkItemConfigEx = interface ['{42CEC5CB-404F-4868-AE81-6A13AD7E3C6B}'] function GetOnExecute: TOmniBackgroundWorkerDelegate; function GetOnRequestDone: TOmniWorkItemDoneDelegate; function GetOnRequestDone_Asy: TOmniWorkItemDoneDelegate; end; // implementing class TOmniWorkItemConfig = class(TInterfacedObject, IOmniWorkItemConfig, IOmniWorkItemConfigEx) strict private FOnExecute : TOmniBackgroundWorkerDelegate; FOnRequestDone : TOmniWorkItemDoneDelegate; FOnRequestDone_Asy: TOmniWorkItemDoneDelegate; public constructor Create(defaults: IOmniWorkItemConfig = nil); public //IOmniWorkItemConfig function OnExecute(const aTask: TOmniBackgroundWorkerDelegate): IOmniWorkItemConfig; function OnRequestDone(const aTask: TOmniWorkItemDoneDelegate): IOmniWorkItemConfig; function OnRequestDone_Asy(const aTask: TOmniWorkItemDoneDelegate): IOmniWorkItemConfig; public //IOmniWorkItemConfigEx function GetOnExecute: TOmniBackgroundWorkerDelegate; function GetOnRequestDone: TOmniWorkItemDoneDelegate; function GetOnRequestDone_Asy: TOmniWorkItemDoneDelegate; end;

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • WCF ChannelFactory caching

    - by Myles J
    I've just read this great article on WCF ChannelFactory caching by Wenlong Dong. My question is simply how can you actually prove that the ChannelFactory is in fact being cached between calls? I've followed the rules regarding the ClientBase’s constructors. We are using the following overloaded constructor on our object that inherits from ClientBase: ClientBase(string endpointConfigurationName, EndpointAddress remoteAddress); In the article mentioned above it is stated that: For these constructors, all arguments (including default ones) are in the following list: · InstanceContext callbackInstance · string endpointConfigurationName · EndpointAddress remoteAddress As long as these three arguments are the same when ClientBase is constructed, we can safely assume that the same ChannelFactory can be used. Fortunately, String and EndpointAddress types are immutable, i.e., we can make simple comparison to determine whether two arguments are the same. For InstanceContext, we can use Object reference comparison. The type EndpointTrait is thus used as the key of the MRU cache. To test the ChannelFactory cache theory we are checking the Hashcode in the ClientBase constructor e.g. var testHash = RuntimeHelpers.GetHashCode(base.ChannelFactory); The hash value is different between calls which makes us think that the ChannelFactory isn't actually cached. Any thoughts? Regards Myles

    Read the article

  • Injecting Mockito mocks into a Spring bean

    - by teabot
    I would like to inject a Mockito mock object into a Spring (3+) bean for the purposes of unit testing with JUnit. My bean dependencies are currently injected by using the @Autowired annotation on private member fields. I have considered using ReflectionTestUtils.setField but the bean instance that I wish to inject is actually a proxy and hence does not declare the private member fields of the target class. I do not wish to create a public setter to the dependency as I will then be modifying my interface purely for the purposes of testing. I have followed some advice given by the Spring community but the mock does not get created and the auto-wiring fails: <bean id="dao" class="org.mockito.Mockito" factory-method="mock"> <constructor-arg value="com.package.Dao" /> </bean> The error I currently encounter is as follows: ... Caused by: org...NoSuchBeanDefinitionException: No matching bean of type [com.package.Dao] found for dependency: expected at least 1 bean which qualifies as autowire candidate for this dependency. Dependency annotations: { @org...Autowired(required=true), @org...Qualifier(value=dao) } at org...DefaultListableBeanFactory.raiseNoSuchBeanDefinitionException(D...y.java:901) at org...DefaultListableBeanFactory.doResolveDependency(D...y.java:770) If I set the constructor-arg value to something invalid no error occurs when starting the application context.

    Read the article

  • Guice and JSF 2

    - by digitaljoel
    I'm trying to use Guice to inject properties of a JSF managed bean. This is all running on Google App Engine (which may or may not be important) I've followed the instructions here: http://code.google.com/docreader/#p=google-guice&s=google-guice&t=GoogleAppEngine One problem is in the first step. I can't subclass the Servlet module and setup my servlet mappings there because Faces is handled by the javax.faces.webapp.FacesServlet which subclasses Servlet, not HttpServlet. So, I tried leaving my servlet configuration in the web.xml file and simply instantiating a new ServletModel() along with my business module when creating the injector in the context listener described in the second step. Having done all that, along with the web.xml configuration, my managed bean isn't getting any properties injected. The method is as follows @ManagedBean @ViewScoped public class ViewTables implements Serializable { private DataService<Table> service; @Inject public void setService( DataService<Table> service ) { this.service = service; } public List<Table> getTables() { return service.getAll(); } } So, I'm wondering if there is a trick to get Guice injecting into a JSF managed bean? I obviously can't use the constructor injection because JSF needs a no-arg constructor to create the bean.

    Read the article

  • SQL Server Reporting Services Data Extention

    - by Vercinegetorix
    Hello! So... here's my story: I'm trying to create a SQL server data extension (to be precise, I'm trying to get some sample code to run) (SSRS2005). I've done the following: Placed the extension assembly into the ReportServer/bin folder. Placed the assembly into the Private Assemblies folder. Modified rsreportserver.config in, and added the assembly info to the data section. Modified rssrvpolicy.config, and added a code group for the assembly with Full Trust. Modified RSReportDesigner.config in PrivateAssemblies. Added the assembly to the data and the designer sections, specifying the generic query designer. Modified RSPreviewPolicy.config. Added the assembly with Full Trust. The new Data Source type is available for selection, but when I try to view the dataset I get this error: The data extension DataSet could not be loaded. Check the configuration file RSReportDesigner.config. The location of the assembly is configured properly (I think), because I've added logging code and I can see that the constructor of the Connection object is being called. In fact, I've added logging code to every method of every class in the assembly, and as far as I can tell the failure occurs right after the connection object's constructor is called. Any ideas on how I might proceed to debug this? Thanks alot!

    Read the article

  • java.lang.VerifyError on method that worked a minute ago

    - by Travis
    Apologies in advance but I have never seen this error before and don't know what to include. I am using NetBeans and suddenly began getting this error: Exception in thread "AWT-EventQueue-0" java.lang.VerifyError: (class: market/CostOperations, method: <init> signature: ()V) Constructor must call super() or this() at Bluebuild.Main.refreshTables(Main.java:748) at Bluebuild.Main.formComponentShown(Main.java:649) at Bluebuild.Main.access$100(Main.java:28) at Bluebuild.Main$2.componentShown(Main.java:374) at java.awt.Component.processComponentEvent(Component.java:6095) at java.awt.Component.processEvent(Component.java:6043) at java.awt.Container.processEvent(Container.java:2041) at java.awt.Window.processEvent(Window.java:1836) at java.awt.Component.dispatchEventImpl(Component.java:4630) at java.awt.Container.dispatchEventImpl(Container.java:2099) at java.awt.Window.dispatchEventImpl(Window.java:2478) at java.awt.Component.dispatchEvent(Component.java:4460) at java.awt.EventQueue.dispatchEvent(EventQueue.java:599) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:269) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:184) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:174) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:169) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:161) at java.awt.EventDispatchThread.run(EventDispatchThread.java:122) I have not a clue what happened. I didn't even modify market/CostOperations. Here's the constructor though: public CostOperations() throws ParserConfigurationException, SAXException, IOException { //Open the xml file DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); DocumentBuilder builder = factory.newDocumentBuilder(); f = new File(dbName); doc = builder.parse(f); System.out.println(f.canWrite()); //Create the XPath XPathFactory xpfactory = XPathFactory.newInstance(); path = xpfactory.newXPath(); } In Debug Mode I get this: debug: Have no FileObject for C:\Program Files (x86)\Java\jdk1.6.0_20\jre\lib\sunrsasign.jar Have no FileObject for C:\Program Files (x86)\Java\jdk1.6.0_20\jre\classes I just need to know what is causing the error and how to fix it. Thanks!

    Read the article

  • beginning oop php question: do constructors take the place of getter?

    - by Joel
    I'm working through this tutorial: http://www.killerphp.com/tutorials/object-oriented-php/php-objects-page-3.php At first he has you create a setter and getter method in the class: <?php class person{ var $name; function set_name($new_name){ $this->name=$new_name; } function get_name(){ return $this->name; } } php?> And then you create the object and echo the results: <?php $stefan = new person(); $jimmy = new person(); $stefan ->set_name("Stefan Mischook"); $jimmy ->set_name("Nick Waddles"); echo "The first Object name is: ".$stefan->get_name(); echo "The second Object name is: ".$jimmy->get_name(); ?> Works as expected, and I understand. Then he introduces constructors: class person{ var $name; function __construct($persons_name) { $this->name = $persons_name; } function set_name($new_name){ $this->name=$new_name; } function get_name(){ return $this->name; } } And returns like so: <?php $joel = new person("Joel"); echo "The third Object name is: ".$joel->get_name(); ?> This is all fine and makes sense. Then I tried to combine the two and got an error, so I'm curious-is a constructor always taking the place of a "get" function? If you have a constructor, do you always need to include an argument when creating an object? Gives errors: <?php $stefan = new person(); $jimmy = new person(); $joel = new person("Joel Laviolette"); $stefan ->set_name("Stefan Mischook"); $jimmy ->set_name("Nick Waddles"); echo "The first Object name is: ".$stefan->get_name(); echo "The second Object name is: ".$jimmy->get_name(); echo "The third Object name is: ".$joel->get_name(); ?>

    Read the article

  • Castle Windsor using wrong component to satisfy a dependency

    - by Neil Barnwell
    I have the following component mapping in Windsor xml: <component id="dataSession.DbConnection" service="System.Data.IDbConnection, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" type="System.Data.SqlClient.SqlConnection, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" lifestyle="custom" customLifestyleType="MyCompany.Castle.PerOperationLifestyle.PerOperationLifestyleManager, MyCompany.Castle"> <parameters> <connectionString>server=(local);database=MyCompany;trusted_connection=true;application name=OperationScopeTest;</connectionString> </parameters> </component> <component id="dataSession.DataContext" service="System.Data.Linq.DataContext, System.Data.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" type="MyCompany.BusinessLogic.MyCompanyDataContext, MyCompany.BusinessLogic" lifestyle="custom" customLifestyleType="MyCompany.Castle.PerOperationLifestyle.PerOperationLifestyleManager, MyCompany.Castle"> <parameters> <connection>${dataSession.DbConnection}</connection> </parameters> </component> However, when I ask the container for a DataContext, it actually uses the constructor requiring a connection string, despite the ${dataSession.DbConnection} being an IDbConnection. Why is this, and how to I make Windsor use the correct constructor?

    Read the article

  • Resolving ambiguous this pointer in C++

    - by Paul Tevis
    I'm trying to derive a new class from an old one. The base class declaration looks like this: class Driver : public Plugin, public CmdObject { protected: Driver(); public: static Driver* GetInstance(); virtual Engine& GetEngine(); public: // Plugin methods... virtual bool InitPlugin (Mgr* pMgr); virtual bool Open(); virtual bool Close(); // CmdObject virtual bool ExecObjCmd(uint16 cmdID, uint16 nbParams, CommandParam *pParams, CmdChannelError& error); Mgr *m_pMgr; protected: Services *m_pServices; Engine m_Engine; }; Its constructor looks like this: Driver::Driver() : YCmdObject("Driver", (CmdObjectType)100, true), m_Engine("MyEngine") { Services *m_pServices = NULL; Mgr *m_pMgr = NULL; } So when I created my derived class, I first tried to simply inherit from the base class: class NewDriver : public Driver and copy the constructor: NewDriver::NewDriver() : CmdObject("NewDriver", (EYCmdObjectType)100, true), m_Engine("MyNewEngine") { Services *m_pServices = NULL; Mgr *m_pMgr = NULL; } The compiler (VisualDSP++ 5.0 from Analog Devices) didn't like this: ".\NewDriver.cpp", line 10: cc0293: error: indirect nonvirtual base class is not allowed CmdObject("NewDriver", (EYCmdObjectType)100, true), That made sense, so I decided to directly inherit from Plugin and CmdObject. To avoid multiple inheritance ambiguity problems (so I thought), I used virtual inheritance: class NewDriver : public Driver, public virtual Plugin, public virtual CmdObject But then, in the implementation of a virtual method in NewDriver, I tried to call the Mgr::RegisterPlugin method that takes a Plugin*, and I got this: ".\NewDriver.cpp", line 89: cc0286: error: base class "Plugin" is ambiguous if (!m_pMgr->RegisterPlugin(this)) How is the this pointer ambiguous, and how do I resolve it? Thanks, --Paul

    Read the article

  • java.io.FileNotFoundException: /target/test.log

    - by sword101
    Greetings all I am using Apache Camel and Apache CXF in this example: http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.data/cxfcamelexample.zip I followed the readme and when tried to run the client & server classes i got this exception: log4j:ERROR setFile(null,true) call failed. java.io.FileNotFoundException: /target/test.log (No such file or directory) at java.io.FileOutputStream.openAppend(Native Method) at java.io.FileOutputStream.<init>(FileOutputStream.java:177) at java.io.FileOutputStream.<init>(FileOutputStream.java:102) at org.apache.log4j.FileAppender.setFile(FileAppender.java:289) at org.apache.log4j.FileAppender.activateOptions(FileAppender.java:163) at org.apache.log4j.config.PropertySetter.activate(PropertySetter.java:256) at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:132) at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:96) at org.apache.log4j.PropertyConfigurator.parseAppender(PropertyConfigurator.java:654) at org.apache.log4j.PropertyConfigurator.parseCategory(PropertyConfigurator.java:612) at org.apache.log4j.PropertyConfigurator.configureRootCategory(PropertyConfigurator.java:509) at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:415) at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:441) at org.apache.log4j.helpers.OptionConverter.selectAndConfigure(OptionConverter.java:470) at org.apache.log4j.LogManager.<clinit>(LogManager.java:122) at org.apache.log4j.Logger.getLogger(Logger.java:104) at org.apache.commons.logging.impl.Log4JLogger.getLogger(Log4JLogger.java:283) at org.apache.commons.logging.impl.Log4JLogger.<init>(Log4JLogger.java:108) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at org.apache.commons.logging.impl.LogFactoryImpl.createLogFromClass(LogFactoryImpl.java:1040) at org.apache.commons.logging.impl.LogFactoryImpl.discoverLogImplementation(LogFactoryImpl.java:838) at org.apache.commons.logging.impl.LogFactoryImpl.newInstance(LogFactoryImpl.java:601) at org.apache.commons.logging.impl.LogFactoryImpl.getInstance(LogFactoryImpl.java:333) at org.apache.commons.logging.impl.LogFactoryImpl.getInstance(LogFactoryImpl.java:307) at org.apache.commons.logging.LogFactory.getLog(LogFactory.java:645) at org.springframework.context.support.AbstractApplicationContext.<init>(AbstractApplicationContext.java:146) at org.springframework.context.support.AbstractRefreshableApplicationContext.<init>(AbstractRefreshableApplicationContext.java:84) at org.springframework.context.support.AbstractRefreshableConfigApplicationContext.<init>(AbstractRefreshableConfigApplicationContext.java:59) at org.springframework.context.support.AbstractXmlApplicationContext.<init>(AbstractXmlApplicationContext.java:58) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:136) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.example.customerservice.impl.CustomerServiceClient.main(CustomerServiceClient.java:34) so any ideas, how to solve this exception ?

    Read the article

  • Java 1.5 crypto on OS X - AccessControlException

    - by bpapa
    I'm trying to do a Google App Engine project on OS X (latest and greatest). I'm using classes from javax.crypto, and I'm seeing an AccessControlException thrown when I try to initialize an instance of the Mac class. Here's the stack trace: WARNING: Nested in java.lang.ExceptionInInitializerError: java.security.AccessControlException: access denied (java.lang.RuntimePermission loadLibrary.keychain) at java.security.AccessControlContext.checkPermission(AccessControlContext.java:264) at java.security.AccessController.checkPermission(AccessController.java:427) at java.lang.SecurityManager.checkPermission(SecurityManager.java:532) at com.google.appengine.tools.development.DevAppServerFactory$CustomSecurityManager.checkPermission(DevAppServerFactory.java:76) at java.lang.SecurityManager.checkLink(SecurityManager.java:818) at java.lang.Runtime.loadLibrary0(Runtime.java:816) at java.lang.System.loadLibrary(System.java:993) at com.apple.crypto.provider.HmacCore.<clinit>(HmacCore.java:26) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:494) at java.lang.Class.newInstance0(Class.java:350) at java.lang.Class.newInstance(Class.java:303) at java.security.Provider$Service.newInstance(Provider.java:1130) at javax.crypto.Mac.a(DashoA12275) at javax.crypto.Mac.init(DashoA12275) Any ideas on 1 - what went wrong and how fix it 2 - if it's not fixable (I know Apple has not been the best supporter of Java in recent years), what's an alternative approach?

    Read the article

  • [MFC] I can't re-parent a window

    - by John
    Following on from this question, now I have a clearer picture what's going on... I have a MFC application with no main window, which exposes an API to create dialogs. When I call some of these methods repeatedly, the dialogs created are parented to each other instead of all being parented to the desktop... I have no idea why. But anyway even after creation, I am unable to change the parent back to NULL or CWnd::GetDesktopWindow()... if I call SetParent followed by GetParent, nothing has changed. So apart from the really weird question of why Windows is magically parenting each dialog to the last one created, is there anything I'm missing to be able to set these windows as children of the desktop? UPDATED: I have found the reason for all this, but not the solution. From my dialog constructor, we end up in: BOOL CDialog::CreateIndirect(LPCDLGTEMPLATE lpDialogTemplate, CWnd* pParentWnd, void* lpDialogInit, HINSTANCE hInst) { ASSERT(lpDialogTemplate != NULL); if (pParentWnd == NULL) pParentWnd = AfxGetMainWnd(); m_lpDialogInit = lpDialogInit; return CreateDlgIndirect(lpDialogTemplate, pParentWnd, hInst); } Note: if (pParentWnd == NULL)pParentWnd = AfxGetMainWnd(); The call-stack from my dialog constructor looks like this: mfc80d.dll!CDialog::CreateIndirect(const DLGTEMPLATE * lpDialogTemplate=0x005931a8, CWnd * pParentWnd=0x00000000, void * lpDialogInit=0x00000000, HINSTANCE__ * hInst=0x00400000) mfc80d.dll!CDialog::CreateIndirect(void * hDialogTemplate=0x005931a8, CWnd * pParentWnd=0x00000000, HINSTANCE__ * hInst=0x00400000) mfc80d.dll!CDialog::Create(const char * lpszTemplateName=0x0000009d, CWnd * pParentWnd=0x00000000) mfc80d.dll!CDialog::Create(unsigned int nIDTemplate=157, CWnd * pParentWnd=0x00000000) MyApp.exe!CMyDlg::CMyDlg(CWnd * pParent=0x00000000)

    Read the article

  • RuntimeException from xmlbeans - can't find compiled schema

    - by findango
    I'm getting a RuntimeException while executing some code that depends on generated xmlbeans classes. I can't figure out if this is: me missing something during code-generation or packaging a runtime dependency missing a misleading error message, and I should be looking elsewhere. The xbean.jar version is the same in the build and execution environment. Anyone seen this before or have any ideas? Thanks. ...snip... Caused by: java.lang.RuntimeException: Could not instantiate SchemaTypeSystemImpl (java.lang.reflect.InvocationTargetException): is the version of xbean.jar correct? at schemaorg_apache_xmlbeans.system.s2B8331230CBD98F4933B0B025B6BF726.TypeSystemHolder.loadTypeSystem(Unknown Source) at schemaorg_apache_xmlbeans.system.s2B8331230CBD98F4933B0B025B6BF726.TypeSystemHolder.(Unknown Source) ... 38 more Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:494) ... 40 more Caused by: org.apache.xmlbeans.SchemaTypeLoaderException: XML-BEANS compiled schema: Could not locate compiled schema resource schemaorg_apache_xmlbeans/system/s2B8331230CBD98F4933B0B025B6BF726/index.xsb (schemaorg_apache_xmlbeans.system.s2B8331230CBD98F4933B0B025B6BF726.index) - code 0 at org.apache.xmlbeans.impl.schema.SchemaTypeSystemImpl$XsbReader.(SchemaTypeSystemImpl.java:1504) at org.apache.xmlbeans.impl.schema.SchemaTypeSystemImpl.initFromHeader(SchemaTypeSystemImpl.java:260) at org.apache.xmlbeans.impl.schema.SchemaTypeSystemImpl.(SchemaTypeSystemImpl.java:183) ... 44 more ...snip...

    Read the article

  • AlertDialog in if-stetement doesn't show()

    - by Steffen Kern
    I have the following code: public void button_login(View view) { // Instantiate an AlertDialog.Builder with its constructor AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setPositiveButton(R.string.ok, new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { /* User clicked OK button */ } }); // Preserve EditText values. EditText ET_username = (EditText) findViewById(R.id.username); EditText ET_password = (EditText) findViewById(R.id.password); String str_username = ET_username.toString(); String str_password = ET_password.toString(); // Intercept missing username and password. if(str_username.length() == 0) { builder.setMessage(R.string.hint_username_empty); AlertDialog dialog = builder.create(); dialog.show(); } } I have an activity that includes the two EditText-Views and a button. When I click the button the shown method will be called. My problem: The AlertDialog doesnt show up! When I put the create and show at beginning like this: // Instantiate an AlertDialog.Builder with its constructor AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setPositiveButton(R.string.ok, new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { /* User clicked OK button */ } }); builder.setMessage(R.string.hint_username_empty); AlertDialog dialog = builder.create(); dialog.show(); // Preserve EditText values. EditText ET_username = (EditText) findViewById(R.id.username); EditText ET_password = (EditText) findViewById(R.id.password); String str_username = ET_username.toString(); String str_password = ET_password.toString(); // Intercept missing username and password. if(str_username.length() == 0) { } } Then the Dialog shows up. Any ideas why the dialog doesnt show up in the first place? Greetz, Steffen

    Read the article

< Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >