Search Results

Search found 3678 results on 148 pages for 'constructor chaining'.

Page 61/148 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • Get the property, as a string, from an Expression<Func<TModel,TProperty>>

    - by Jaxidian
    I use some strongly-typed expressions that get serialized to allow my UI code to have strongly-typed sorting and searching expressions. These are of type Expression<Func<TModel,TProperty>> and are used as such: SortOption.Field = (p => p.FirstName);. I've gotten this working perfectly for this simple case. The code that I'm using for parsing the "FirstName" property out of there is actually reusing some existing functionality in a third-party product that we use and it works great, until we start working with deeply-nested properties(SortOption.Field = (p => p.Address.State.Abbreviation);). This code has some very different assumptions in the need to support deeply-nested properties. As for what this code does, I don't really understand it and rather than changing that code, I figured I should just write from scratch this functionality. However, I don't know of a good way to do this. I suspect we can do something better than doing a ToString() and performing string parsing. So what's a good way to do this to handle the trivial and deeply-nested cases? Requirements: Given the expression p => p.FirstName I need a string of "FirstName". Given the expression p => p.Address.State.Abbreviation I need a string of "Address.State.Abbreviation" While it's not important for an answer to my question, I suspect my serialization/deserialization code could be useful to somebody else who finds this question in the future, so it is below. Again, this code is not important to the question - I just thought it might help somebody. Note that DynamicExpression.ParseLambda comes from the Dynamic LINQ stuff and Property.PropertyToString() is what this question is about. /// <summary> /// This defines a framework to pass, across serialized tiers, sorting logic to be performed. /// </summary> /// <typeparam name="TModel">This is the object type that you are filtering.</typeparam> /// <typeparam name="TProperty">This is the property on the object that you are filtering.</typeparam> [Serializable] public class SortOption<TModel, TProperty> : ISerializable where TModel : class { /// <summary> /// Convenience constructor. /// </summary> /// <param name="property">The property to sort.</param> /// <param name="isAscending">Indicates if the sorting should be ascending or descending</param> /// <param name="priority">Indicates the sorting priority where 0 is a higher priority than 10.</param> public SortOption(Expression<Func<TModel, TProperty>> property, bool isAscending = true, int priority = 0) { Property = property; IsAscending = isAscending; Priority = priority; } /// <summary> /// Default Constructor. /// </summary> public SortOption() : this(null) { } /// <summary> /// This is the field on the object to filter. /// </summary> public Expression<Func<TModel, TProperty>> Property { get; set; } /// <summary> /// This indicates if the sorting should be ascending or descending. /// </summary> public bool IsAscending { get; set; } /// <summary> /// This indicates the sorting priority where 0 is a higher priority than 10. /// </summary> public int Priority { get; set; } #region Implementation of ISerializable /// <summary> /// This is the constructor called when deserializing a SortOption. /// </summary> protected SortOption(SerializationInfo info, StreamingContext context) { IsAscending = info.GetBoolean("IsAscending"); Priority = info.GetInt32("Priority"); // We just persisted this by the PropertyName. So let's rebuild the Lambda Expression from that. Property = DynamicExpression.ParseLambda<TModel, TProperty>(info.GetString("Property"), default(TModel), default(TProperty)); } /// <summary> /// Populates a <see cref="T:System.Runtime.Serialization.SerializationInfo"/> with the data needed to serialize the target object. /// </summary> /// <param name="info">The <see cref="T:System.Runtime.Serialization.SerializationInfo"/> to populate with data. </param> /// <param name="context">The destination (see <see cref="T:System.Runtime.Serialization.StreamingContext"/>) for this serialization. </param> public void GetObjectData(SerializationInfo info, StreamingContext context) { // Just stick the property name in there. We'll rebuild the expression based on that on the other end. info.AddValue("Property", Property.PropertyToString()); info.AddValue("IsAscending", IsAscending); info.AddValue("Priority", Priority); } #endregion }

    Read the article

  • Compile error with initializer_list when trying to use it to initialize member value of class

    - by ilektron
    I am trying to make a class initializable from an initialization_list in a class constructor's constructor's initialization list. It works for a std::map, but not for my custom class. I don't see any difference other than templates are used in std::map. #include <iostream> #include <initializer_list> #include <string> #include <sstream> #include <map> using std::string; class text_thing { private: string m_text; public: text_thing() { } text_thing(text_thing& other); text_thing(std::initializer_list< std::pair<const string, const string> >& il); text_thing& operator=(std::initializer_list< std::pair<const string, const string> >& il); operator string() { return m_text; } }; class static_base { private: std::map<string, string> m_test_map; text_thing m_thing; static_base(); public: static static_base& getInstance() { static static_base instance; return instance; } string getText() { return (string)m_thing; } }; typedef std::pair<const string, const string> spair; text_thing::text_thing(text_thing& other) { m_text = other.m_text; } text_thing::text_thing(std::initializer_list< std::pair<const string, const string> >& il) { std::stringstream text_gen; for (auto& apair : il) { text_gen << "{" << apair.first << ", " << apair.second << "}" << std::endl; } } text_thing& text_thing::operator=(std::initializer_list< std::pair<const string, const string> >& il) { std::stringstream text_gen; for (auto& apair : il) { text_gen << "{" << apair.first << ", " << apair.second << "}" << std::endl; } return *this; } static_base::static_base() : m_test_map{{"test", "1"}, {"test2", "2"}}, // Compiler fine with this m_thing{{"test", "1"}, {"test2", "2"}} // Compiler doesn't like this { } int main() { std::cout << "Starting the program" << std::endl; std::cout << "The text thing: " << std::endl << static_base::getInstance().getText(); } I get this compiler output g++ -O0 -g3 -Wall -c -fmessage-length=0 -std=c++11 -MMD -MP -MF"static_base.d" -MT"static_base.d" -o "static_base.o" "../static_base.cpp" Finished building: ../static_base.cpp Building file: ../test.cpp Invoking: GCC C++ Compiler g++ -O0 -g3 -Wall -c -fmessage-length=0 -std=c++11 -MMD -MP -MF"test.d" -MT"test.d" -o "test.o" "../test.cpp" ../test.cpp: In constructor ‘static_base::static_base()’: ../test.cpp:94:40: error: no matching function for call to ‘text_thing::text_thing(<brace-enclosed initializer list>)’ m_thing{{"test", "1"}, {"test2", "2"}} ^ ../test.cpp:94:40: note: candidates are: ../test.cpp:72:1: note: text_thing::text_thing(std::initializer_list<std::pair<const std::basic_string<char>, const std::basic_string<char> > >&) text_thing::text_thing(std::initializer_list< std::pair<const string, const string> >& il) ^ ../test.cpp:72:1: note: candidate expects 1 argument, 2 provided ../test.cpp:67:1: note: text_thing::text_thing(text_thing&) text_thing::text_thing(text_thing& other) ^ ../test.cpp:67:1: note: candidate expects 1 argument, 2 provided ../test.cpp:23:2: note: text_thing::text_thing() text_thing() ^ ../test.cpp:23:2: note: candidate expects 0 arguments, 2 provided make: *** [test.o] Error 1 Output of gcc -v Using built-in specs. COLLECT_GCC=gcc COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/4.8/lto-wrapper Target: x86_64-linux-gnu Configured with: ../src/configure -v --with-pkgversion='Ubuntu 4.8.1-2ubuntu1~13.04' --with-bugurl=file:///usr/share/doc/gcc-4.8/README.Bugs --enable-languages=c,c++,java,go,d,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.8 --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --with-gxx-include-dir=/usr/include/c++/4.8 --libdir=/usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-gnu-unique-object --enable-plugin --with-system-zlib --disable-browser-plugin --enable-java-awt=gtk --enable-gtk-cairo --with-java-home=/usr/lib/jvm/java-1.5.0-gcj-4.8-amd64/jre --enable-java-home --with-jvm-root-dir=/usr/lib/jvm/java-1.5.0-gcj-4.8-amd64 --with-jvm-jar-dir=/usr/lib/jvm-exports/java-1.5.0-gcj-4.8-amd64 --with-arch-directory=amd64 --with-ecj-jar=/usr/share/java/eclipse-ecj.jar --enable-objc-gc --enable-multiarch --disable-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --with-tune=generic --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu Thread model: posix gcc version 4.8.1 (Ubuntu 4.8.1-2ubuntu1~13.04) It compiles fine with the std::map constructed this way, and if I modify the static_base to return the strings from the maps, all is fine and dandy. Please help me understand what is going on here.

    Read the article

  • I'm new to C++. Please Help me with the Linked List (What functions to add)?

    - by Igal
    DEAR All; Hi, I'm just beginner to C++; Please help me to understand: What functions should be in the Linked list class ? I think there should be overloaded operators << and ; Please help me to improve the code (style, errors, etc,) Thanks for advance. Igal. Please review the small code for the integer List (enclosed MyNODE.h and ListDriver1.cpp); MyNODE.h // This is my first attempt to write linked list. Igal Spector, June 2010. #include <iostream.h> #include <assert.h> //Forward Declaration of the classes: class ListNode; class TheLinkedlist; // Definition of the node (WITH IMPLEMENTATION !!!, without test drive): class ListNode{ friend class TheLinkedlist; public: // constructor: ListNode(const int& value, ListNode *next= 0); // note: no destructor, as this handled by TheLinkedList class. // accessor: return data in the node. // int Show() const {return theData;} private: int theData; //the Data ListNode* theNext; //points to the next node in the list. }; //Implementations: //constructor: inline ListNode::ListNode(const int &value,ListNode *next) :theData(value),theNext(next){} //end of ListNode class, now for the LL class: class TheLinkedlist { public: //constructors: TheLinkedlist(); virtual ~TheLinkedlist(); // Accessors: void InsertAtFront(const &); void AppendAtBack(const &); // void InOrderInsert(const &); bool IsEmpty()const;//predicate function void Print() const; private: ListNode * Head; //pointer to first node ListNode * Tail; //pointer to last node. }; //Implementation: //Default constructor inline TheLinkedlist::TheLinkedlist():Head(0),Tail(0) {} //Destructor inline TheLinkedlist::~TheLinkedlist(){ if(!IsEmpty()){ //list is not empty cout<<"\n\tDestroying Nodes"<<endl; ListNode *currentPointer=Head, *tempPtr; while(currentPointer != 0){ //Delete remaining Nodes. tempPtr=currentPointer; cout<<"The node: "<<tempPtr->theData <<" is Destroyed."<<endl<<endl; currentPointer=currentPointer->theNext; delete tempPtr; } Head=Tail = 0; //don't forget this, as it may be checked one day. } } //Insert the Node to the beginning of the list: void TheLinkedlist::InsertAtFront(const int& value){ ListNode *newPtr = new ListNode(value,Head); assert(newPtr!=0); if(IsEmpty()) //list is empty Head = Tail = newPtr; else { //list is NOT empty newPtr->theNext = Head; Head = newPtr; } } //Insert the Node to the beginning of the list: void TheLinkedlist::AppendAtBack(const int& value){ ListNode *newPtr = new ListNode(value, NULL); assert(newPtr!=0); if(IsEmpty()) //list is empty Head = Tail = newPtr; else { //list is NOT empty Tail->theNext = newPtr; Tail = newPtr; } } //is the list empty? inline bool TheLinkedlist::IsEmpty() const { return (Head == 0); } // Display the contents of the list void TheLinkedlist::Print()const{ if ( IsEmpty() ){ cout << "\n\t The list is empty!!"<<endl; return; } ListNode *tempPTR = Head; cout<<"\n\t The List is: "; while ( tempPTR != 0 ){ cout<< tempPTR->theData <<" "; tempPTR = tempPTR->theNext; } cout<<endl<<endl; } ////////////////////////////////////// The test Driver: //Driver test for integer Linked List. #include <iostream.h> #include "MyNODE.h" // main Driver int main(){ cout<< "\n\t This is the test for integer LinkedList."<<endl; const int arraySize=11, ARRAY[arraySize]={44,77,88,99,11,2,22,204,50,58,12}; cout << "\n\tThe array is: "; //print the numbers. for (int i=0;i<arraySize; i++) cout<<ARRAY[i]<<", "; TheLinkedlist list; //declare the list for(int index=0;index<arraySize;index++) list.AppendAtBack( ARRAY[index] );//create the list cout<<endl<<endl; list.Print(); //print the list return 0; //end of the program. }

    Read the article

  • Creating a new plugin for mpld3

    - by sjp14051
    Toward learning how to create a new mpld3 plugin, I took an existing example, LinkedDataPlugin (http://mpld3.github.io/examples/heart_path.html), and modified it slightly by deleting references to lines object. That is, I created the following: class DragPlugin(plugins.PluginBase): JAVASCRIPT = r""" mpld3.register_plugin("drag", DragPlugin); DragPlugin.prototype = Object.create(mpld3.Plugin.prototype); DragPlugin.prototype.constructor = DragPlugin; DragPlugin.prototype.requiredProps = ["idpts", "idpatch"]; DragPlugin.prototype.defaultProps = {} function DragPlugin(fig, props){ mpld3.Plugin.call(this, fig, props); }; DragPlugin.prototype.draw = function(){ var patchobj = mpld3.get_element(this.props.idpatch, this.fig); var ptsobj = mpld3.get_element(this.props.idpts, this.fig); var drag = d3.behavior.drag() .origin(function(d) { return {x:ptsobj.ax.x(d[0]), y:ptsobj.ax.y(d[1])}; }) .on("dragstart", dragstarted) .on("drag", dragged) .on("dragend", dragended); patchobj.path.attr("d", patchobj.datafunc(ptsobj.offsets, patchobj.pathcodes)); patchobj.data = ptsobj.offsets; ptsobj.elements() .data(ptsobj.offsets) .style("cursor", "default") .call(drag); function dragstarted(d) { d3.event.sourceEvent.stopPropagation(); d3.select(this).classed("dragging", true); } function dragged(d, i) { d[0] = ptsobj.ax.x.invert(d3.event.x); d[1] = ptsobj.ax.y.invert(d3.event.y); d3.select(this) .attr("transform", "translate(" + [d3.event.x,d3.event.y] + ")"); patchobj.path.attr("d", patchobj.datafunc(ptsobj.offsets, patchobj.pathcodes)); } function dragended(d, i) { d3.select(this).classed("dragging", false); } } mpld3.register_plugin("drag", DragPlugin); """ def __init__(self, points, patch): print "Points ID : ", utils.get_id(points) self.dict_ = {"type": "drag", "idpts": utils.get_id(points), "idpatch": utils.get_id(patch)} However, when I try to link the plugin to a figure, as in plugins.connect(fig, DragPlugin(points[0], patch)) I get an error, 'module' is not callable, pointing to this line. What does this mean and why doesn't it work? Thanks. I'm adding additional code to show that linking more than one Plugin might be problematic. But this may be entirely due to some silly mistake on my part, or there is a way around it. The following code based on LinkedViewPlugin generates three panels, in which the top and the bottom panel are supposed to be identical. Mouseover in the middle panel was expected to control the display in the top and bottom panels, but updates occur in the bottom panel only. It would be nice to be able to figure out how to reflect the changes in multiple panels. Thanks. import matplotlib import matplotlib.pyplot as plt import numpy as np import mpld3 from mpld3 import plugins, utils class LinkedView(plugins.PluginBase): """A simple plugin showing how multiple axes can be linked""" JAVASCRIPT = """ mpld3.register_plugin("linkedview", LinkedViewPlugin); LinkedViewPlugin.prototype = Object.create(mpld3.Plugin.prototype); LinkedViewPlugin.prototype.constructor = LinkedViewPlugin; LinkedViewPlugin.prototype.requiredProps = ["idpts", "idline", "data"]; LinkedViewPlugin.prototype.defaultProps = {} function LinkedViewPlugin(fig, props){ mpld3.Plugin.call(this, fig, props); }; LinkedViewPlugin.prototype.draw = function(){ var pts = mpld3.get_element(this.props.idpts); var line = mpld3.get_element(this.props.idline); var data = this.props.data; function mouseover(d, i){ line.data = data[i]; line.elements().transition() .attr("d", line.datafunc(line.data)) .style("stroke", this.style.fill); } pts.elements().on("mouseover", mouseover); }; """ def __init__(self, points, line, linedata): if isinstance(points, matplotlib.lines.Line2D): suffix = "pts" else: suffix = None self.dict_ = {"type": "linkedview", "idpts": utils.get_id(points, suffix), "idline": utils.get_id(line), "data": linedata} class LinkedView2(plugins.PluginBase): """A simple plugin showing how multiple axes can be linked""" JAVASCRIPT = """ mpld3.register_plugin("linkedview", LinkedViewPlugin2); LinkedViewPlugin2.prototype = Object.create(mpld3.Plugin.prototype); LinkedViewPlugin2.prototype.constructor = LinkedViewPlugin2; LinkedViewPlugin2.prototype.requiredProps = ["idpts", "idline", "data"]; LinkedViewPlugin2.prototype.defaultProps = {} function LinkedViewPlugin2(fig, props){ mpld3.Plugin.call(this, fig, props); }; LinkedViewPlugin2.prototype.draw = function(){ var pts = mpld3.get_element(this.props.idpts); var line = mpld3.get_element(this.props.idline); var data = this.props.data; function mouseover(d, i){ line.data = data[i]; line.elements().transition() .attr("d", line.datafunc(line.data)) .style("stroke", this.style.fill); } pts.elements().on("mouseover", mouseover); }; """ def __init__(self, points, line, linedata): if isinstance(points, matplotlib.lines.Line2D): suffix = "pts" else: suffix = None self.dict_ = {"type": "linkedview", "idpts": utils.get_id(points, suffix), "idline": utils.get_id(line), "data": linedata} fig, ax = plt.subplots(3) # scatter periods and amplitudes np.random.seed(0) P = 0.2 + np.random.random(size=20) A = np.random.random(size=20) x = np.linspace(0, 10, 100) data = np.array([[x, Ai * np.sin(x / Pi)] for (Ai, Pi) in zip(A, P)]) points = ax[1].scatter(P, A, c=P + A, s=200, alpha=0.5) ax[1].set_xlabel('Period') ax[1].set_ylabel('Amplitude') # create the line object lines = ax[0].plot(x, 0 * x, '-w', lw=3, alpha=0.5) ax[0].set_ylim(-1, 1) ax[0].set_title("Hover over points to see lines") linedata = data.transpose(0, 2, 1).tolist() plugins.connect(fig, LinkedView(points, lines[0], linedata)) # second set of lines exactly the same but in a different panel lines2 = ax[2].plot(x, 0 * x, '-w', lw=3, alpha=0.5) ax[2].set_ylim(-1, 1) ax[2].set_title("Hover over points to see lines #2") plugins.connect(fig, LinkedView2(points, lines2[0], linedata)) mpld3.show()

    Read the article

  • Android Out of memory regarding png image

    - by turtleboy
    I have a jpg image in my app that shows correctly. In my listview i'd like to make the image more transparent so it is easier to see the text. I changed the image to a png format and altered it's opacity in GIMP. Now that the new image is in the app drawable folder. Im getting the following error. why? 09-28 09:24:07.560: I/global(20140): call socket shutdown, tmpsocket=Socket[address=/178.250.50.40,port=80,localPort=35172] 09-28 09:24:07.570: I/global(20140): call socket shutdown, tmpsocket=Socket[address=/212.169.27.217,port=84,localPort=55656] 09-28 09:24:07.690: D/dalvikvm(20140): GC_FOR_ALLOC freed 113K, 4% free 38592K/39907K, paused 32ms 09-28 09:24:07.690: I/dalvikvm-heap(20140): Forcing collection of SoftReferences for 28072816-byte allocation 09-28 09:24:07.740: D/dalvikvm(20140): GC_BEFORE_OOM freed 9K, 4% free 38582K/39907K, paused 43ms 09-28 09:24:07.740: E/dalvikvm-heap(20140): Out of memory on a 28072816-byte allocation. 09-28 09:24:07.740: I/dalvikvm(20140): "main" prio=5 tid=1 RUNNABLE 09-28 09:24:07.740: I/dalvikvm(20140): | group="main" sCount=0 dsCount=0 obj=0x40a57490 self=0x1b6e9a8 09-28 09:24:07.740: I/dalvikvm(20140): | sysTid=20140 nice=0 sched=0/0 cgrp=default handle=1074361640 09-28 09:24:07.740: I/dalvikvm(20140): | schedstat=( 2289118000 760844000 2121 ) utm=195 stm=33 core=1 09-28 09:24:07.740: I/dalvikvm(20140): at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method) 09-28 09:24:07.740: I/dalvikvm(20140): at android.graphics.BitmapFactory.decodeResourceStream(BitmapFactory.java:486) 09-28 09:24:07.740: I/dalvikvm(20140): at android.graphics.drawable.Drawable.createFromResourceStream(Drawable.java:773) 09-28 09:24:07.740: I/dalvikvm(20140): at android.content.res.Resources.loadDrawable(Resources.java:2042) 09-28 09:24:07.740: I/dalvikvm(20140): at android.content.res.TypedArray.getDrawable(TypedArray.java:601) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.View.<init>(View.java:2812) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.ViewGroup.<init>(ViewGroup.java:410) 09-28 09:24:07.740: I/dalvikvm(20140): at android.widget.LinearLayout.<init>(LinearLayout.java:174) 09-28 09:24:07.740: I/dalvikvm(20140): at android.widget.LinearLayout.<init>(LinearLayout.java:170) 09-28 09:24:07.740: I/dalvikvm(20140): at java.lang.reflect.Constructor.constructNative(Native Method) 09-28 09:24:07.740: I/dalvikvm(20140): at java.lang.reflect.Constructor.newInstance(Constructor.java:417) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.createView(LayoutInflater.java:586) 09-28 09:24:07.740: I/dalvikvm(20140): at com.android.internal.policy.impl.PhoneLayoutInflater.onCreateView(PhoneLayoutInflater.java:56) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.onCreateView(LayoutInflater.java:653) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:678) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.inflate(LayoutInflater.java:466) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.inflate(LayoutInflater.java:396) 09-28 09:24:07.740: I/dalvikvm(20140): at android.view.LayoutInflater.inflate(LayoutInflater.java:352) 09-28 09:24:07.740: I/dalvikvm(20140): at com.android.internal.policy.impl.PhoneWindow.setContentView(PhoneWindow.java:278) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.Activity.setContentView(Activity.java:1897) 09-28 09:24:07.740: I/dalvikvm(20140): at com.carefreegroup.ShowMoreDetails.onCreate(ShowMoreDetails.java:26) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.Activity.performCreate(Activity.java:4543) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1071) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2181) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2260) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.ActivityThread.access$600(ActivityThread.java:139) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1277) 09-28 09:24:07.740: I/dalvikvm(20140): at android.os.Handler.dispatchMessage(Handler.java:99) 09-28 09:24:07.740: I/dalvikvm(20140): at android.os.Looper.loop(Looper.java:156) 09-28 09:24:07.740: I/dalvikvm(20140): at android.app.ActivityThread.main(ActivityThread.java:5045) 09-28 09:24:07.740: I/dalvikvm(20140): at java.lang.reflect.Method.invokeNative(Native Method) 09-28 09:24:07.740: I/dalvikvm(20140): at java.lang.reflect.Method.invoke(Method.java:511) 09-28 09:24:07.740: I/dalvikvm(20140): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:784) 09-28 09:24:07.740: I/dalvikvm(20140): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551) 09-28 09:24:07.740: I/dalvikvm(20140): at dalvik.system.NativeStart.main(Native Method) 09-28 09:24:07.740: E/dalvikvm(20140): Out of memory: Heap Size=46115KB, Allocated=38582KB, Limit=65536KB 09-28 09:24:07.740: E/dalvikvm(20140): Extra info: Footprint=39907KB, Allowed Footprint=46115KB, Trimmed=892KB 09-28 09:24:07.740: E/Bitmap_JNI(20140): Create Bitmap Failed. 09-28 09:24:07.740: A/libc(20140): Fatal signal 11 (SIGSEGV) at 0x00000004 (code=1) 09-28 09:24:09.750: I/dalvikvm(20367): Turning on JNI app bug workarounds for target SDK version 10... 09-28 09:24:09.940: D/dalvikvm(20367): GC_CONCURRENT freed 864K, 21% free 3797K/4771K, paused 2ms+2ms thanks. [update] @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.showmoredetailslayout); actualCallTime = (TextView)findViewById(R.id.actualcalltime); doubleUp = (TextView)findViewById(R.id.doubleupcallid); needName = (TextView)findViewById(R.id.needname); needNameLabel = (TextView)findViewById(R.id.neednamelabel); getRotaDetails = (Button)findViewById(R.id.buttongetrotadetails); intent = this.getIntent(); String actualTimeIn = intent.getStringExtra("actTimeIn"); String actualTimeOut = intent.getStringExtra("actTimeOut"); String doubleUpValue = intent.getStringExtra("doubleUpValue"); String needNameWithCommas = intent.getStringExtra("needNameWithCommas"); callID = intent.getStringExtra("callID"); String[] needs = needNameWithCommas.split(","); actualCallTime.setText("This call was completed at " + actualTimeIn + " -" + actualTimeOut); if( ! doubleUpValue.equalsIgnoreCase("") || doubleUpValue.equalsIgnoreCase("]")){ doubleUp.setText("This call was not a double up "); }else{ doubleUp.setText("This call was a double up " + doubleUpValue); } needNameLabel.setText("Purpose of Call: "); for (int i = 0; i < needs.length; i++){ needName.append( needs[i] + "\n"); } getRotaDetails.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { Intent intent = new Intent(ShowMoreDetails.this, GetRotaDetails.class); intent.putExtra("callIDExtra", callID); startActivity(intent); } }); } }

    Read the article

  • Assigning two strings together getting Access Read Violation

    - by Jay Bell
    I am trying to pass a string to a class mutator and set the private member to that string here is the code that is sending the string void parseTradePairs(Exchange::Currency *curr, std::string *response, int begin, int exit) { int start; int end; string temp; string dataResponse; CURL *tempCurl; initializeCurl(tempCurl); int location = response->find("marketid", begin); if(location <= exit) { start = location + 11; begin = response->find("label", start); end = begin - start - 3; findStrings(start, end, temp, response); getMarketInfo(tempCurl, temp, dataResponse); curr->_coin->setExch(temp); // here is the line of code that is sending the string dataResponse >> *(curr->_coin); curr->_next = new Exchange::Currency(curr, curr->_position + 1); parseTradePairs(curr->_next, response, begin, exit); } } and here is the mutator within the coin class that is receiving the string and assigning it to _exch void Coin::setExch(string exch) { _exch = exch; } I have stepped through it and made sure that exch has the string in it. "105" but soon as it hits _exch = exch; I get the reading violation. I tried passing as pointer as well. I do not believe it should go out of scope. and the string variable in the class is initialized to zero in the default constructor but again that should matter unless I am trying to read from it instead of writing to it. /* defualt constructor */ Coin::Coin() { _id = ""; _label = ""; _code= ""; _name = ""; _marketCoin = ""; _volume = 0; _last = 0; _exch = ""; } Exchange::Exchange(std::string str) { _exch = str; _currencies = new Currency; std::string pair; std::string response; CURL *curl; initializeCurl(curl); getTradePairs(curl, response); int exit = response.find_last_of("marketid"); parseTradePairs(_currencies, &response, 0, exit); } int main(void) { CURL *curl; string str; string id; Coin coin1; initializeCurl(curl); Exchange ex("cryptsy"); curl_easy_cleanup(curl); system("pause"); return 0; } class Exchange { public: typedef struct Currency { Currency(Coin *coin, Currency *next, Currency *prev, int position) : _coin(coin), _next(next), _prev(prev), _position(position) {} Currency(Currency *prev, int position) : _prev(prev), _position(position), _next(NULL), _coin(&Coin()){} Currency() : _next(NULL), _prev(NULL), _position(0) {} Coin *_coin; Currency *_next; Currency *_prev; int _position; }; /* constructor and destructor */ Exchange(); Exchange(std::string str); ~Exchange(); /* Assignment operator */ Exchange& operator =(const Exchange& copyExchange); /* Parse Cryptsy Pairs */ friend void parseTradePairs(Currency *curr, std::string *response, int begin, int exit); private: std::string _exch; Currency *_currencies; }; here is what i changed it to to fix it. typedef struct Currency { Currency(Coin *coin, Currency *next, Currency *prev, int position) : _coin(coin), _next(next), _prev(prev), _position(position) {} Currency(Currency *prev, int position) : _prev(prev), _position(position), _next(NULL), _coin(&Coin()){} Currency() { _next = NULL; _prev = NULL; _position = 0; _coin = new Coin(); } Coin *_coin; Currency *_next; Currency *_prev; int _position; };

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • Mouse input not updating in custom XNA/Winforms panel

    - by ChocoMan
    I have a custom Panel residing within my WinForm. the custom Panel holds the XNA rendering. So far, I've rendered an 3D test model. What I'm doing now is trying to handle the input.Using a camera from another working game, keyboard input works fine moving the camera in all 6 directions. But when it comes to handling the mouse to yaw and pitch the camera, nothing happens. I've searched about to see if anyone has come across this problem, but found no testable solutions to my problem. Does anyone understand as to what may be causing the Mouse not to be called when moved? Within MainForm constructor: public MainForm() { InitializeComponent(); Mouse.WindowHandle = panel3D.Handle; } Panel3D.cs Custom XNA Panel class FreeCamera.cs FreeCamera class

    Read the article

  • RSS feeds in Orchard

    When we added RSS to Orchard, we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example of such feed exposition is of course blog feeds. We have an IFeedManager interface for which you can get the built-in implementation through dependency injection. Look at the BlogController constructor for an example: public BlogController(...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Best methods for Lazy Initialization with properties

    - by Stuart Pegg
    I'm currently altering a widely used class to move as much of the expensive initialization from the class constructor into Lazy Initialized properties. Below is an example (in c#): Before: public class ClassA { public readonly ClassB B; public void ClassA() { B = new ClassB(); } } After: public class ClassA { private ClassB _b; public ClassB B { get { if (_b == null) { _b = new ClassB(); } return _b; } } } There are a fair few more of these properties in the class I'm altering, and some are not used in certain contexts (hence the Laziness), but if they are used they're likely to be called repeatedly. Unfortunately, the properties are often also used inside the class. This means there is a potential for the private variable (_b) to be used directly by a method without it being initialized. Is there a way to make only the public property (B) available inside the class, or even an alternative method with the same initialized-when-needed?

    Read the article

  • Metro: Using Templates

    - by Stephen.Walther
    The goal of this blog post is to describe how templates work in the WinJS library. In particular, you learn how to use a template to display both a single item and an array of items. You also learn how to load a template from an external file. Why use Templates? Imagine that you want to display a list of products in a page. The following code is bad: var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productsHTML = ""; for (var i = 0; i < products.length; i++) { productsHTML += "<h1>Product Details</h1>" + "<div>Product Name: " + products[i].name + "</div>" + "<div>Product Price: " + products[i].price + "</div>"; } document.getElementById("productContainer").innerHTML = productsHTML; In the code above, an array of products is displayed by creating a for..next loop which loops through each element in the array. A string which represents a list of products is built through concatenation. The code above is a designer’s nightmare. You cannot modify the appearance of the list of products without modifying the JavaScript code. A much better approach is to use a template like this: <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> A template is simply a fragment of HTML that contains placeholders. Instead of displaying a list of products by concatenating together a string, you can render a template for each product. Creating a Simple Template Let’s start by using a template to render a single product. The following HTML page contains a template and a placeholder for rendering the template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> In the page above, the template is defined in a DIV element with the id productTemplate. The contents of the productTemplate are not displayed when the page is opened in the browser. The contents of a template are automatically hidden when you convert the productTemplate into a template in your JavaScript code. Notice that the template uses data-win-bind attributes to display the product name and price properties. You can use both data-win-bind and data-win-bindsource attributes within a template. To learn more about these attributes, see my earlier blog post on WinJS data binding: http://stephenwalther.com/blog/archive/2012/02/26/windows-web-applications-declarative-data-binding.aspx The page above also includes a DIV element named productContainer. The rendered template is added to this element. Here’s the code for the default.js script which creates and renders the template: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000 }; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); productTemplate.render(product, document.getElementById("productContainer")); } }; app.start(); })(); In the code above, a single product object is created with the following line of code: var product = { name: "Tesla", price: 80000 }; Next, the productTemplate element from the page is converted into an actual WinJS template with the following line of code: var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); The template is rendered to the templateContainer element with the following line of code: productTemplate.render(product, document.getElementById("productContainer")); The result of this work is that the product details are displayed: Notice that you do not need to call WinJS.Binding.processAll(). The Template render() method takes care of the binding for you. Displaying an Array in a Template If you want to display an array of products using a template then you simply need to create a for..next loop and iterate through the array calling the Template render() method for each element. (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); After each product in the array is rendered with the template, the result is appended to the productContainer element. No changes need to be made to the HTML page discussed in the previous section to display an array of products instead of a single product. The same product template can be used in both scenarios. Rendering an HTML TABLE with a Template When using the WinJS library, you create a template by creating an HTML element in your page. One drawback to this approach of creating templates is that your templates are part of your HTML page. In order for your HTML page to validate, the HTML within your templates must also validate. This means, for example, that you cannot enclose a single HTML table row within a template. The following HTML is invalid because you cannot place a TR element directly within the body of an HTML document:   <!-- Product Template --> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> This template won’t validate because, in a valid HTML5 document, a TR element must appear within a THEAD or TBODY element. Instead, you must create the entire TABLE element in the template. The following HTML page illustrates how you can create a template which contains a TR element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> <!-- Place where Product Template is Rendered --> <table> <thead> <tr> <th>Name</th><th>Price</th> </tr> </thead> <tbody id="productContainer"> </tbody> </table> </body> </html>   In the HTML page above, the product template includes TABLE and TBODY elements: <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> We discard these elements when we render the template. The only reason that we include the TABLE and THEAD elements in the template is to make the HTML page validate as valid HTML5 markup. Notice that the productContainer (the target of the template) in the page above is a TBODY element. We want to add the rows rendered by the template to the TBODY element in the page. The productTemplate is rendered in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); } } }; app.start(); })(); When the product template is rendered, the TR element is extracted from the rendered template by using the WinJS.Utilities.query() method. Next, only the TR element is added to the productContainer: productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); I discuss the WinJS.Utilities.query() method in depth in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/23/windows-web-applications-query-selectors.aspx When everything gets rendered, the products are displayed in an HTML table: You can see the actual HTML rendered by looking at the Visual Studio DOM Explorer window:   Loading an External Template Instead of embedding a template in an HTML page, you can place your template in an external HTML file. It makes sense to create a template in an external file when you need to use the same template in multiple pages. For example, you might need to use the same product template in multiple pages in your application. The following HTML page does not contain a template. It only contains a container that will act as a target for the rendered template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> The template is contained in a separate file located at the path /templates/productTemplate.html:   Here’s the contents of the productTemplate.html file: <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> Notice that the template file only contains the template and not the standard opening and closing HTML elements. It is an HTML fragment. If you prefer, you can include all of the standard opening and closing HTML elements in your external template – these elements get stripped away automatically: <html> <head><title>product template</title></head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> Either approach – using a fragment or using a full HTML document  — works fine. Finally, the following default.js file loads the external template, renders the template for each product, and appends the result to the product container: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(null, { href: "/templates/productTemplate.html" }); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); The path to the external template is passed to the constructor for the Template class as one of the options: var productTemplate = new WinJS.Binding.Template(null, {href:"/templates/productTemplate.html"}); When a template is contained in a page then you use the first parameter of the WinJS.Binding.Template constructor to represent the template – instead of null, you pass the element which contains the template. When a template is located in an external file, you pass the href for the file as part of the second parameter for the WinJS.Binding.Template constructor. Summary The goal of this blog entry was to describe how you can use WinJS templates to render either a single item or an array of items to a page. We also explored two advanced topics. You learned how to render an HTML table by extracting the TR element from a template. You also learned how to place a template in an external file.

    Read the article

  • I made a 2D ENGINE for Android, looking for cooperation.

    - by Roger Travis
    My name is Robert, I am an Android programmer and wanted to show off my latest project - a 2d game engine. You can see it in action here - https://play.google.com/store/apps/details?id=engineDemo.com My engine's main advantage is its ease of use. To have your level up and running, you'll need only 3 lines of code. ABoxView aboxView = new ABoxView(this); setContentView(aboxView); aboxView.loadLevel("level/level02"); Level are created in a special level constructor and object physical properties are stored in a corresponding XML file. I am looking to cooperate with those, who might be interesting in using my engine in their games. You can email me at [email protected] or post here. Thanks, Robert

    Read the article

  • KnownType Not sufficient for Inclusion

    - by Kate at LittleCollie
    Why isn't the use of KnownType attribute in C# sufficient for inclusion of a DLL? Working with Visual Studio 2012 with TFS responsible for builds, I am on a project in which a service required use of this attribute as in the following: using Project.That.Contains.RequiredClassName; [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall, Namespace="SomeNamespace")] [KnownType(typeof(RequiredClassName))] public class Service : IService { } But to get the required DLL to be included in the bin output and therefore the installer from our production build, I had to add the follow to the constructor for Service: public Service() { // Exists only to force inclusion var ignore = new RequiredClassName(); } So, given that the project that contains RequiredClassName is itself referenced by the project that contains Service, why isn't the use of the KnownType attribute sufficient for inclusion of DLL in the output?

    Read the article

  • Gradual approaches to dependency injection

    - by JW01
    I'm working on making my classes unit-testable, using dependency injection. But some of these classes have a lot of clients, and I'm not ready to refactor all of them to start passing in the dependencies yet. So I'm trying to do it gradually; keeping the default dependencies for now, but allowing them to be overridden for testing. One approach I'm conisdering is just moving all the "new" calls into their own methods, e.g.: public MyObject createMyObject(args) { return new MyObject(args); } Then in my unit tests, I can just subclass this class, and override the create functions, so they create fake objects instead. Is this a good approach? Are there any disadvantages? More generally, is it okay to have hard-coded dependencies, as long as you can replace them for testing? I know the preferred approach is to explicitly require them in the constructor, and I'd like to get there eventually. But I'm wondering if this is a good first step.

    Read the article

  • Can You Have "Empty" Abstract/Classes?

    - by ShrimpCrackers
    Of course you can, I'm just wondering if it's rational to design in such a way. I'm making a breakout clone and was doing some class design. I wanted to use inheritance, even though I don't have to, to apply what I've learned in C++. I was thinking about class design and came up with something like this: GameObject - base class (consists of data members like x and y offsets, and a vector of SDL_Surface* MovableObject : GameObject - abstract class + derived class of GameObject (one method void move() = 0; ) NonMovableObject : GameObject - empty class...no methods or data members other than constructor and destructor(at least for now?). Later I was planning to derive a class from NonMovableObject, like Tileset : NonMovableObject. I was just wondering if "empty" abstract classes or just empty classes are often used...I notice that the way I'm doing this, I'm just creating the class NonMovableObject just for sake of categorization. I know I'm overthinking things just to make a breakout clone, but my focus is less on the game and more on using inheritance and designing some sort of game framework.

    Read the article

  • Assign multiple test categories using TestCategoryAttribute

    - by Michael Freidgeim
    I am using TestCategoryAttribute to filter which tests to run during builds and wandered, how to -how to assign multiple test categories.According to constructor documentation only single category can be specified.  However TestCategories Property (plural!)can return multiple categories.Grouping Tests into Test Categories: You can add an automated test to one or multiple test categories using a test attribute. Each test can belong to multiple test categories.The recommended approach from MSDN How to: Group and Run Automated Tests Using Test Categories is to specify multiple TestCategory attributes like the following[TestCategory("Nightly"), TestCategory("Weekly"), TestCategory("ShoppingCart"), TestMethod()]public Void DebitTest() { }Article http://toddmeinershagen.blogspot.com.au/2010/09/create-custom-test-category-attributes.htmlshows how enums can be used instead of strings.It also explains, that TestCategories Property can be used in derived custom attributes.v

    Read the article

  • Game component causes game to freeze

    - by ChocoMan
    I'm trying to add my camera component to Game1 class' constructor like so: Camera camera; // from class Camera : GameComponent .... public Game1() { graphics = new GraphicsDeviceManager(this); this.graphics.PreferredBackBufferWidth = screenWidth; this.graphics.PreferredBackBufferHeight = screenHieght; this.graphics.IsFullScreen = true; Content.RootDirectory = "Content"; camera = new Camera(this); Components.Add(camera); } From the just adding the last two lines, when I run the game, the screen freezes then gives me this message: An unhandled exception of type 'System.ComponentModel.Win32Exception' occurred in System.Drawing.dll Additional information: The operation completed successfully

    Read the article

  • How to create a PeopleCode Application Package/Application Class using PeopleTools Tables

    - by Andreea Vaduva
    This article describes how - in PeopleCode (Release PeopleTools 8.50) - to enable a grid without enabling each static column, using a dynamic Application Class. The goal is to disable the following grid with three columns “Effort Date”, ”Effort Amount” and “Charge Back” , when the Check Box “Finished with task” is selected , without referencing each static column; this PeopleCode could be used dynamically with any grid. If the check box “Finished with task” is cleared, the content of the grid columns is editable (and the buttons “+” and “-“ are available): So, you create an Application Package “CLASS_EXTENSIONS” that contains an Application Class “EWK_ROWSET”. This Application Class is defined with Class extends “ Rowset” and you add two news properties “Enabled” and “Visible”: After creating this Application Class, you use it in two PeopleCode Events : Rowinit and FieldChange : This code is very ‘simple’, you write only one command : ” &ERS2.Enabled = False” → and the entire grid is “Enabled”… and you can use this code with any Grid! So, the complete PeopleCode to create the Application Package is (with explanation in [….]) : ******Package CLASS_EXTENSIONS : [Name of the Package: CLASS_EXTENSIONS] --Beginning of the declaration part------------------------------------------------------------------------------ class EWK_ROWSET extends Rowset; [Definition Class EWK_ROWSET as a subclass of Class Rowset] method EWK_ROWSET(&RS As Rowset); [Constructor is the Method with the same name of the Class] property boolean Visible get set; property boolean Enabled get set; [Definition of the property “Enabled” in read/write] private [Before the word “private”, all the declarations are publics] method SetDisplay(&DisplaySW As boolean, &PropName As string, &ChildSW As boolean); instance boolean &EnSW; instance boolean &VisSW; instance Rowset &NextChildRS; instance Row &NextRow; instance Record &NextRec; instance Field &NextFld; instance integer &RowCnt, &RecCnt, &FldCnt, &ChildRSCnt; instance integer &i, &j, &k; instance CLASS_EXTENSIONS:EWK_ROWSET &ERSChild; [For recursion] Constant &VisibleProperty = "VISIBLE"; Constant &EnabledProperty = "ENABLED"; end-class; --End of the declaration part------------------------------------------------------------------------------ method EWK_ROWSET [The Constructor] /+ &RS as Rowset +/ %Super = &RS; end-method; get Enabled /+ Returns Boolean +/; Return &EnSW; end-get; set Enabled /+ &NewValue as Boolean +/; &EnSW = &NewValue; %This.InsertEnabled=&EnSW; %This.DeleteEnabled=&EnSW; %This.SetDisplay(&EnSW, &EnabledProperty, False); [This method is called when you set this property] end-set; get Visible /+ Returns Boolean +/; Return &VisSW; end-get; set Visible /+ &NewValue as Boolean +/; &VisSW = &NewValue; %This.SetDisplay(&VisSW, &VisibleProperty, False); end-set; method SetDisplay [The most important PeopleCode Method] /+ &DisplaySW as Boolean, +/ /+ &PropName as String, +/ /+ &ChildSW as Boolean +/ [Not used in our example] &RowCnt = %This.ActiveRowCount; &NextRow = %This.GetRow(1); [To know the structure of a line ] &RecCnt = &NextRow.RecordCount; For &i = 1 To &RowCnt [Loop for each Line] &NextRow = %This.GetRow(&i); For &j = 1 To &RecCnt [Loop for each Record] &NextRec = &NextRow.GetRecord(&j); &FldCnt = &NextRec.FieldCount; For &k = 1 To &FldCnt [Loop for each Field/Record] &NextFld = &NextRec.GetField(&k); Evaluate Upper(&PropName) When = &VisibleProperty &NextFld.Visible = &DisplaySW; Break; When = &EnabledProperty; &NextFld.Enabled = &DisplaySW; [Enable each Field/Record] Break; When-Other Error "Invalid display property; Must be either VISIBLE or ENABLED" End-Evaluate; End-For; End-For; If &ChildSW = True Then [If recursion] &ChildRSCnt = &NextRow.ChildCount; For &j = 1 To &ChildRSCnt [Loop for each Rowset child] &NextChildRS = &NextRow.GetRowset(&j); &ERSChild = create CLASS_EXTENSIONS:EWK_ROWSET(&NextChildRS); &ERSChild.SetDisplay(&DisplaySW, &PropName, &ChildSW); [For each Rowset child, call Method SetDisplay with the same parameters used with the Rowset parent] End-For; End-If; End-For; end-method; ******End of the Package CLASS_EXTENSIONS:[Name of the Package: CLASS_EXTENSIONS] About the Author: Pascal Thaler joined Oracle University in 2005 where he is a Senior Instructor. His area of expertise is Oracle Peoplesoft Technology and he delivers the following courses: For Developers: PeopleTools Overview, PeopleTools I &II, Batch Application Engine, Language Oriented Object PeopleCode, Administration Security For Administrators : Server Administration & Installation, Database Upgrade & Data Management Tools For Interface Users: Integration Broker (Web Service)

    Read the article

  • Is there any reason to use "plain old data" classes?

    - by Michael
    In legacy code I occasionally see classes that are nothing but wrappers for data. something like: class Bottle { int height; int diameter; Cap capType; getters/setters, maybe a constructor } My understanding of OO is that classes are structures for data and the methods of operating on that data. This seems to preclude objects of this type. To me they are nothing more than structs and kind of defeat the purpose of OO. I don't think it's necessarily evil, though it may be a code smell. Is there a case where such objects would be necessary? If this is used often, does it make the design suspect?

    Read the article

  • IValidatableObject vs Single Responsibility

    - by Boris Yankov
    I like the extnesibility point of MVC, allowing view models to implement IValidatableObject, and add custom validation. I try to keep my Controllers lean, having this code be the only validation logic: if (!ModelState.IsValid) return View(loginViewModel); For example a login view model implements IValidatableObject, gets ILoginValidator object via constructor injection: public interface ILoginValidator { bool UserExists(string email); bool IsLoginValid(string userName, string password); } It seems that Ninject, injecting instances in view models isn't really a common practice, may be even an anti-pattern? Is this a good approach? Is there a better one?

    Read the article

  • Binary Search Tree Implementation

    - by Gabe
    I've searched the forum, and tried to implement the code in the threads I found. But I've been working on this real simple program since about 10am, and can't solve the seg. faults for the life of me. Any ideas on what I'm doing wrong would be greatly appreciated. BST.h (All the implementation problems should be in here.) #ifndef BST_H_ #define BST_H_ #include <stdexcept> #include <iostream> #include "btnode.h" using namespace std; /* A class to represent a templated binary search tree. */ template <typename T> class BST { private: //pointer to the root node in the tree BTNode<T>* root; public: //default constructor to make an empty tree BST(); /* You have to document these 4 functions */ void insert(T value); bool search(const T& value) const; bool search(BTNode<T>* node, const T& value) const; void printInOrder() const; void remove(const T& value); //function to print out a visual representation //of the tree (not just print the tree's values //on a single line) void print() const; private: //recursive helper function for "print()" void print(BTNode<T>* node,int depth) const; }; /* Default constructor to make an empty tree */ template <typename T> BST<T>::BST() { root = NULL; } template <typename T> void BST<T>::insert(T value) { BTNode<T>* newNode = new BTNode<T>(value); cout << newNode->data; if(root == NULL) { root = newNode; return; } BTNode<T>* current = new BTNode<T>(NULL); current = root; current->data = root->data; while(true) { if(current->left == NULL && current->right == NULL) break; if(current->right != NULL && current->left != NULL) { if(newNode->data > current->data) current = current->right; else if(newNode->data < current->data) current = current->left; } else if(current->right != NULL && current->left == NULL) { if(newNode->data < current->data) break; else if(newNode->data > current->data) current = current->right; } else if(current->right == NULL && current->left != NULL) { if(newNode->data > current->data) break; else if(newNode->data < current->data) current = current->left; } } if(current->data > newNode->data) current->left = newNode; else current->right = newNode; return; } //public helper function template <typename T> bool BST<T>::search(const T& value) const { return(search(root,value)); //start at the root } //recursive function template <typename T> bool BST<T>::search(BTNode<T>* node, const T& value) const { if(node == NULL || node->data == value) return(node != NULL); //found or couldn't find value else if(value < node->data) return search(node->left,value); //search left subtree else return search(node->right,value); //search right subtree } template <typename T> void BST<T>::printInOrder() const { //print out the value's in the tree in order // //You may need to use this function as a helper //and create a second recursive function //(see "print()" for an example) } template <typename T> void BST<T>::remove(const T& value) { if(root == NULL) { cout << "Tree is empty. No removal. "<<endl; return; } if(!search(value)) { cout << "Value is not in the tree. No removal." << endl; return; } BTNode<T>* current; BTNode<T>* parent; current = root; parent->left = NULL; parent->right = NULL; cout << root->left << "LEFT " << root->right << "RIGHT " << endl; cout << root->data << " ROOT" << endl; cout << current->data << "CURRENT BEFORE" << endl; while(current != NULL) { cout << "INTkhkjhbljkhblkjhlk " << endl; if(current->data == value) break; else if(value > current->data) { parent = current; current = current->right; } else { parent = current; current = current->left; } } cout << current->data << "CURRENT AFTER" << endl; // 3 cases : //We're looking at a leaf node if(current->left == NULL && current->right == NULL) // It's a leaf { if(parent->left == current) parent->left = NULL; else parent->right = NULL; delete current; cout << "The value " << value << " was removed." << endl; return; } // Node with single child if((current->left == NULL && current->right != NULL) || (current->left != NULL && current->right == NULL)) { if(current->left == NULL && current->right != NULL) { if(parent->left == current) { parent->left = current->right; cout << "The value " << value << " was removed." << endl; delete current; } else { parent->right = current->right; cout << "The value " << value << " was removed." << endl; delete current; } } else // left child present, no right child { if(parent->left == current) { parent->left = current->left; cout << "The value " << value << " was removed." << endl; delete current; } else { parent->right = current->left; cout << "The value " << value << " was removed." << endl; delete current; } } return; } //Node with 2 children - Replace node with smallest value in right subtree. if (current->left != NULL && current->right != NULL) { BTNode<T>* check; check = current->right; if((check->left == NULL) && (check->right == NULL)) { current = check; delete check; current->right = NULL; cout << "The value " << value << " was removed." << endl; } else // right child has children { //if the node's right child has a left child; Move all the way down left to locate smallest element if((current->right)->left != NULL) { BTNode<T>* leftCurrent; BTNode<T>* leftParent; leftParent = current->right; leftCurrent = (current->right)->left; while(leftCurrent->left != NULL) { leftParent = leftCurrent; leftCurrent = leftCurrent->left; } current->data = leftCurrent->data; delete leftCurrent; leftParent->left = NULL; cout << "The value " << value << " was removed." << endl; } else { BTNode<T>* temp; temp = current->right; current->data = temp->data; current->right = temp->right; delete temp; cout << "The value " << value << " was removed." << endl; } } return; } } /* Print out the values in the tree and their relationships visually. Sample output: 22 18 15 10 9 5 3 1 */ template <typename T> void BST<T>::print() const { print(root,0); } template <typename T> void BST<T>::print(BTNode<T>* node,int depth) const { if(node == NULL) { std::cout << std::endl; return; } print(node->right,depth+1); for(int i=0; i < depth; i++) { std::cout << "\t"; } std::cout << node->data << std::endl; print(node->left,depth+1); } #endif main.cpp #include "bst.h" #include <iostream> using namespace std; int main() { BST<int> tree; cout << endl << "LAB #13 - BINARY SEARCH TREE PROGRAM" << endl; cout << "----------------------------------------------------------" << endl; // Insert. cout << endl << "INSERT TESTS" << endl; // No duplicates allowed. tree.insert(0); tree.insert(5); tree.insert(15); tree.insert(25); tree.insert(20); // Search. cout << endl << "SEARCH TESTS" << endl; int x = 0; int y = 1; if(tree.search(x)) cout << "The value " << x << " is on the tree." << endl; else cout << "The value " << x << " is NOT on the tree." << endl; if(tree.search(y)) cout << "The value " << y << " is on the tree." << endl; else cout << "The value " << y << " is NOT on the tree." << endl; // Removal. cout << endl << "REMOVAL TESTS" << endl; tree.remove(0); tree.remove(1); tree.remove(20); // Print. cout << endl << "PRINTED DIAGRAM OF BINARY SEARCH TREE" << endl; cout << "----------------------------------------------------------" << endl; tree.print(); cout << endl << "Program terminated. Goodbye." << endl << endl; } BTNode.h #ifndef BTNODE_H_ #define BTNODE_H_ #include <iostream> /* A class to represent a node in a binary search tree. */ template <typename T> class BTNode { public: //constructor BTNode(T d); //the node's data value T data; //pointer to the node's left child BTNode<T>* left; //pointer to the node's right child BTNode<T>* right; }; /* Simple constructor. Sets the data value of the BTNode to "d" and defaults its left and right child pointers to NULL. */ template <typename T> BTNode<T>::BTNode(T d) : left(NULL), right(NULL) { data = d; } #endif Thanks.

    Read the article

  • Visual Studio Macro – Identifier to String Literal

    - by João Angelo
    When implementing public methods with parameters it’s important to write boiler-plate code to do argument validation and throw exceptions when needed, ArgumentException and ArgumentNullException being the most recurrent. Another thing that is important is to correctly specify the parameter causing the exception through the proper exception constructor. In order to take advantage of IntelliSense completion in these scenarios I use a Visual Studio macro binded to a keyboard shortcut that converts the identifier at the cursor position to a string literal. And here’s the macro: Sub ConvertIdentifierToStringLiteral() Dim targetWord As String Dim document As EnvDTE.TextDocument document = CType(DTE.ActiveDocument.Object, EnvDTE.TextDocument) If document.Selection.Text.Length > 0 Then targetWord = document.Selection.Text document.Selection.ReplacePattern(targetWord, """" + targetWord + """") Else Dim cursorPoint As EnvDTE.TextPoint cursorPoint = document.Selection.ActivePoint() Dim editPointLeft As EnvDTE.EditPoint Dim editPointRight As EnvDTE.EditPoint editPointLeft = cursorPoint.CreateEditPoint() editPointLeft.WordLeft(1) editPointRight = editPointLeft.CreateEditPoint() editPointRight.WordRight(1) targetWord = editPointLeft.GetText(editPointRight) editPointLeft.ReplaceText(editPointRight, """" + targetWord + """", 0) End If End Sub

    Read the article

  • Setter Validation can affect performance?

    - by TiagoBrenck
    Whitin a scenario where you use an ORM to map your entities to the DB, and you have setter validations (nullable, date lower than today validation, etc) every time the ORM get a result, it will pass into the setter to instance the object. If I have a grid that usually returns 500 records, I assume that for each record it passes on all validations. If my entity has 5 setter validations, than I have passed in 2.500 validations. Does those 2.500 validations will affect the performance? If was 15.000 validation, it will be different? In my opinion, and according to this answer (http://stackoverflow.com/questions/4893558/calling-setters-from-a-constructor/4893604#4893604), setter validation is usefull than constructors validation. Is there a way to avoid unecessary validation, since I am safe that the values I send to DB when saving the entity wont change until I edit it on my system?

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >